Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Chinese Journal of Biotechnology ; (12): 4445-4462, 2023.
Article in Chinese | WPRIM | ID: wpr-1008035

ABSTRACT

Plastics are widely used in human daily life, which bring great convenience. Nevertheless, the disposal of a large amount of plastic wastes also brings great pressure to the environment. Polyethylene terephthalate (PET) is a polymer thermoplastic material produced from petroleum. It has become one of the most commonly used plastics in the world due to its durability, high transparency, light weight and other characteristics. PET can exist in nature for a long time due to its complex structure and the difficulty in degradation, which causes serious pollution to the global ecological environment, and threatens human health. The degradation of PET wastes has since become one of the global challenges. Compared with physical and chemical methods, biodegradation is the greenest way for treating PET wastes. This review summarizes the recent advances on PET biodegradation including microbial and enzymatic degradation of PET, biodegradation pathway, biodegradation mechanisms, and molecular modification of PET-degrading enzymes. In addition, the prospect for achieveing efficient degradation of PET, searching and improving microorganisms or enzymes that can degrade PET of high crystallinity are presented, with the aimto facilitate the development, application and molecular modification of PET biodegradation microorganisms or enzymes.


Subject(s)
Humans , Polyethylene Terephthalates/metabolism , Polymers , Biodegradation, Environmental , Petroleum
2.
Journal of Pharmaceutical Practice ; (6): 341-351, 2023.
Article in Chinese | WPRIM | ID: wpr-976525

ABSTRACT

Targeted protein degradation (TPD) techniques eliminate pathogenic proteins by hijacking the intracellular proteolysis machinery which includes the ubiquitin-proteasome system (UPS) and the lysosomal degradation pathway, holding promise to overcome the limitations of traditional inhibitors and further broaden the target space including many “undruggable” targets, and provide new targeted treatments for drug discovery. In this review, recent advances in a variety of promising TPD strategies were summarized, such as proteolysis targeting chimera (PROTAC), molecular glue, lysosome-targeting chimaera (LYTAC), autophagosome-tethering compound (ATTEC), autophagy-targeting chimera AUTAC and AUTOTAC, particularly. The representative case studies, potential applications and challenges were analyzed.

3.
Chinese Journal of Biotechnology ; (12): 473-485, 2021.
Article in Chinese | WPRIM | ID: wpr-878576

ABSTRACT

Lignocellulose is the most abundant renewable organic carbon resource on earth. However, due to its complex structure, it must undergo a series of pretreatment processes before it can be efficiently utilized by microorganisms. The pretreatment process inevitably generates typical inhibitors such as furan aldehydes that seriously hinder the growth of microorganisms and the subsequent fermentation process. It is an important research field for bio-refining to recognize and clarify the furan aldehydes metabolic pathway of microorganisms and further develop microbial strains with strong tolerance and transformation ability towards these inhibitors. This article reviews the sources of furan aldehyde inhibitors, the inhibition mechanism of furan aldehydes on microorganisms, the furan aldehydes degradation pathways in microorganisms, and particularly focuses on the research progress of using biotechnological strategies to degrade furan aldehyde inhibitors. The main technical methods include traditional adaptive evolution engineering and metabolic engineering, and the emerging microbial co-cultivation systems as well as functional materials assisted microorganisms to remove furan aldehydes.


Subject(s)
Aldehydes , Fermentation , Furans , Lignin/metabolism
4.
Chinese Journal of Biotechnology ; (12): 3915-3932, 2021.
Article in Chinese | WPRIM | ID: wpr-921476

ABSTRACT

Targeted protein degradation (TPD) technology facilitates specific and efficient degradation of disease-related proteins through hijacking the two major protein degradation systems in mammalian cells: ubiquitin-proteasome system and lysosome pathway. Compared with traditional small molecule-inhibitors, TPD-based drugs exhibit the characteristics of a broader target spectrum. Compared with techniques interfere with protein expression on the gene and mRNA level, TPD-based drugs are target-specific, efficaciously rapid, and not constrained by post-translational modification of proteins. In the past 20 years, various TPD-based technologies have been developed. Most excitingly, two TPD-based therapeutic drugs have been approved by FDA for phase Ⅰ clinical trials in 2019. Despite of the early stage characteristics and various obstructions of the TPD technology, it could serve as a powerful tool for the development of novel drugs. This review summarizes the advances of different degradation systems based on TPD technologies and their applications in disease therapy. Moreover, the advantages and challenges of various technologies were discussed systematically, with the aim to provide theoretical guidance for further application of TPD technologies in scientific research and drug development.


Subject(s)
Animals , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , Proteins/metabolism , Proteolysis , Technology
5.
Chinese Journal of Biotechnology ; (12): 3653-3662, 2021.
Article in Chinese | WPRIM | ID: wpr-921454

ABSTRACT

Microorganisms are the dominant players driving the degradation and transformation of chloramphenicol (CAP) in the environment. However, little bacterial strains are able to efficiently degrade and mineralize CAP, and the CAP degrading pathways mediated by oxidative reactions remain unclear. In this study, a highly efficient CAP-degrading microbial consortium, which mainly consists of Rhodococcus (relative abundance >70%), was obtained through an enrichment process using CAP-contaminated activated sludge as the inoculum. A bacterial strain CAP-2 capable of efficiently degrading CAP was isolated from the consortium and identified as Rhodococcus sp. by 16S rRNA gene analysis. Strain CAP-2 can efficiently degrade CAP under different nutrient conditions. Based on the biotransformation characteristics of the detected metabolite p-nitrobenzoic acid and the reported metabolites p-nitrobenzaldehyde and protocatechuate by strain CAP-2, a new oxidative pathway for the degradation of CAP was proposed. The side chain of CAP was oxidized and broken to generate p-nitrobenzaldehyde, which was further oxidized to p-nitrobenzoic acid. Strain CAP-2 can be used to further study the molecular mechanism of CAP catabolism, and has the potential to be used in in situ bioremediation of CAP-contaminated environment.


Subject(s)
Biodegradation, Environmental , Chloramphenicol , RNA, Ribosomal, 16S/genetics , Rhodococcus/genetics , Sewage
6.
Chinese Journal of Biotechnology ; (12): 3459-3474, 2021.
Article in Chinese | WPRIM | ID: wpr-921441

ABSTRACT

Sulfonamides (SAs) are a kind of antibiotics widely used in medical treatment and livestock breeding. However, they have poor degradability in human and animal intestines, and will enter the sewage treatment system through the discharge of feces and urine. The aerobic activated sludge (AAS) in wastewater treatment plant was found to be able to effectively transform SAs. This article summarizes the advances in biodegradation of SAs in aerobic activated sludge system, which includes the biodegradation mechanisms, the main biodegradation pathways, and the environmental factors affecting the degradation efficiency. Challenges encountered in the current research were discussed, with the aim to provide scientific basis for optimizing the biodegradation of SAs in wastewater treatment process.


Subject(s)
Humans , Anti-Bacterial Agents , Biodegradation, Environmental , Sewage , Sulfonamides , Water Pollutants, Chemical/analysis
7.
Journal of Pharmaceutical Analysis ; (6): 357-365, 2018.
Article in Chinese | WPRIM | ID: wpr-700393

ABSTRACT

The aim of the present investigation was to demonstrate an approach involving use of liquid chromatography (LC) and liquid chromatography-mass spectrometry (LC–MS) to separate, identify and characterize very small quantities of degradation products (DPs) of acebutolol without their isolation from the reaction mixtures. The drug was subjected to oxidative, hydrolytic, thermal and photolytic stress conditions as per International Conference on Harmonization (ICH) guideline Q1A(R2). Among all the stress conditions the drug was found to be labile in hydrolytic (acidic & basic) and photolytic stress conditions, while it was stable in water-induced hydrolysis, oxidative and thermal stress conditions. A total of four degradation products were formed. A C18 column was employed for the separation of all the DPs on a gradient mode by using high-performance liquid chromatography (HPLC). All the DPs were characterized with the help of their fragmentation pattern and the masses obtained upon LC–MS/MS and MSn analysis. All the hitherto unknown degradation products were identified as 1-(2-(2-hydroxy-3- (isopropylamino)propoxy)-5-(amino)phenyl)ethanone (DP-I), N-(4-(2-hydroxy-3-(isopropylamino) propoxy)-3-acetylphenyl)acrylamide (DP-II), 1-(2-(2-hydroxy-3-(isopropylamino)propoxy)-5-(hydroxymethylamino) phenyl)ethanone (DP-III) and 1-(6-(2-hydroxy-3-(isopropylamino)propoxy)-2,3-dihydro- 2-propylbenzo[d]oxazol-5-yl)ethanone (DP-IV). Finally the in-silico carcinogenicity and hepatotoxicity predictions of the drug and all the DPs were performed by using toxicity prediction softwares viz., TOPKAT, LAZAR and Discovery Studio ADMET. The results of in-silico toxicity studies revealed that acebutolol (0.967) and DP-I (0.986) were found to be carcinogenic, while acebutolol (0.490) and DP-IV (0.437) were found to be hepatotoxic.

8.
Chinese Journal of Nephrology ; (12): 616-621, 2018.
Article in Chinese | WPRIM | ID: wpr-711146

ABSTRACT

Objective To investigate the effects of WNK3 kinase on the regulation of large-conductance calcium-activated potassium channels (Maxi K channels) on African green monkey kidney fibroblast-like cells (Cos-7 cells) and its mechanisms.Methods (1) Cos-7 cells were transfected with 0,0.6,1.2,1.8 μg WNK3 plasmid+0.5 μg Maxi K plasmid.The total protein expression of Maxi K channel and the phosphorylation of mitogen-activated protein kinase (MAPK) extracellular regulated kinase-1 and-2 (ERK1/2) were detected by Western blotting.(2) Cos-7 cells were divided into the control group (2.5 μg Maxi K plasmid) and the experimental group (2.5 μg WNK3 plasmid+2.5 μg Maxi K plasmid).Cell surface biotinylation was used to investigate the cell surface protein expression of Maxi K channel in Cos-7 cells.Immunoprecipitation and Western blotting were used to detect the ubiquitination of Maxi K channel protein.(3) WNK3 kinase was knocked down by WNK3 siRNA.The lysosomal degradation pathway was blocked by the proton pump inhibitor (Baf-A1).Cos-7 cells were divided into Maxi K+negative control siRNA group,Maxi K+WNK3 siRNA group and Maxi K+WNK3 siRNA+Baf-A1 group.The protein expression of Maxi K channel protein was detected by Western blotting.Results (1) Compared with those in 0 μg WNK3 plasmid groups,in 0.6,1.2,1.8 μg WNK3 plasmid groups the total protein expression of the Maxi K channel increased and the phosphorylation level of MAPK ERK1/2 reduced on a dose-dependent manner (all P < 0.01).(2)Compared with those in the control group,the total protein expression and cell surface membrane protein expression of the Maxi K channel increased in the experimental group (P < 0.01),while the ubiquitination of the Maxi K channel protein reduced (P < 0.01).(3) Compared with the Maxi K +negative control siRNA group,the expression of Maxi K protein reduced in the Maxi K+WNK3 siRNA group (P < 0.01),but did not change in the Maxi K+WNK3 siRNA + Bar-A1 group (P > 0.05).The expression of Maxi K protein in Maxi K+WNK3 siRNA+Baf-A1 group was higher than that in Maxi K+WNK3 siRNA group (P < 0.01).Conclusions WNK3 kinase inhibits the lysosomal degradation pathway of Maxi K channel protein by reducing the ubiquitination of Maxi K channel,and promotes the expression of Maxi K channel protein in cells and on cell membrane.These effects may be achieved by suppressing MAPK ERK1/2 signal transduction pathway.

9.
Genet. mol. biol ; 40(1,supl.1): 226-237, 2017. tab, graf
Article in English | LILACS | ID: biblio-892385

ABSTRACT

Abstract Drought stress is the main limiting factor of soybean yield. Currently, genetic engineering has been one important tool in the development of drought-tolerant cultivars. A widely used strategy is the fusion of genes that confer tolerance under the control of the CaMV35S constitutive promoter; however, stress-responsive promoters would constitute the best alternative to the generation of drought-tolerant crops. We characterized the promoter of α-galactosidase soybean (GlymaGAL) gene that was previously identified as highly up-regulated by drought stress. The β-glucuronidase (GUS) activity of Arabidopsis transgenic plants bearing 1000- and 2000-bp fragments of the GlymaGAL promoter fused to the uidA gene was evaluated under air-dried, polyethylene glycol (PEG) and salt stress treatments. After 24 h of air-dried and PEG treatments, the pGAL-2kb led to an increase in GUS expression in leaf and root samples when compared to the control samples. These results were corroborated by qPCR expression analysis of the uidA gene. The pGAL-1kb showed no difference in GUS activity between control and treated samples. The pGAL-2kb promoter was evaluated in transgenic soybean roots, leading to an increase in EGFP expression under air-dried treatment. Our data indicates that pGAL-2kb could be a useful tool in developing drought-tolerant cultivars by driving gene expression.

10.
Basic & Clinical Medicine ; (12): 1067-1071, 2017.
Article in Chinese | WPRIM | ID: wpr-608884

ABSTRACT

Objective To investigate does intracellular protein degradation pathway play an important role in decrease of endothelial nitric oxide synthase (eNOS) in human umbilical vein endothelial cells (HUVECs).MethodsTo establish a primary HUVECs culture methods,the HUVECs were incubated with concentration gradient group of TNF-α(0.01,0.1,1 and 10 ng/mL) in different time periods (24,48 and 72 h).The HUVECs were pretreated with NH4Cl or treated with caspase inhibitor or MG-132 1.5 h prior to incubation for an additional 24 h with TNF-α.The expression of eNOS was detected via Western blot assay.Results Treatment of the HUVECs with TNF-α(0.01-10 ng/mL) led to a dose-dependent reduction of eNOS expression.And treatment with TNF-α(1 ng/mL) reduced the eNOS expression in a time-depended manner.Compared with the TNF-α group,the protein expression level of eNOS was obviously increased in the co-working group of MG-123 and TNF-α.Conclusions TNF-α induces degradation of eNOS through a ubiquitin-proteasome pathway.

11.
Journal of Pharmaceutical Analysis ; (6): 231-236, 2017.
Article in Chinese | WPRIM | ID: wpr-686686

ABSTRACT

Zidvovudine (AZT) is a nucleoside analogue reverse transcriptase inhibitor (NRTI), a class of anti-retroviral drug. A stability-indicating assay method for AZT was developed in line with ICH guideline. Successful separation of AZT and its degradation products was achieved by gradient elution mode on reverse phase C18 column using 10 mM ammonium acetate: acetonitrile as the mobile phase at 0.8 mL/min flow rate, 25 μL injection volume, 30 °C column temperature and 285 nm detection wavelength. Two major acid degradation products were identified and characterized by liquid chromatography–electrospray ionization mass spectro-metry (LC–ESI/MS/MS) and accurate mass measurements. The probable mechanisms for the formation of degradation products were identified based on a comparison of the fragmentation pattern of the [M + H] + ions of AZT and its degradation products. One of the degradation products, DP-1, was isolated by semi-preparative high performance liquid chromatography (HPLC) using Waters XBridge Prep C18 (250 mm×10 mm, 5 μm). Degradation products showed higher toxicity compared to the drug in some models assessed by TOPKAT software. The method validation was performed with respect to robustness, specificity, linearity, precision and accuracy as per ICH guideline Q2 (R1).

12.
Journal of Pharmaceutical Analysis ; (6): 33-42, 2015.
Article in Chinese | WPRIM | ID: wpr-672138

ABSTRACT

In the present study, comprehensive stress testing of amlodipine (AM) was carried out according to International Conference on Harmonization (ICH) Q1A(R2) guideline. AM was subjected to acidic, neutral and alkaline hydrolysis, oxidation, photolysis and thermal stress conditions. The drug showed instability in acidic and alkaline conditions, while it remained stable to neutral, oxidative, light and thermal stress. A total of nine degradation products (DPs) were formed from AM, which could be separated by the developed gradient LC method on a C18 column. The products formed under various stress conditions were investigated by LC–MS/MS analysis. The previously developed LC method was suitably modified for LC–MS/MS studies by replacing phosphate buffer with ammonium acetate buffer of the same concentration (pH 5.0). A complete fragmentation pathway of the drug was first established to characterize all the degradation products using LC–MS/MS and multi-stage mass (MSn) fragmentation studies. The obtained mass values were used to study elemental compositions, and the total information helped with the identification of DPs, along with its degradation pathway.

13.
Journal of International Pharmaceutical Research ; (6): 282-286, 2014.
Article in Chinese | WPRIM | ID: wpr-845750

ABSTRACT

Acute promyelocytic leukemia (APL) is a distinctive subtype of acute myeloid leukemia with a distinct biology and clinical presentation. Its molecular biology characteristic is a aberrant chromosomal translocation of the promyelocytic leukemia (PML) gene on chromosome 15 and the retinoic acid receptor α(RARα) gene on chromosome 17. This translocation generates PML-RARα fusion protein, which plays an important role in the genesis, development, diagnosis and therapy of APL. The PML protein has a close relationship with PML-RARα fusion gene. This article mainly summarizes the character, the function of PML protein and the degradation pathway of PML-RARα.

14.
Journal of International Pharmaceutical Research ; (6): 275-279, 2014.
Article in Chinese | WPRIM | ID: wpr-452222

ABSTRACT

Acute promyelocytic leukemia (APL) is a distinctive subtype of acute myeloid leukemia with a distinct biology and clinical presentation. Its molecular biology characteristic is a aberrant chromosomal translocation of the promyelocytic leukemia (PML) gene on chromosome 15 and the retinoic acid receptor α(RARα) gene on chromosome 17. This translocation generates PML-RARα fusion protein, which plays an important role in the genesis, development, diagnosis and therapy of APL. The PML protein has a close relationship with PML-RARαfusion gene. This article mainly summarizes the character, the function of PML protein and the degradation pathway of PML-RARα.

15.
Electron. j. biotechnol ; 14(4): 1-1, July 2011. ilus, tab
Article in English | LILACS | ID: lil-640496

ABSTRACT

Nonylphenol ethoxylates (NPEOs), which are widely used for industrial and domestic purposes, exert adverse effects on wildlife after being used and discharged into the environment. However, their ultimate biodegradability and biodegradation pathway remains unclear. In this study, the aerobic degradability of nonylphenol ethoxylates (NPEOs) by the acclimated microorganisms in active sludge was examined using shaking-flask tests. The degradation of benzene rings in NPEOs was determined using UV spectroscopy and high performance liquid chromatography (HPLC). Results showed that more than 80 percent of benzene rings were removed after 8-10 days of degradation, and the majority of NPEOs were also removed after 9 days of degradation, indicating NPEOs and the benzene rings could be ultimately degraded by microorganisms in acclimated active sludge. Electrospray ionization-mass spectroscopy (ESI-MS) analysis of biodegradation intermediates indicate that stepwise omega, beta-oxidation of EO chains or fission of EO chains, and further omega, beta-oxidation of alkyl-chain for short-EO-chain NPEOs constitute the main pathway in the early stage, and complete biodegradation occur when the benzene rings in these molecules are opened in the later stage.


Subject(s)
Biodegradation, Environmental , Ethylene Glycol , Phenols , Chromatography, High Pressure Liquid , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL