Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 356
Filter
1.
Chinese Pharmacological Bulletin ; (12): 189-194, 2024.
Article in Chinese | WPRIM | ID: wpr-1013617

ABSTRACT

Aim To establish a stable hepatic stellate cell ( HSC ) -specific G protein-coupled receptor kinase 2 ( GRK2 ) knockout mice and provide the important animal model for further studying the biological function of GRK2 in HSC. Methods The loxP-labeled Grk2 gene mouse (Grk2

2.
Chinese Journal of Biologicals ; (12): 151-159, 2024.
Article in Chinese | WPRIM | ID: wpr-1011471

ABSTRACT

@#Objective To construct a lentivirus-based expression plasmid and gene knockout plasmid of human interleukin(IL)-26 so as to lay a foundation of studying the function of IL-26 gene in cell signaling pathway and autophagy.Methods IL-26 gene sequence was amplified from human peripheral blood mononuclear cells by RT-PCR and cloned into pCDH-CMVMCS-EF1-copGFP eukaryotic expression vector to construct overexpression plasmid;Four knockout targets,Exon1sgRNA1,Exon1sgRNA2,Exon3sgRNA1 and Exon3sgRNA2,were designed based on the exon sequence of IL-26,and constructed into lentiCRISPRv2 vector by CRISPR/Cas9 technology to construct gene knockout plasmid. The overexpression plasmid and gene knockout plasmid were transiently transfected into HEK293T cells respectively,and the expression of IL-26 was verified by RT-qPCR and Western blot. In addition,amino acid sequence analysis,structure prediction and subcellular localization observation of IL-26 were performed.Results The results of restriction digestion,sequencing and bioinformatics analysis showed that IL-26 was 516 bp in length,encoding 171 amino acids. The IL-26 mRNA level and protein level of HEK293T cells transfected with IL-26 overexpression plasmid increased by 656. 789 times and 1. 978 times respectively with significant differences as compared with the normal control group(t = 17. 976 and 7. 859,P < 0. 000 1 and < 0. 001,respectively). With the transfection of 4 knockout targets Exon1sgRNA1,Exon1sgRNA2,Exon3sgRNA1 and Exon3sg-RNA2 into HEK293T cells,the expression of IL-26 decreased by 0. 930,0. 980,0. 523 3 and 0. 316 9 times,respectively,among which Exon3sgRNA2 significantly down-regulated the expression of IL-26(t = 7. 440,P < 0. 001). IL-26protein showed signal peptide structure and certain transmembrane function in the first 22 amino acids,which existed in cytoplasm.Conclusion IL-26overexpression and gene knockout plasmids were successfully constructed,which laid a foundation of the follow-up study of the function of IL-26.

3.
Acta Pharmaceutica Sinica B ; (6): 4172-4184, 2023.
Article in English | WPRIM | ID: wpr-1011159

ABSTRACT

The lysosome is responsible for protein and organelle degradation and homeostasis and the cathepsins play a key role in maintaining protein quality control. Cathepsin D (CTSD), is one such lysosomal protease, which when deficient in humans lead to neurolipofuscinosis (NCL) and is important in removing toxic protein aggregates. Prior studies demonstrated that CTSD germ-line knockout-CtsdKO (CDKO) resulted in accumulation of protein aggregates, decreased proteasomal activities, and postnatal lethality on Day 26 ± 1. Overexpression of wildtype CTSD, but not cathepsin B, L or mutant CTSD, decreased α-synuclein toxicity in worms and mammalian cells. In this study we generated a mouse line expressing human CTSD with a floxed STOP cassette between the ubiquitous CAG promoter and the cDNA. After crossing with Nestin-cre, the STOP cassette is deleted in NESTIN + cells to allow CTSD overexpression-CTSDtg (CDtg). The CDtg mice exhibited normal behavior and similar sensitivity to sub-chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced neurodegeneration. By breeding CDtg mice with CDKO mice, we found that over-expression of CTSD extended the lifespan of the CDKO mice, partially rescued proteasomal deficits and the accumulation of Aβ42 in the CDKO. This new transgenic mouse provides supports for the key role of CTSD in protecting against proteotoxicity and offers a new model to study the role of CTSD enhancement in vivo.

4.
Chinese Journal of Biotechnology ; (12): 4550-4562, 2023.
Article in Chinese | WPRIM | ID: wpr-1008041

ABSTRACT

Mycobacterium neoaurum has the ability to produce steroidal intermediates known as 22-hydroxy-23, 24-bisnorchol-4-en-3-one (BA) upon the knockout of the genes for either the hydroxyacyl-CoA dehydrogenase (Hsd4A) or acyl-CoA thiolase (FadA5). In a previous study, we discovered a novel metabolite in the fermentation products when the fadA5 gene was deleted. This research aims to elucidate the metabolic pathway of this metabolite through structural identification, homologous sequence analysis of the fadA5 gene, phylogenetic tree analysis of M. neoaurum HGMS2, and gene knockout. Our findings revealed that the metabolite is a C23 metabolic intermediate, named 24-norchol-4-ene-3, 22-dione (designated as 3-OPD). It is formed when a thioesterase (TE) catalyzes the formation of a β-ketonic acid by removing CoA from the side chain of 3, 22-dioxo-25, 26-bisnorchol-4-ene-24-oyl CoA (22-O-BNC-CoA), followed by spontaneously undergoing decarboxylation. These results have the potential to contribute to the development of novel steroid intermediates.


Subject(s)
Mycobacterium/metabolism , Phylogeny , Steroids/metabolism , Metabolic Networks and Pathways , Sterols/metabolism
5.
Journal of Xi'an Jiaotong University(Medical Sciences) ; (6): 89-94, 2023.
Article in Chinese | WPRIM | ID: wpr-1005506

ABSTRACT

【Objective】 To study the effect of macrophage mediator 1 (MED1) deficiency on atherosclerosis in female mice. 【Methods】 ApoE knockout (ApoE-/-), LDLR knockout (LDLR-/-), MED1fl/fl, and macrophage MED1 knockout (MED1△Mac) mice were recruited in the study. Two types of mouse model were constructed:ApoE and macrophage MED1 double knockout (MED1△Mac/ApoE-/-) mice and their littermate controls (MED1fl/fl/ApoE-/-). ② LDLR knockout (LDLR-/-) mice receiving bone marrow from MED1△Mac (MED1△Mac→LDLR-/-) or MED1fl/fl (MED1fl/fl→LDLR-/-) mice. Female mice from these two models were fed a Western diet (21% fat and 0.15% cholesterol) for 12 weeks to promote the development of atherosclerosis. Body weight, total cholesterol (TC), and total triglyceride (TG) content in plasma were measured dynamically. After Western diet feeding for 12 weeks, aortic tree and aortic root were collected and hematoxylin-eosin (H&E) and oil red O staining were performed. 【Results】 Plasma TC and TG did not significantly differ between MED1fl/fl/ApoE-/- control group and MED1△Mac/ApoE-/-experimental group. However, the plaque area in aortic tree and aortic root was significantly increased in MED1△Mac/ApoE-/-mice. Moreover, compared with that in MED1fl/fl→LDLR-/- control group, the plaque area of aortic tree and aortic root had an increasing trend in MED1△Mac→LDLR-/- mice group. 【Conclusion】 MED1 deficiency in macrophages promotes the development of atherosclerosis in female ApoE or LDLR knockout mice.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 55-62, 2023.
Article in Chinese | WPRIM | ID: wpr-973132

ABSTRACT

ObjectiveTo investigate the mechanism of Renshentang, recorded in Synopsis of Golden Chamber, in the treatment of atherosclerosis (AS) based on the autophagic effect of transient receptor potential vanilloid subtype 1 (TRPV1) on arterial smooth muscle. MethodFourteen SPF-grade 8-week-old male C57BL/6J mice were assigned to the normal group and 70 8-week-old apolipoprotein E knockout (ApoE-/-) mice were assigned to the experimental group. The AS model was induced by a high-fat diet in the mice in the experimental group for eight weeks. The model mice were then randomly divided into model group, low-, medium-, and high-dose Renshentang groups (2.715, 5.43, and 10.68 g·kg-1·d-1), and simvastatin group (0.02 g·kg-1·d-1). Drug treatment lasted eight weeks. Serum was taken and serum total cholesterol (CHO), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels were measured by assay kits to observe the changes in lipid levels in mice. The aorta was stained with hematoxylin-eosin (HE) to observe the overall pathology of the aortic root and oil red O staining was used to detect the lipid deposition in the aortic plaque and calculate the percentage of the aortic root area to the lumen area. The protein expression of TRPV1, adenylate-activated protein kinase (AMPK), phosphorylated AMPK (p-AMPK), autophagy effector-1 (Beclin-1), and microtubule-associated protein 1 light chain 3 (LC3Ⅱ) in mouse aortic tissues was determined by Western blot. ResultCompared with the normal group, the model group showed increased serum CHO, TG, and LDL-C levels, decreased HDL-C, and increased aortic root plaque area (P<0.01). Compared with the model group, the Renshentang groups showed decreased levels of CHO, TG, and LDL-C in serum (P<0.05, P<0.01), especially in the low- and medium-dose Renshentang groups (P<0.01). Compared with the normal group, the simvastatin group and the Renshentang groups showed reduced aortic root plaque area (P<0.05), especially in the high-dose Renshentang group (P<0.01). Compared with the normal group, the model group showed decreased relative expression levels of TRPV1, p-AMPK/AMPK, Beclin-1, and LC3Ⅱ/LC3Ⅰ(P<0.05, P<0.01). Compared with the model group, the medium- and high-dose Renshentang groups showed increased relative expression levels of TRPV1, p-AMPK/AMPK, Beclin-1, and LC3Ⅱ/LC3Ⅰ(P<0.05,P<0.01). ConclusionThe anti-AS effect of Renshentang recorded in Synopsis of Golden Chamber may be achieved by up-regulating TRPV1 expression to restore the level of autophagy mediated by AMPK.

7.
Chinese Journal of Biotechnology ; (12): 1789-1803, 2023.
Article in Chinese | WPRIM | ID: wpr-981170

ABSTRACT

Manipulation of genes, including knock-out or knock-in, replacement of gene elements (such as promoters), fusion with a fluorescent protein gene, and construction of in situ gene reporter, is required in most of the biotechnological laboratories. The widely used gene manipulating methods based on two-step allelic exchange are cumbersome in terms of constructing plasmids, transforming and screening. In addition, the efficiency of using this method for long fragment knockout is low. To simplify the process of gene manipulation, we constructed a minimized integrative vector pln2. When a gene needs to be inactivated, an internal fragment of the target gene (non-frameshift) is cloned into the pln2 plasmid. Once the single-crossover recombination between genome and the constructed plasmid occurs, the endogenous gene is segmented by the plasmid backbone and thus inactivated. We developed a toolbox based on pln2 that can be used for different genomic operation mentioned above. With the help of this toolbox, we successfully knocked out large fragments of 20-270 kb.


Subject(s)
Genetic Vectors/genetics , Pseudomonas aeruginosa/genetics , Plasmids/genetics , Promoter Regions, Genetic , Genome
8.
Chinese Journal of Biotechnology ; (12): 1644-1654, 2023.
Article in Chinese | WPRIM | ID: wpr-981160

ABSTRACT

To explore the effect of Mlk3 (mixed lineage kinase 3) deficiency on blood pressure, Mlk3 gene knockout (Mlk3KO) mice were generated. Activities of sgRNAs targeted Mlk3 gene were evaluated by T7 endonuclease I (T7E1) assay. CRISPR/Cas9 mRNA and sgRNA were obtained by in vitro transcription, microinjected into zygote, followed by transferring into a foster mother. Genotyping and DNA sequencing confirmed the deletion of Mlk3 gene. Real- time PCR (RT-PCR), Western blotting or immunofluorescence analysis showed that Mlk3KO mice had an undetectable expression of Mlk3 mRNA or Mlk3 protein. Mlk3KO mice exhibited an elevated systolic blood pressure compared with wild-type mice as measured by tail-cuff system. Immunohistochemistry and Western blotting analysis showed that the phosphorylation of MLC (myosin light chain) was significantly increased in aorta isolated from Mlk3KO mice. Together, Mlk3KO mice was successfully generated by CRISPR/Cas9 system. MLK3 functions in maintaining blood pressure homeostasis by regulating MLC phosphorylation. This study provides an animal model for exploring the mechanism by which Mlk3 protects against the development of hypertension and hypertensive cardiovascular remodeling.


Subject(s)
Animals , Mice , Mice, Knockout , CRISPR-Cas Systems , Blood Pressure , Gene Knockout Techniques , Zygote
9.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 62-68, 2023.
Article in Chinese | WPRIM | ID: wpr-980174

ABSTRACT

ObjectiveTo investigate the regulatory effect and molecular mechanism of berberine (BBR) on lipophagy in the prevention and treatment of atherosclerotic (AS) lesions in mice. MethodFifty apolipoprotein E-knockout (ApoE-/-) mice were randomly divided into an AS model group, an atorvastatin group (5 mg·kg-1), and low-, medium-, and high-dose BBR groups (2.5, 5, 10 mg·kg-1). Ten C57BL/6J mice were assigned to the control group. After 12 weeks, hematoxylin-eosin (HE) and oil red O staining were performed to assess the histopathological changes of AS plaques in the aorta. Biochemical analysis was used to measure serum lipid levels, and enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), oxidative stress marker reactive oxygen species (ROS), and serum lipophagy marker Beclin1 and microtubule-associated protein 1 light chain 3 Ⅱ (LC3Ⅱ). The xanthine oxidase method was used to measure serum superoxide dismutase (SOD) activity. Immunohistochemistry (IHC) was used to detect the distribution of wingless-type MMTV integration site family member 5a (Wnt5a) and Nieman Pick type C1 (NPC1) in the aorta, and Western blot was used to determine the protein expression of Wnt5a and NPC1 in the aorta. ResultCompared with the control group, the AS model group showed significant AS plaque formation, significantly elevated levels of serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), IL-6, TNF-α, and ROS, aortic Wnt5a distribution and protein expression (P<0.01), and significantly reduced levels of serum high-density lipoprotein cholesterol (HDL-C), SOD, Beclin1, LC3Ⅱ, and aortic NPC1 distribution and protein expression (P<0.01). Compared with the AS model group, the atorvastatin group, and high- and medium-dose BBR groups showed a significant reduction in AS plaque area (P<0.05, P<0.01), significantly decreased levels of serum TC, TG, LDL-C, IL-6, TNF-α, ROS, and aortic Wnt5a distribution and protein expression (P<0.05, P<0.01), and significantly increased levels of serum HDL-C, SOD, Beclin1, LC3Ⅱ, and aortic NPC1 distribution and protein expression (P<0.05, P<0.01). There was no statistically significant difference in the above indicators between the atorvastatin group and the medium-dose BBR group. ConclusionBBR can competitively bind to Wnt5a to activate NPC1 expression, upregulate lipophagy levels, reduce blood lipids, and inhibit the release of inflammatory mediators and oxidative stress damage, thereby exerting a preventive and therapeutic effect on AS.

10.
Journal of Pharmaceutical Practice ; (6): 654-661, 2023.
Article in Chinese | WPRIM | ID: wpr-998502

ABSTRACT

Objective To investigate the effect of intestinal Metrnl on dextran sodium sulfate (DSS)-induced ulcerative colitis mouse model and the regulation mechanism of intestinal microbiota. Methods Different concentrations of DSS (3% DSS and 1% DSS) were used to induce ulcerative colitis on C57 mice to determine the experimental conditions. Intestinal epithelial Metrnl specific knockout mice (Metrnl(-/-)) and its control mice (Metrnl(+/+)) were administrated with 3% DSS for 5 d. Then the survival time, body weight, DAI (disease activity index), colon length and pathological changes in colon tissues were observed. 16S ribosomal RNA gene sequencing was used to detect the composition of intestinal microbiota. Results Compared with 1% DSS, 3% DSS could significantly aggravate ulcerative colitis on C57 mice, such as lower survival rate (P<0.05), more weight loss (P<0.05), higher DAI score (P<0.05), shorter colon length (P<0.05) and higher pathology score (P<0.05). After administrated to 3% DSS for 5 d, comparing with Metrnl(+/+) mice, Metrnl(-/-) mice showed more weight loss (P<0.05), higher DAI score (P<0.05), shorter colon length (P<0.05) and higher pathology score (P<0.05). The 16S ribosomal RNA results showed that the diversity of intestinal microbiota in Metrnl(-/-) mice significantly decreased. Furthermore, Bacteroidetes and Proteobacteria significantly decreased, while Firmicutes increased. Conclusion Metrnl could protect the DSS-induced ulcerative colitis mouse through regulating intestinal microbiota.

11.
Chinese Journal of Pathophysiology ; (12): 802-810, 2023.
Article in Chinese | WPRIM | ID: wpr-991521

ABSTRACT

AIM:To observe the effect of angiotensin-converting enzyme 2(ACE2)deletion on vasoconstric-tion reactivity of aortic segments in ACE2 knockout(KO)mice with tourniquet shock(TS).METHODS:The 8-month-old male mice with C57BL/6 background were divided into wild-type(WT)control group,WT-TS group,KO group and KO-TS group,with 10 mice in each group,of which five were used for determination of vascular reactivity,and the other five for the other assays.The hindlimbs of the mice in WT-TS group and KO-TS group were ligated with tourniquet for 2 h and loosened for 4 h.The mice in WT group and KO group were subjected to the same treatment except for tourniquet liga-tion.The vasoconstriction reactivity of the aorta was measured on tensiometer.The morphological damage of the aorta was evaluated by vascular histopathology.Western blot was used to detect the expression of AT1,MAS,ACE and ACE2 pro-teins in aorta.The serum levels of angiotensin(Ang)Ⅱ and Ang-(1-7)were determined by enzyme-linked immunosorbent assay.RESULTS:Compared with WT group,the mice in WT-TS group had lower vascular reactivity to norepinephrine(NE)and obvious vascular lesions.The expression of ACE protein increased significantly(P<0.01),while the expres-sion of ACE2 decreased(P<0.05).The expression of AT1 protein in aorta decreased significantly,the expression of MAS protein increased significantly,and the AT1/MAS ratio decreased(P<0.01).Serum Ang II level increased,serum Ang-(1-7)level decreased,and Ang Ⅱ/Ang-(1-7)ratio increased(P<0.05).Compared with WT group,vascular reactivity in KO group increased at low concentration of NE(<10-7 mol/L),and decreased at high concentration(>10-7 mol/L)without vascular lesion.The expression levels of aortic AT1,MAS and ACE were all elevated(P<0.05).The serum level of Ang Ⅱ increased(P<0.05),but the level of Ang-(1-7)had no obvious change.Compared with KO and WT-TS groups,the aortic reactivity in KO-TS group subtracted apparently(P<0.05),representing its curve shifting to the right obviously.The morphological damage aggravated slightly,and the expression of AT1 and ACE increased slightly in KO-TS group com-pared with WT-TS group(P<0.05).However,the expression of MAS increased significantly in vascular tissue(P<0.01).The serum levels of Ang Ⅱ and Ang-(1-7)further increased and decreased,respectively,and the Ang Ⅱ/Ang-(1-7)ratio increased(P<0.01).CONCLUSION:Deficiency of ACE2 induces severe aortic hyporeactivity to NE during TS,which may be related to the increased imbalance of renin-angiotensin system in ACE2 gene knockout mice.

12.
Rev. Finlay ; 12(4)dic. 2022.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1441003

ABSTRACT

El síndrome de Baller-Gerold es secundario a mutaciones en el gen RECQL4 (8q24.3). Este gen pertenece a la familia de las RecQhelicasas y está implicado en otras enfermedades de predisposición al cáncer. El diagnóstico se basa en criterios clínicos y debido al elevado número de diagnósticos diferenciales, encontrar una mutación en el gen puede ayudar a precisar el espectro diagnóstico, el consejo genético y su tratamiento. Se han descrito en la literatura alrededor de 30 casos, aunque se sabe que se ha presentado en menos de 200 000 personas en el mundo, por lo que se considera, una condición clínica rara. Se presenta el caso de una paciente que desde su nacimiento se constataron múltiples malformaciones músculo-esqueléticas: aplasia radial, pulgares aplásicos, malformaciones de la parrilla costal, clinodactilia de todos los dedos de miembros superiores, antebrazos hipoplásicos, clinodactilia del miembro inferior izquierdo. Se le realizó alimentación parenteral por varios días, fue imposible establecer vía oral adecuada por ausencia y/o incoordinación de los reflejos de succión-deglución como expresión de sus malformaciones a nivel de sistema nervioso central. Se presenta el caso por su baja incidencia y prevalencia por lo que es considerada una enfermedad rara.


Baller-Gerold syndrome is secondary to mutations in the RECQL4 gene (8q24.3). This gene belongs to the RecQhelicase family and is implicated in other diseases predisposing to cancer. Diagnosis is based on clinical criteria and due to the high number of differential diagnoses, finding a mutation in the gene can help to specify the diagnostic spectrum, genetic counseling and treatment. Around 30 cases have been described in the literature, although it is known that it has occurred in less than 200,000 people in the world, being considered a rare clinical condition. We present the case of a newborn, who at birth was found to have multiple musculoskeletal malformations: radial aplasia, aplastic thumbs, malformations of the rib cage, clinodactyly of all the fingers of the upper limbs, hypoplastic forearms, clinodactyly of the left lower limb. She was given parenteral feeding for several days, it was impossible to establish an adequate oral route due to the absence and/or incoordination of the sucking-swallowing reflexes as an expression of her malformations at the central nervous system level. The case is presented due to its low incidence and prevalence, which is why it is considered a rare disease.

13.
Braz. j. med. biol. res ; 55: e11774, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1364555

ABSTRACT

Elastase-2 (ELA-2) is an angiotensin II-generating enzyme that participates in the cardiovascular system. ELA-2 is involved in hemodynamic and autonomic control and is upregulated in myocardial infarction and hypertension. The inhibition of angiotensin-converting enzyme (ACE) increased ELA-2 expression in the carotid arteries and heart of spontaneously hypertensive rats. In this study, we sought to investigate the role of ACE inhibition in hemodynamic and autonomic balance in elastase-2 knockout (ELA-2 KO) mice. Male ELA-2 KO and C57BL/6 mice were treated with the ACE inhibitor enalapril or saline for 10 days. After treatment, mice underwent surgery for cannulation of the femoral artery and arterial pressure recordings were made five days later in awake animals. The variability of systolic blood pressure (SBP) and pulse interval (PI) was evaluated in the time and frequency domain. Spontaneous baroreflex was assessed by the sequencing method. ACE inhibition caused a significant decrease in mean arterial pressure (117±2.2 vs 100±2.8 mmHg) and an increase in heart rate (570±32 vs 655±15 bpm) in ELA-2 KO mice. Despite a tendency towards reduction in the overall heart rate variability (standard deviation of successive values: 7.6±1.1 vs 4.7±0.6 ms, P=0.08), no changes were found in the root of the mean sum of squares or in the power of the high-frequency band. ACE inhibition did not change the spontaneous baroreflex indices (gain and baroreflex effectiveness index) in ELA-2 KO mice. Altogether, this data suggested that ACE played a role in the maintenance of hemodynamic function in ELA-2 KO mice.

14.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 1125-1132, 2022.
Article in Chinese | WPRIM | ID: wpr-1015808

ABSTRACT

Cre-loxP is an efficient recombination system originated from P1 phage. Its specific recombination patterns based on the locus of X-over P1 make it one of the most commonly used tools for gene editing in recent years. This paper focuses on the practical application of Cre-loxP system. Firstly, the functions and advantages of CRISPR/Cas9 system in Cre sequence insertion and loxP sequence insertion are analyzed. Then, a series of practical application problems of Cre-loxP system are described. For example, in this paper, the selection of Cre recombinase sequence in situ and safe site, the strategy of loxP sequence insertion, the identification of Cre recombinase tag protein, fluorescence identification of "ectopic" expression, primer design of PCR identification and reproductive strategy of mouse were described. At the same time, the optimization of Cre-loxP system in conditional gene knockout is introduced, such as ligand-induced Cre, promoter activated Cre, photo-induced Cre and activity modification of Cre. Through these optimized applications, we can obtain time-controlled conditional gene knockout, regulate the activity of Cre recombinase, and even avoid the toxicity of Cre recombinase itself. Finally, this paper discusses the defects and challenges of Cre-loxP system, and looks into the future development direction of Cre-loxP system. In summary, this paper reviews the practical application of gene knockout based on Cre-loxP system, summarizes the latest research progress and optimization strategies of Cre-loxP system, and prospects the future gene editing based on Cre-loxP system. This paper aims to provide theoretical guidance for solving practical operation problems based on Cre-loxP system, and to provide new research ideas for more accurate, more controllable and more adaptive gene editing in the future.

15.
Acta Anatomica Sinica ; (6): 126-131, 2022.
Article in Chinese | WPRIM | ID: wpr-1015359

ABSTRACT

Objective To construct homozygous aquaporin 9(AQP-9)

16.
Acta Anatomica Sinica ; (6): 578-584, 2022.
Article in Chinese | WPRIM | ID: wpr-1015280

ABSTRACT

Objective To investigate the effects of Smad7 knock down by lentivirus on rat cardiac fibroblasts proliferation, migration, cell differentiation and collagen secretion in vitro. Methods The primary cardiac fibroblasts were separated from the hearts of ten SD rats and identified by immunohistochemical method. The lentivirus transfection knocked down the expresson of Smad7 in cardiac fibroblasts, Western blotting was used to detect the efficiency of Smad7 knock down by lentivirus. The proliferation of cardiac fibroblasts was quantified by real-time unlabeled cell analyzer. Cell migration was evaluted by cell wound scratch assay. Western blotting was used to detect expression of α-smooth muscle actin(α-SMA) and collagen Ⅰ(Col Ⅰ). Results Myocardial fibroblasts were successfully cultured and identified by immunocytochemical methods. The multiplicity of infection(MOI) that lentivirus transduction of myocardial fibroblasts was 100. After lentivirus transduction, 88.33% myocardial fibroblasts expressed green fluorescent protein, showed that the lentivirus could significantly reduce the protein expression of Smad7. Smad7 deficiency decreased the proliferation and migration of cardiac fibroblasts, increased the protein expression of α-SMA and decreased collagen secretion. The results indicated that Smad7 deficiency significantly down-regulated the proliferation and migration of cardiac fibroblasts, increased α-SMA protein expression and reduced ColⅠ protein expression. Conclusion Smad7 deficiency can significantly change the cardiac fibroblasts function, that is related to the pathological mechanism that lead to myocardial fibrosis

17.
Chinese Pharmacological Bulletin ; (12): 1530-1535, 2022.
Article in Chinese | WPRIM | ID: wpr-1014232

ABSTRACT

Aim To study the protective effect of simvastatin(Sim)on liver function injury in apolipoprotein E gene knockout(ApoE KO)mice fed with high-fat diet and the underlying mechanism.Methods Twenty-four 8-week-old male ApoE KO mice were randomly divided into ApoE KO group,ApoE KO+Sim group and ApoE KO+PD150606 group.The contents of total cholesterol(TC)and triglyceride(TG)in serum and liver,and the activities of aspartate aminotransferase(AST)and alanine aminotransferase(ALT)in serum were measured.The contents of malondialdehyde(MDA)and reactive oxygen species(ROS)and the activity of superoxide dismutase(SOD)in liver were determined.The contents of tumor necrosis factor-α(TNF-α)and interleukin-6(IL-6)and the activity of calpain in liver were examined.Results Compared with C57 group,ApoE KO group showed significant increase in the contents of TC and TG in both serum and liver.In addition,the activities of AST and ALT in serum and the contents of MDA and ROS in liver significantly increased,while SOD activity in liver decreased in ApoE KO group.The contents of TNF-α and IL-6 and the activity of calpain in liver significantly increased.Compared with ApoE KO group,Sim group had no significant effects on TC and TG,while reduced the activities of AST and ALT,decreased the contents of MDA and ROS,increased the activity of SOD and decreased the contents of TNF-α and IL-6 as well as the activity of calpain in liver.PD,the calpain inhibitor,had the similar effects with Sim regarding the above mentioned parameters.Conclusions Sim improved the liver function injury of ApoE KO mice,which might be related to the inhibition of calpain activity,subsequently increasing the antioxidant capacity and reducing the inflammatory response.

18.
Chinese Pharmacological Bulletin ; (12): 201-208, 2022.
Article in Chinese | WPRIM | ID: wpr-1014195

ABSTRACT

Aim To investigate the effect of TRPC5 gene on the inflammation of cliabetie cardiomyopathy.Methods The biological functions of TRPC5 and the correlation between TRPC5 gene and other genes were analyzed by bioinformatics.Studies were performed in TRPC5 knockout ( TRPC5 ) and C57 mice.Mice were randomly divided into blank control and T2DM model groups, and the model was established by intraperitoneal injection of STZ (n = 10).The myocardial injury was detected by HE and Masson staining.Hie level of serum IL-1(3, IL-2, IL-6, IFN-7 and creatine kinase was examined by ELISA.Gene and protein expressions of IL-1(3, IL-2, IL-6 and TRPC5 were analysed by RT-PCR and Western blot respectively.Results By constructing the PPI network and analyses.the TRPC5 gene was identified to internet with a variety inflammatory genes and involved in immunity.The result of pathologieal section showed less myocardial damage and infiltrated immune cells in TRPC5 mice than in C57BL/6J mice.RT-PCR and serum results showed a lower expression of inflammatory factors in myocardium and serum obtained from TRPC5 model mice than in those obtained from C57BL/6J model mice.Conclusions TRPC5 participates in the development of dilated cardiomyopathy by regulating cardio- myocyte inflammation.

19.
Chinese Pharmacological Bulletin ; (12): 1395-1400, 2022.
Article in Chinese | WPRIM | ID: wpr-1014020

ABSTRACT

Aim To investigate the protective effect of quercetin on atherosclerosis induced by high-fat diet in ApoE knockout ( ApoE KO) mice and its regulatory mechanism on cholesterol homeostasis of macrophages.Methods Forty-five adult female ApoE KO mice were randomly divicied into three groups : nonnal diet ( ND ) group, high fat diet ( HFD) group and high fat diet + quercetin ( HFD + Qu) group and fed for 16 weeks.The level of serum lipid, the formation of atherosclerotic plaque and the expression of genes related to cholesterol homeostasis were detected.Macrophage cholesterol content and the expression level of cholesterol homeo- stasis-related proteins were detected.Results Quer cetin significantly reduced the atherosclerotic lesions and serum lipid levels in ApoE KO mice.Quercetin significantly suppressed macrophage foaming by upreg- ulating CYP27A1 expression,inhibiting CD36-mediated cholesterol uptake and and promoting LXHcx-ABCAl/ G1 pathway-dependent cholesterol efflux.Conclusions Quercetin plays a protective role in atherosclerosis through its regulatory effect on CYF27A1/ LXHa signaling pathway-mediated macrophage cholesterol homeostasis.

20.
Journal of Pharmaceutical Practice ; (6): 12-19, 2022.
Article in Chinese | WPRIM | ID: wpr-907148

ABSTRACT

Objective Nicotinamide phosphoribosyltransferase (Nampt) is a new therapeutic target for ischemic stroke. The aim of this study was to investigate protective effect of liver-derived Nampt on ischemic stroke. Methods Liver-specific Nampt knockout mice were generated using the Cre/loxP system. NamptloxP/loxP mice were crossed with liver-specific Cre recombinase expression mice (Alb-Cre), and the progeny genotypes were identified by polymerase chain reaction. Body weight of knockout mice and control mice were measured. Nampt in liver and brain was determined by Western blot assay. Middle cerebral artery occlusion (MCAO), a classical ischemic stroke model, was generated in liver-specific Nampt knockout mice and control mice by electrocoagulation. After 24 h of modeling, neurological deficit scores of each group were evaluated and TTC staining was performed to determine the cerebral infarction volume. The level of plasma Nampt in each group was determined by ELISA. Results Liver-specific Nampt knockout mice with the genotype of NamptloxP/loxPAlb-Cre were successfully constructed. The hepatic Nampt expression in knockout mice was significantly decreased by 74.2% compared to control mice, while there was no significant difference in the expression of brain Nampt protein between the knockout group and the control group. Specific knockout of liver Nampt gene expression had no effect on the body weight of mice. Under normal physiological conditions, there was no significant difference in plasma Nampt levels between liver-specific Nampt knockout mice and control mice of the same gender. 24 h after MCAO modeling, there were no significant differences in neurological deficit scores, cerebral infarct volume and plasma Nampt concentration between liver-specific Nampt knockout group and control group. Conclusion Liver-specific Nampt knockout mice are successfully constructed. Liver-derived Nampt has no significant protective effects on ischemic stroke.

SELECTION OF CITATIONS
SEARCH DETAIL