Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in English | WPRIM | ID: wpr-785798

ABSTRACT

Lactobacillus acidophilus UBLA-34, L. paracasei UBLPC-35, L. plantarum UBLP-40, and L. reuteri UBLRU-87 were isolated from different varieties of fermented foods. To determine the probiotic safety at the strain level, the whole genome of the respective strains was sequenced, assembled, and characterized. Both the core-genome and pan-genome phylogeny showed that L. reuteri was closest to L. plantarum than to L. acidophilus, which was closest to L. paracasei. The genomic analysis of all the strains confirmed the absence of genes encoding putative virulence factors, antibiotic resistance, and the plasmids.


Subject(s)
Drug Resistance, Microbial , Genome , Lactobacillus acidophilus , Lactobacillus , Phylogeny , Plasmids , Probiotics , Virulence Factors
2.
Electron. j. biotechnol ; Electron. j. biotechnol;33: 36-38, May. 2018. tab
Article in English | LILACS | ID: biblio-1024852

ABSTRACT

Background: Draft and complete genome sequences from bacteria are key tools to understand genetic determinants involved in pathogenesis in several disease models. Piscirickettsia salmonis is a Gram-negative bacterium responsible for the Salmon Rickettsial Syndrome (SRS), a bacterial disease that threatens the sustainability of the Chilean salmon industry. In previous reports, complete and draft genome sequences have been generated and annotated. However, the lack of transcriptome data underestimates the genetic potential, does not provide information about transcriptional units and contributes to disseminate annotation errors. Results: Here we present the draft genome and transcriptome sequences of four P. salmonis strains. We have identified the transcriptional architecture of previously characterized virulence factors and trait-specific genes associated to cation uptake, metal efflux, antibiotic resistance, secretion systems and other virulence factors. Conclusions: This data has provided a refined genome annotation and also new insights on the transcriptional structures and coding potential of this fish pathogen.


Subject(s)
Animals , Salmonidae , Piscirickettsiaceae Infections/veterinary , Piscirickettsia/genetics , Fish Diseases/microbiology , Genome, Bacterial , Piscirickettsia/pathogenicity , Transcriptome
3.
Braz. j. microbiol ; Braz. j. microbiol;48(4): 612-614, Oct.-Dec. 2017. tab
Article in English | LILACS | ID: biblio-889174

ABSTRACT

ABSTRACT Here, we show the draft genome sequence of Streptomyces sp. F1, a strain isolated from soil with great potential for secretion of hydrolytic enzymes used to deconstruct cellulosic biomass. The draft genome assembly of Streptomyces sp. strain F1 has 69 contigs with a total genome size of 8,142,296 bp and G + C 72.65%. Preliminary genome analysis identified 175 proteins as Carbohydrate-Active Enzymes, being 85 glycoside hydrolases organized in 33 distinct families. This draft genome information provides new insights on the key genes encoding hydrolytic enzymes involved in biomass deconstruction employed by soil bacteria.


Subject(s)
Bacterial Proteins/genetics , Genome, Bacterial , Glycoside Hydrolases/genetics , Soil Microbiology , Streptomyces/enzymology , Streptomyces/isolation & purification , Bacterial Proteins/metabolism , Base Composition , Brazil , Glycoside Hydrolases/metabolism , Multigene Family , Phylogeny , Streptomyces/classification , Streptomyces/genetics
SELECTION OF CITATIONS
SEARCH DETAIL