Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Chinese Journal of Biotechnology ; (12): 228-241, 2021.
Article in Chinese | WPRIM | ID: wpr-878557

ABSTRACT

2,5-dimethylpyrazine (2,5-DMP) is of important economic value in food industry and pharmaceutical industry, and is now commonly produced by chemical synthesis. In this study, a recombinant Escherichia coli high-efficiently converting L-threonine to 2,5-DMP was constructed by combination of metabolic engineering and cofactor engineering. To do this, the effect of different threonine dehydrogenase (TDH) on 2,5-DMP production was investigated, and the results indicate that overexpression of EcTDH in E. coli BL21(DE3) was beneficial to construct a 2,5-DMP producer with highest 2,5-DMP production. The recombinant strain E. coli pRSFDuet-tdh(Ec) produced (438.3±23.7) mg/L of 2,5-DMP. Furthermore, the expression mode of NADH oxidase (NoxE) from Lactococcus cremoris was optimized, and fusion expression of EcTDH and LcNoxE led to balance the intracellular NADH/NAD⁺ level and to maintain the high survival rate of cells, thus further increasing 2,5-DMP production. Finally, the accumulation of by-products was significantly decreased because of disruption of shunt metabolic pathway, thereby increasing 2,5-DMP production and the conversion ratio of L-threonine. Combination of these genetic modifications resulted in an engineered E. coli Δkbl ΔtynA ΔtdcB ΔilvA pRSFDuet-tdhEcnoxELc-PsstT (EcΔkΔAΔBΔA/TDH(Ec)NoxE(Lc)-PSstT) capable of producing (1 095.7±81.3) mg/L 2,5-DMP with conversion ratio of L-threonine of 76% and a yield of 2,5-DMP of 28.8% in 50 mL transformation system with 5 g/L L-threonine at 37 °C and 200 r/min for 24 h. Therefore, this study provides a recombinant E. coli with high-efficiently catalyzing L-threonine to biosynthesize 2,5-DMP, which can be potentially used in biosynthesis of 2,5-DMP in industry.


Subject(s)
Escherichia coli/genetics , Lactococcus , Metabolic Engineering , Pyrazines , Threonine
2.
Chinese Journal of Biotechnology ; (12): 4215-4230, 2021.
Article in Chinese | WPRIM | ID: wpr-921500

ABSTRACT

Threonine aldolases catalyze the aldol condensation of aldehydes with glycine to furnish β-hydroxy-α-amino acid with two stereogenic centers in a single reaction. This is one of the most promising green methods for the synthesis of optically pure β-hydroxy-α-amino acid with high atomic economy and less negative environmental impact. Several threonine aldolases from different origins have been identified and characterized. The insufficient -carbon stereoselectivity and the challenges of balancing kinetic versus thermodynamic control to achieve the optimal optical purity and yield hampered the application of threonine aldolases. This review summarizes the recent advances in discovery, catalytic mechanism, high-throughput screening, molecular engineering and applications of threonine aldolases, with the aim to provide some insights for further research in this field.


Subject(s)
Amino Acids , Catalysis , Glycine , Glycine Hydroxymethyltransferase/metabolism , Kinetics , Substrate Specificity , Threonine
3.
Chinese Journal of Biotechnology ; (12): 782-791, 2020.
Article in Chinese | WPRIM | ID: wpr-826898

ABSTRACT

L-2-aminobutyric acid (L-ABA) is an important chemical raw material and chiral pharmaceutical intermediate. The aim of this study was to develop an efficient method for L-ABA production from L-threonine using a trienzyme cascade route with Threonine deaminase (TD) from Escherichia. coli, Leucine dehydrogenase (LDH) from Bacillus thuringiensis and Formate dehydrogenase (FDH) from Candida boidinii. In order to simplify the production process, the activity ratio of TD, LDH and FDH was 1:1:0.2 after combining different activity ratios in the system in vitro. The above ratio was achieved in the recombinant strain E. coli 3FT+L. Moreover, the transformation conditions were optimized. Finally, we achieved L-ABA production of 68.5 g/L with a conversion rate of 99.0% for 12 h in a 30-L bioreactor by whole-cell catalyst. The environmentally safe and efficient process route represents a promising strategy for large-scale L-ABA production in the future.


Subject(s)
Aminobutyrates , Bacillus thuringiensis , Candida , Escherichia coli , Formate Dehydrogenases , Metabolism , Leucine Dehydrogenase , Metabolism , Threonine , Metabolism , Threonine Dehydratase , Metabolism
4.
Electron. j. biotechnol ; 39: 67-73, may. 2019. graf, tab
Article in English | LILACS | ID: biblio-1052039

ABSTRACT

BACKGROUND: The supplementation of betaine, an osmoprotective compatible solute, in the cultivation media has been widely used to protect bacterial cells. To explore the effects of betaine addition on industrial fermentation, Escherichia coli THRD, an L-threonine producer, was used to examine the production of L-threonine with betaine supplementation and the underlying mechanism through which betaine functions was investigated. RESULTS: Betaine supplementation in the medium of E. coli THRD significantly improved L-threonine fermentation parameters. The transcription of zwf and corresponding enzyme activity of glucose-6-phosphate dehydrogenase were significantly promoted by betaine addition, which contributed to an enhanced expression of zwf that provided more nicotinamide adenine dinucleotide phosphate (NADPH) for L-threonine synthesis. In addition, as a result of the betaine addition, the betaine-stimulated expression of enhanced green fluorescent protein (eGFP) under the zwf promoter within a plasmid-based cassette proved to be a transcription-level response of zwf. Finally, the promoter of the phosphoenolpyruvate carboxylase gene ppc in THRD was replaced with that of zwf, while L-threonine fermentation of the new strain was promoted by betaine addition. Conclusions: We reveal a novel mode of betaine that facilitates the microbial production of useful compounds. Betaine supplementation upregulates the expression of zwf and increases the NADPH synthesis, which may be beneficial for the cell growth and thereby promote the production of L-threonine. This finding might be useful for the production of NADPH-dependent amino acids and derivatives in E. coli THRD or other E. coli strains.


Subject(s)
Threonine/metabolism , Betaine/metabolism , Escherichia coli/metabolism , Osmosis , Pentose Phosphate Pathway , Reverse Transcriptase Polymerase Chain Reaction , Escherichia coli/enzymology , Fermentation , Glucosephosphate Dehydrogenase/metabolism , NADP
5.
Article | IMSEAR | ID: sea-210799

ABSTRACT

Present study was aimed at investigating the effects of threonine supplementation on antioxidant enzyme activities and haemato-biochemical profile of commercial broilers in sub-tropics. Three hundred thirty -day old straight run commercial broiler chicks (Vencobb-400) with initial average body weight of 44.04±0.42g were allocated into five experimental groups, in a completely randomized design (CRD) with 42 days experiment. Groups were formed according to the dose of supplemental L-threonine in various rations i.e. NRC specification, 100% of Vencobb-400 strain specification, 110% of Vencobb-400 specification, 120% of Vencobb-400 specification and 130% of Vencobb-400 specification group. The mean serum GSH-Px and serum catalase concentration increased linearly {(p=0.001) and (p=0.04), respectively} whereas the mean serum SOD level increased both linearly (p=0.002) and quadratically (p=0.04) with the increasing levels of supplemental L-threonine. Among the hematological parameters of blood, the H:L ratio decreased linearly (p=0.02) with the increasing levels of threonine. The serum glucose and total protein concentration increased linearly (p=0.002) with the increasing levels of supplemental L-threonine. There was a linear increment (P<0.001) in serum globulin level with a linear decrease (p<0.05) in albumin: globulin ratio on increased levels of supplemental L-threonine in the ration. There was a linear decrease (p<0.001) in cholesterol and VLDL level with the increasing levels of supplemental L-threonine, however, a linear increment (p=0.04) in the serum HDL level was noticed. It may be concluded that L-threonine supplementation at 130% threonine (of Vencobb-400 specification) has a better antioxidant function and better haemato-biochemical profile

SELECTION OF CITATIONS
SEARCH DETAIL