Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Genet. mol. biol ; 40(1): 160-167, Jan.-Mar. 2017. tab, graf
Article in English | LILACS | ID: biblio-892366

ABSTRACT

Abstract The Asian gypsy moth (Lymantria dispar) is a serious pest of forest and shade trees in many Asian and some European countries. However, there have been few studies of L. dispar genetic information and comprehensive genetic analyses of this species are needed in order to understand its genetic and metabolic sensitivities, such as the molting mechanism during larval development. In this study, high-throughput sequencing technology was used to sequence the transcriptome of the Asian subspecies of the gyspy moth, after which a comprehensive analysis of chitin metabolism was undertaken. We generated 37,750,380 high-quality reads and assembled them into contigs. A total of 37,098 unigenes were identified, of which 15,901 were annotated in the NCBI non-redundant protein database and 9,613 were annotated in the Swiss-Prot database. We mapped 4,329 unigenes onto 317 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. Chitin metabolism unigenes were found in the transcriptome and the data indicated that a variety of enzymes was involved in chitin catabolic and biosynthetic pathways.

2.
Asian Pacific Journal of Tropical Biomedicine ; (12): 16-21, 2014.
Article in Chinese | WPRIM | ID: wpr-672429

ABSTRACT

Metagenomics research has been developed over the past decade to elucidate the genomes of the uncultured microorganisms with an aim of understanding microbial ecology. On the other hand, it has also been provoked by the increasing biotechnological demands for novel enzymes, antibiotic and signal mimics. The gut microbiota of insects plays crucial roles in the growth, development and environmental adaptation to the host insects. Very recently, the insect microbiota and their genomes (microbiome), isolated from insects were recognized as a major genetic resources for bio-processing industry. Consequently, the exploitation of insect gut microbiome using metagenomic approaches will enable us to find novel biocatalysts and to develop innovative strategies for identifying smart molecules for biotechnological applications. In this review, we discuss the critical footstep in extraction and purification of metagenomic DNA from insect gut, construction of metagenomic libraries and screening procedure for novel gene identification. Recent innovations and potential applications in bioprocess industries are highlighted.

3.
Asian Pacific Journal of Tropical Biomedicine ; (12): S16-21, 2014.
Article in English | WPRIM | ID: wpr-233293

ABSTRACT

Metagenomics research has been developed over the past decade to elucidate the genomes of the uncultured microorganisms with an aim of understanding microbial ecology. On the other hand, it has also been provoked by the increasing biotechnological demands for novel enzymes, antibiotic and signal mimics. The gut microbiota of insects plays crucial roles in the growth, development and environmental adaptation to the host insects. Very recently, the insect microbiota and their genomes (microbiome), isolated from insects were recognized as a major genetic resources for bio-processing industry. Consequently, the exploitation of insect gut microbiome using metagenomic approaches will enable us to find novel biocatalysts and to develop innovative strategies for identifying smart molecules for biotechnological applications. In this review, we discuss the critical footstep in extraction and purification of metagenomic DNA from insect gut, construction of metagenomic libraries and screening procedure for novel gene identification. Recent innovations and potential applications in bioprocess industries are highlighted.

4.
Virologica Sinica ; (6): 493-500, 2009.
Article in Chinese | WPRIM | ID: wpr-405828

ABSTRACT

Gypsy moth (Lymantria dispar) larvae displayed marked developmental resistance within an instar to L. dispar M nucleopolyhedrovirus (LdMNPV) regardless of the route of infection (oral or intrahemocoelic) in a previous study, indicating that in gypsy moth, this resistance has a systemic component.In this study, gypsy moth larvae challenged with the Amsacta moorei entomopoxvirus (AMEV) showed developmental resistance within the fourth instar to oral, but not intrahemocoelic, inoculation. In general, gypsy moth is considered refractory to oral challenge with AMEV, but in this study, 43% mortality occurred in newly molted fourth instars fed a dose of 5×106 large spheroids of AMEV; large spheroids were found to be more infectious than small spheroids when separated by a sucrose gradient. Developmental resistance within the fourth instar was reflected by a 2-fold reduction in mortality (18%-21%) with 5×106 large spheroids in larvae orally challenged at 24, 48 or 72 h post-molt. Fourth instars were highly sensitive to intrahemocoelic challenge with AMEV; 1PFU produced approximately 80% mortality regardless of age within the instar. These results indicate that in gypsy moth, systemic developmental resistance may be specific to LdMNPV, reflecting a co-evolutionary relationship between the baculovirus and its host.

SELECTION OF CITATIONS
SEARCH DETAIL