Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 516
Filter
1.
Int. j. morphol ; 42(1): 127-136, feb. 2024. ilus
Article in English | LILACS | ID: biblio-1528822

ABSTRACT

SUMMARY: The objective of this study was to investigate the therapeutic wound healing potential and molecular mechanisms of shikonin as small molecules in vitro. A mouse burn model was used to explore the potential therapeutic effect of shikonin; we traced proliferating cells in vivo to locate the active area of skin cell proliferation. Through the results of conventional pathological staining, we found that shikonin has a good effect on the treatment of burned skin and promoted the normal distribution of skin keratin at the damaged site. At the same time, shikonin also promoted the proliferation of skin cells at the damaged site; importantly, we found a significant increase in the number of fibroblasts at the damaged site treated with shikonin. Most importantly, shikonin promotes fibroblasts to repair skin wounds by regulating the PI3K/AKT signaling pathway. This study shows that shikonin can effectively promote the proliferation of skin cell, and local injection of fibroblasts in burned skin can play a certain therapeutic role.


El objetivo de este trabajo fue investigar el potencial terapéutico de cicatrización de heridas y los mecanismos moleculares de la shikonina como moléculas pequeñas in vitro. Se utilizó un modelo de quemaduras en ratones para explorar el posible efecto terapéutico de la shikonina; Rastreamos las células en proliferación in vivo para localizar el área activa de proliferación de células de la piel. A través de los resultados de la tinción para patología convencional, encontramos que la shikonina tiene un buen efecto en el tratamiento de la piel quemada y promueve la distribución normal de la queratina de la piel en el sitio dañado. Al mismo tiempo, la shikonina también promovió la proliferación de células de la piel en el sitio dañado. Es importante destacar que encontramos un aumento significativo en la cantidad de fibroblastos en el sitio dañado tratado con shikonina. Lo más importante es que la shikonina promueve la función reparadora de fibroblastos en las heridas de la piel regulando la vía de señalización PI3K/ AKT. Este estudio muestra que la shikonina puede promover eficazmente la proliferación de células de la piel y que la inyección local de fibroblastos en la piel quemada puede desempeñar un cierto papel terapéutico.


Subject(s)
Animals , Mice , Wound Healing/drug effects , Burns/drug therapy , Naphthoquinones/administration & dosage , Skin , In Vitro Techniques , Naphthoquinones/pharmacology , Phosphatidylinositol 3-Kinases , Cell Proliferation/drug effects , Disease Models, Animal , Proto-Oncogene Proteins c-akt , Fibroblasts , Mice, Inbred C57BL
2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 57-64, 2024.
Article in Chinese | WPRIM | ID: wpr-1006268

ABSTRACT

ObjectiveTo observe the effects of the South African herb Hoodia gordonii (HG) on glucolipid metabolism in diabetic db/db mice and explore the possible mechanisms of HG on the liver of db/db mice based on the phosphoinositide-3 kinase (PI3K)/protein kinase B (Akt)/factor forkhead protein O1 (FoxO1) signaling pathway. MethodA total of 30 db/db mice were randomly divided into five groups according to fasting blood glucose: model group, metformin group (0.195 g·kg-1), and low dose (0.39 g·kg-1), medium dose (0.78 g·kg-1), and high dose (1.56 g·kg-1) HG groups, with six m/m mice in each group, and another six m/m mice were set as normal group. The mice in the normal and model groups were given saline of 9 mL·kg-1 by gavage. Body weight, water intake, and fasting blood glucose of the mice in each group were measured weekly. After six weeks of continuous administration, serum insulin (FINS), low-density lipoprotein cholesterol (LDL), total cholesterol (TC), triglyceride (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urea, and creatinine (CREA) were measured, and liver sections were embedded and stained with hematoxylin-eosin (HE), periodic acid-Schiff (PAS), and oil red O. Protein expression of PI3K p85, p-Akt, and p-FoxO1 in liver was detected by immunohistochemistry. The mRNA expression of PI3K, Akt, and FoxO1 in liver tissue was detected by real-time polymerase chain reaction (Real-time PCR). ResultAfter six weeks of administration intervention, it was found that fasting blood glucose was significantly downregulated in mice in the three HG groups (P<0.05). The level of islet resistance index was significantly reduced in both the low and medium dose HG groups (P<0.05). The expression levels of TC, TG, and LDL were reduced in all HG groups (P<0.05, P<0.01). Pathologically, HG could alleviate hepatocyte steatosis, reduce the volume and content of lipid droplets in liver, and increase the distribution of glycogen granules in liver to some extent in mice. Immunohistochemical assays revealed that PI3K p85 protein expression was significantly increased in the low, medium, and high dose HG groups compared with the model group (P<0.01). p-Akt protein expression was significantly increased in the medium and high dose HG groups (P<0.05, P<0.01). p-FoxO1 protein expression was significantly increased in the low, medium, and high dose HG groups (P<0.05, P<0.01). Compared with the model group, PI3K mRNA was increased in low dose, medium dose, and high dose HG groups (P<0.05), and Akt mRNA was increased in high dose HG group (P<0.05). FoxO1 mRNA was decreased in low dose, medium dose, and high dose HG groups (P<0.05). ConclusionHG can ameliorate the disorder of glucolipid metabolism in db/db mice, which may be related to its activation of the hepatic PI3K/Akt/FoxO1 signaling pathway.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 124-132, 2024.
Article in Chinese | WPRIM | ID: wpr-1003774

ABSTRACT

ObjectiveTo analyze the antidepressant quality markers(Q-Marker) of Bupleuri Radix(BP) before and after vinegar-processing by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS), multivariate statistical analysis and network pharmacology. MethodUPLC-Q-TOF-MS was used to analyze the chemical basis of raw and vinegar-processed products of BP, and principal component analysis(PCA) orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to identify the differential components in BP that changed significantly before and after vinegar-processing, which were regarded as candidate quality markers(Q-Marker). Then the disease-drug-component-target network related to antidepressant effect of BP was constructed by network pharmacology, and the antidepressant Q-Marker of raw and vinegar-processed products of BP was determined. Rats were randomly divided into blank group, model group, fluoxetine group(2.67 mg·kg-1) and total saponin group(0.72 mg·kg-1), except the blank group, rats in the other groups were subjected to chronic unpredictable mild stress(CUMS). Three weeks after the start of modeling, rats in each administration group were given the corresponding dose of drugs once a day for 4 weeks, and rats in the blank and model groups were given normal saline with dose of 10 mL·kg-1. At 1 day before modeling, 21 days and 28 days after administration, body mass weighing, sucrose preference test and open field test were performed on each group . After 28 days of administration, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was used to detect the mRNA expression levels of phosphatidylinositol 3-kinase(PI3K), protein kinase B(Akt), mammalian target of rapamycin(mTOR), glycogen synthase kinase-3β(GSK-3β), forkhead box transcription factor O3a(FoxO3a) and β-catenin in hippocampal tissues of rats in each group, while protein expression levels of PI3K, Akt, mTOR and FoxO3a in hippocampal tissues of rats in each group were detected by Western blot. ResultThere were 19 components in BP showed significant changes before and after vinegar-processing, and 9 components such as saikosaponin A, saikosaponin B1, saikosaponin B2, saikosaponin C and saikosaponin D were identified as potential Q-Marker through S-plot differential marker screening. Combined with the disease-drug-component-target network, saikosaponin A, saikosaponin B1, saikosaponin B2 and saikosaponin D were identified as antidepressant Q-Marker of raw and vinegar-processed products of BP. According to the results of pharmacodynamic tests, after 28 d of administration, compared with the blank group, the body mass, sucrose preference index and open field total score of rats in model group, fluoxetine group and total saponin group decreased significantly(P<0.01). Compared with the model group, the body mass, sucrose preference index and open field total score in total saponin group increased significantly(P<0.01). Compared with the blank group, mRNA expression levels of PI3K, Akt, mTOR and β-catenin in hippocampus of rats in the model group decreased significantly(P<0.05), while mRNA expression levels of GSK-3β and FoxO3a increased significantly(P<0.05). Compared with the model group, mRNA expression levels of PI3K, Akt, mTOR and β-catenin in hippocampus of rats in the total saponin group were increased significantly(P<0.05), while mRNA expression levels of GSK-3β and FoxO3a decreased significantly(P<0.05). Compared with the blank group, the protein expression levels of Akt and mTOR in hippocampus of the model group decreased significantly(P<0.01), while the protein expression levels of PI3K and FoxO3a increased significantly(P<0.01). Compared with the model group, the expression level of Akt in hippocampus of the total saponin group increased significantly(P<0.01), the mTOR expression level was increased but not statistically significant, while the protein expression levels of PI3K and FoxO3a decreased significantly(P<0.01). ConclusionThe chemical constituents of BP changed greatly after vinegar-processing, and the antidepressant Q-Marker of raw and vinegar-processed products of BP was determined by chemical basis, pharmacodynamics, network pharmacology and signaling pathway, which provided a reference for further research on quality control, pharmacodynamic substance basis and processing mechanism of BP.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 10-17, 2024.
Article in Chinese | WPRIM | ID: wpr-1003761

ABSTRACT

ObjectiveTo observe the therapeutic effect of Qiwei Baizhusan(QWBZS) on diabetic encephalopathy(DE) rat model, and to explore the possible mechanism of QWBZS in the treatment of DE based on phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/glycogen synthase kinase-3β(GSK-3β) signaling pathway. MethodForty-eight SPF male Wistar rats were randomly divided into blank group(8 rats) and high-fat diet group(40 rats). After 12 weeks of feeding, rats in the high-fat diet group were intraperitoneally injected with 35 mg·kg-1 of 1% streptozotocin(STZ) for 2 consecutive days to construct a DE model, and rats in the blank group were injected with the same amount of sodium citrate buffer. After successful modeling, according to blood glucose and body weight, model rats were randomly divided into model group, low, medium and high dose groups of QWBZS(3.15, 6.3, 12.6 g·kg-1), combined western medicine group(metformin+rosiglitazone, 0.21 g·kg-1), with 6 rats in each group. The administration group was given the corresponding dose of drug by gavage, and the blank group and the model group were given an equal volume of 0.9% sodium chloride solution by gavage, 1 time/day for 6 weeks. Morris water maze was used to detect the spatial memory ability of DE rats. Fasting insulin (FINS) level was detected by enzyme-linked immunosorbent assay(ELISA) and insulin resistance index(HOMA-IR) was calculated. Hematoxylin-eosin(HE) staining was used to observe the morphological changes of hippocampus in rats, ELISA was used to detect the indexes of oxidative stress in hippocampal tissues, real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) was used to detect mRNA expression levels of PI3K, Akt, nuclear transcription factor-κB(NF-κB), tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in hippocampus, and Western blot was used to detect the protein expression of PI3K, Akt, phosphorylated(p)-Akt, GSK-3β and p-GSK-3β in hippocampus of rats. ResultCompared with the blank group, FINS and HOMA-IR values of the model group were significantly increased(P<0.01), the path of finding the original position of the platform was significantly increased, and the escape latency was significantly prolonged(P<0.01), the morphology of neuronal cells in hippocampal tissues was disrupted, the levels of reactive oxygen species(ROS) and malondialdehyde(MDA) in hippocampus of rats were increased, and the activity of superoxide dismutase(SOD) was decreased(P<0.05, P<0.01), mRNA expression levels of PI3K and Akt were decreased(P<0.01), mRNA expression levels of NF-κB, TNF-α and IL-1β were increased(P<0.05, P<0.01), the protein expression levels of PI3K, p-Akt and p-GSK-3β were significantly decreased, and the protein expression of GSK-3β was significantly increased(P<0.01). Compared with the model group, the FINS and HOMA-IR values of the medium dose group of QWBZS and the combined western medicine group were significantly decreased(P<0.01), the path of finding the original position of the platform and the escape latency were significantly shortened(P<0.01), the hippocampal tissue structure of rats was gradually recovered, and the morphological damage of nerve cells was significantly improved, the contents of ROS and MDA in hippocampus of rats decreased and the level of SOD increased(P<0.01), the mRNA expression levels of PI3K and Akt were increased(P<0.01), and the mRNA expression levels of NF-κB, TNF-α and IL-1β were decreased (P<0.05, P<0.01), the protein expression levels of PI3K, p-Akt and p-GSK-3β were significantly increased(P<0.01), and the expression of GSK-3β was significantly decreased(P<0.01). ConclusionQWBZS can alleviate insulin resistance in DE rats, it may repair hippocampal neuronal damage and improve learning and cognitive ability of DE rats by activating PI3K/Akt/GSK-3β signaling pathway.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 118-126, 2024.
Article in Chinese | WPRIM | ID: wpr-1003415

ABSTRACT

ObjectiveTo observe the effect of earthworm protein on the expression of phosphatidylinositol 3-kinase/protein kinase B/nuclear factor E2-related factor 2 (PI3K/Akt/Nrf2) pathway in the aorta of spontaneously hypertensive rats (SHR) and explore mechanism of earthworm protein in treating hypertensive vascular endothelial dysfunction (VED). MethodTen 10-week-old Wistar Kyoto (WKY) rats and fifty SHR rats were selected for a week of adaptive feeding. WKY rats were selected as the normal group, and fifty SHR rats were randomized according to body weight into model, valsartan (8×10-3 g·kg-1·d-1), and high-, medium-, and low-dose (0.2, 0.1, 0.05 g·kg-1·d-1, respectively) earthworm protein groups. The normal and model groups were administrated with equal volume of double distilled water by gavage. During the drug intervention period, the general situations of rats in each group were observed and their blood pressure was monitored at specific time points every other week before and after administration. After 8 weeks of drug intervention, enzyme-linked immunosorbent assay was employed to measure the levels of angiotensin-Ⅱ (Ang-Ⅱ) and endothelin-1 (ET-1) in the serum of rats in each group. The corresponding kits were used to determine the levels of nitric oxide (NO), malondialdehyde (MDA), glutathione peroxidase (GPX), superoxide dismutase (SOD), and ferrous ion (Fe2+). Hematoxylin-eosin (HE) staining was employed to observe the changes in the intima of the aorta. Fluorescence quantitative polymerase chain reaction (Real-time PCR) was employed to measure the mRNA levels of PI3K, Akt, Nrf2, heme oxygenase-1 (HO-1), and glutathione peroxidase 4 (GPX4) in the aortic tissue. Western blotting was used to determine the protein levels of p-PI3K (Tyr467/199), PI3K, p-Akt (Ser473), Akt, Nrf2, HO-1, and GPX4 in the thoracic aorta. ResultCompared with the normal group, the model group had decreased body mass, increased irritability, severe endothelial damage, elevated blood pressure and serum levels of Ang-Ⅱ, ET1, MDA, and Fe2+ (P<0.01), lowered NO level (P<0.01), and down-regulated mRNA and protein levels of p-PI3K (Tyr467/199), PI3K, p-Akt (Ser473), Akt, Nrf2, HO-1, and GPX4 in the aortic tissue (P<0.01). Compared with the model group, drug intervention caused no significant change in the body mass, calmed the rats, alleviated the endothelial damage, lowered blood pressure and serum levels of Ang-Ⅱ, ET1, MDA, and Fe2+ (P<0.01), elevated the NO level (P<0.05), and up-regulated the mRNA and protein levels of p-PI3K (Tyr467/199), PI3K, p-Akt (Ser473), Akt, Nrf2, HO-1, and GPX4 (P<0.05). ConclusionThe earthworm protein can exert antihypertensive effects by ameliorating VED in SHR. Specifically, it may regulate the PI3K/Akt/Nrf2 signaling pathway to inhibit oxidative stress and ferroptosis.

6.
Rev. Soc. Bras. Med. Trop ; 56: e0104, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1449338

ABSTRACT

ABSTRACT Background: Autophagy can inhibit the survival of intracellular microorganisms including Mycobacterium tuberculosis (Mtb), and the PI3K/AKT/mTOR pathway plays a crucial role. This study investigated the association between PI3K/AKT/mTOR pathway autophagy-related gene polymorphisms and pulmonary tuberculosis (PTB) susceptibility. Methods: KEGG pathway and gene ontology (GO) databases were searched for genes belonging to the PI3K/AKT/mTOR and autophagy pathways. Thirty SNPs in nine genes were identified and tested for their associations with tuberculosis in 130 patients with PTB and 271 controls. We constructed genetic risk scores (GRSs) and divided the participants into 3 subgroups based on their GRSs:0-5, 6-10, and 11-16. Results: This analysis revealed that the AKT1 (rs12432802), RPTOR (rs11654508, rs12602885, rs2090204, rs2589144, and rs2672897), and TSC2 (rs2074969) polymorphisms were significantly associated with PTB risk. A decreasing trend was observed (P trend 0.020), in which a lower GRS was associated with a higher risk of PTB ([6-10] vs. [0-5]: OR (95%CI) 0.590 (0.374-0.931); [11-16] vs. [0-5]: OR (95%CI) 0.381 (0.160-0.906)). Conclusions: Polymorphisms in AKT1, RPTOR, and TSC2 may influence susceptibility to PTB.

7.
Chinese Journal of Radiological Medicine and Protection ; (12): 8-14, 2023.
Article in Chinese | WPRIM | ID: wpr-993044

ABSTRACT

Objective:To investigate the effects of down-regulation of FABP5 (fatty acid binding protein 5) on radiation damage of skin cells, and explore underlying mechanism.Methods:A lentiviral vector with down-regulated FABP5 was constructed to infect human immortalized keratinocytes (HaCaT) cells, and the transfection efficiency was examined. The HaCaT cells were divided into blank control group, FABP5 down-regulation group (FABP5), radiation group (IR), and FABP5 down-regulation combined with radiation group (FABP5+ IR). After 6 MV X-ray radiation, cell proliferation viability was measured by CCK-8 assay, cell migration was detected by scratch assay, apoptosis was analyzed by flow cytometry, radiosensitivity was evaluated by cloning formation assay, and the cellular protein expressions of PARP1, γ-H2AX, AKT and p-AKT were detected by Western blot.Results:FABP5 was successfully knocked-down in both RNA level ( t=25.14, P<0.05) and protein level ( t=20.06, P<0.05). The down-regulation of FABP5 decreased the abilities of cells proliferation ( t=3.55, 5.88, 3.18, P<0.05) and migration ( t=15.44, P<0.05), but increased cell resistance to irradiation with a radiosensitization ratio of 0.782. The apoptosis rate of FABP5+ IR group was significantly lower than IR group (22.05±6.71)% vs. (9.82±1.45)%, t=3.08, P<0.05. The protein levels of PARP1 and γ-H2AX in FABP5+ IR group were also lower than those in the IR group 0.04±0.04, 0.11±0.06, 0.26±0.11, 0.22±0.07, 0.21±0.10, 0.52±0.22, 0.57±0.06, 0.43±0.02( t=2.83, 3.07, 4.50, 5.33, P<0.05), while the protein level of p-Akt in FABP5+ IR group was higher than that in IR group ( t=-16.24—3.02, P<0.05). Conclusions:Down-regulation of FABP5 inhibited cell proliferation and migration, increased radioresistance, and reduced radiation-induced apoptosis and DNA damage of skin cells probably through PI3K/AKT signaling pathway.

8.
Chinese Journal of Pharmacology and Toxicology ; (6): 505-505, 2023.
Article in Chinese | WPRIM | ID: wpr-992184

ABSTRACT

OBJECTIVE To investigate whether gas-trodin(GAS)plays a neuroprotective role by activating PI3K/Akt/BACH1 signaling axis to improve glycolytic func-tion.METHODS HT22 cells were treated with Aβ25-35 for 24 h to establish cell damage model.GAS pretreated HT22 cells for 2 h,and Akt agonist SC79,Akt inhibitor MK2206,PI3K inhibitor LY294002 were added 0.5 h before GAS treatment to detect their protective mecha-nisms.Pharmacodynamic research of GAS in this model were divided into six groups:control group,GAS group(GAS 10 μmol·L-1),model group(Aβ25-35 20 μmol·L-1),model +GAS 2.5,5 and 10 μ mol·L-1 group).Mecha-nism research of GAS in this model was divided into 6 groups:control group,Aβ25-35 20 μmol·L-1 group,Aβ25-35 20 μmol·L-1 + GAS 10 μmol·L-1 group,Aβ25-35 + SC79 group(Aβ25-35 20 μmol·L-1 +SC79 10 μmol·L-1),Aβ25-35+MK2206+GAS group(A β 25-35 20 μ mol·L-1 +MK2206 10 μmol·L-1+GAS 10 μmol·L-1),Aβ25-35+LY294002+GAS group(Aβ25-35 20 μmol·L-1+LY294002 10 μmol·L-1+GAS 10 μmol·L-1).Cell viability was detected by MTT,mor-phological changes of cells were observed by micro-scope,ATP content was detected by chemilumines-cence,and pyruvate(PA)content was detected by colo-rimetry.Western blotting was used to detect the protein levels of transcription factor BACH1,key glycolysis enzyme hexokinase(HK1)and PI3K/Akt signaling path-way related proteins PI3K,p-PI3K,Akt and p-Akt.RESULTS The results showed that compared with the control group,the cell morphology of HT22 cells damaged by Aβ25-35 was damaged,the number of cells decreased,the cell body became smaller,the number of dead cells increased,the cell survival rate,ATP and PA contents decreased significantly,and the protein expressions of p-PI3K,p-Akt,BACH1 and HK1 were significantly down-regulated.GAS treatmentcansignificantlyimprovethemor-phology of HT22 cells damaged by Aβ25-35,increase cell survival rate,ATP and PA contents,and up-regulate the expression of p-PI3K,p-Akt,BACH1 and HK1 proteins.SC79 also significantly increased cell survival rate,ATP content,protein expression of BACH1 and HK1.However,the above ameliorative effect of GAS on HT22 cell dam-age induced by Aβ25-35 was antagonized by LY294002 and MK2206.CONCLUSION GAS exerts a neuroprotec-tive effect on Aβ25-35-induced HT22 cell injury by improv-ing glycolytic function through activating PI3K/Akt/BACH1 signaling axis.

9.
Journal of Pharmaceutical Analysis ; (6): 463-482, 2023.
Article in Chinese | WPRIM | ID: wpr-991158

ABSTRACT

Hepatocellular carcinoma(HCC)is the third leading cause of cancer death worldwide.Ginsenoside Rk3,an important and rare saponin in heat-treated ginseng,is generated from Rg1 and has a smaller mo-lecular weight.However,the anti-HCC efficacy and mechanisms of ginsenoside Rk3 have not yet been characterized.Here,we investigated the mechanism by which ginsenoside Rk3,a tetracyclic triterpenoid rare ginsenoside,inhibits the growth of HCC.We first explored the possible potential targets of Rk3 through network pharmacology.Both in vitro(HepG2 and HCC-LM3 cells)and in vivo(primary liver cancer mice and HCC-LM3 subcutaneous tumor-bearing mice)studies revealed that Rk3 significantly inhibits the proliferation of HCC.Meanwhile,Rk3 blocked the cell cycle in HCC at the G1 phase and induced autophagy and apoptosis in HCC.Further proteomics and siRNA experiments showed that Rk3 regulates the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)pathway to inhibit HCC growth,which was validated by molecular docking and surface plasmon resonance.In conclusion,we report the discovery that ginsenoside Rk3 binds to PI3K/AKT and promotes autophagy and apoptosis in HCC.Our data strongly support the translation of ginsenoside Rk3 into novel PI3K/AKT-targeting ther-apeutics for HCC treatment with low toxic side effects.

10.
Chinese Journal of Cancer Biotherapy ; (6): 965-972, 2023.
Article in Chinese | WPRIM | ID: wpr-1003469

ABSTRACT

@#[摘 要] 目的:探讨山柰酚诱导人非小细胞肺癌(NSCLC)NCI-H1650细胞发生自噬及其机制。方法:常规培养NCI-H1650细胞,用不同浓度山柰酚处理细胞,用CCK-8法、MTT法以及EdU法检测山柰酚对NCI-H1650细胞增殖能力的影响,用自噬双标记腺病毒mCherry-EGFR-LC3感染实验检测山柰酚对NCI-H1650细胞发生自噬的影响,用WB法检测山柰酚处理后NCI-H1650细胞中自噬相关蛋白及Met/PI3K/Akt/mTOR信号通路相关蛋白的表达,用qPCR法检测山柰酚处理后NCI-H1650细胞中Met mRNA的表达。采用荧光素酶标记A549-luc细胞建立裸鼠移植瘤模型后用山柰酚进行处理,用活体动物成像技术观察移植瘤生长情况,用WB法检测移植瘤组织中自噬相关蛋白以及Met/PI3K/Akt/mTOR信号通路相关蛋白的表达。结果:山柰酚能显著抑制NCI-H1650细胞的增殖能力(P<0.05),山柰酚处理后NCI-H1650细胞内的自噬小体数量明显增加(P<0.05)、自噬标志蛋白LC3B和beclin1表达均明显上调(均P<0.05)、P62表达明显下调(P<0.05),山柰酚可明显抑制NCI-H1650细胞中Met mRNA和蛋白的表达(均P<0.05)、抑制p-PI3K p85、PI3K p85、p-Akt和p-mTOR蛋白表达(均P<0.05)。山柰酚抑制A549细胞裸鼠移植瘤的生长(P<0.05)和影响其体内自噬、Met/PI3K/Akt/mTOR通路相关蛋白的表达(均P<0.05)。结论:山柰酚通过影响Met/PI3K/Akt/mTOR通路诱导NSCLC NCI-H1650细胞发生自噬,进而抑制其增殖能力。

11.
Acta Pharmaceutica Sinica ; (12): 2569-2580, 2023.
Article in Chinese | WPRIM | ID: wpr-999030

ABSTRACT

Autophagy is an important physiological process that can degrade cell components and maintain cell homeostasis, divided into three types including macroautophagy, microautophagy and chaperon-mediated autophagy generally, and macroautophagy is the most common form. Autophagy can affect the progression of a variety of diseases, such as cancer, neurodegenerative diseases, heart-related diseases, and autoimmune diseases, etc. However, autophagy can promote or inhibit diseases in different circumstances because of the dual roles of autophagy. Therefore, targeted regulating autophagy may be a potential treatment plan for diseases in specific stages of disease development. Now, with the development of traditional Chinese medicine (TCM) resources and the deepening of researches on the modern utilization of TCM, many active compounds from TCM have been discovered that can target autophagy to exert pharmacological activity. Most of the natural compounds activate or inhibit autophagy by affecting the classical PI3K/AKT/mTOR autophagy pathway. In addition, some compounds can also affect autophagy through MAPKs signaling pathways such as MEK/ERK, JNK and p38MAPK. These active compounds exert various biological activities by regulating autophagy, including anti-tumor, inhibiting neurodegenerative diseases, protecting cardiomyocytes, and relief of inflammatory response. In this review, we summarized the active compounds in TCM that affect autophagy by targeting different signaling pathways and their mechanisms of regulating autophagy, also introduced the effects of active compounds on diseases after affecting autophagy. Finally, this paper summarized and prospected the development of targeted autophagy for the treatment of diseases by TCM compounds, hoping to provide clues for subsequent exploration and research.

12.
Acta Pharmaceutica Sinica ; (12): 2677-2684, 2023.
Article in Chinese | WPRIM | ID: wpr-999006

ABSTRACT

Chikusetsusaponin IVa (CsIVa) is a natural active monomer of triterpene saponins in the Chinese herbal medicine of Panax japonicus, which has anti-inflammatory, anti-tumor and other effects. However, its function and mechanism in triple negative breast cancer (TNBC) remain unclear. This study investigated the inhibitory effect and mechanisms of CsIVa on the proliferation of triple negative breast cancer cell line MDA-MB-231. In this study, we found that CsIVa could significantly inhibit the proliferation of MDA-MB-231 cells and eliminate its potential toxic effect on normal breast cells (MCF-10A). The transcriptome sequencing results showed that the inhibition of proliferation of MDA-MB-231 cells by CsIVa was closely related to cell cycle and the pathway regulating cell cycle. Further studies confirmed that CsIVa blocked the cell cycle in G2/M phase by down-regulating the expression of cyclin dependent kinase 1 (CDK1), cyclin B1 and up-regulating the expression of cyclin dependent kinase inhibitor 1A (p21). Moreover, CsIVa can block cell cycle through inhibiting PI3K/AKT signal pathway. In conclusion, CsIVa regulates the expression of cell cycle related proteins (p21, CDK1, cyclin B1) via inhibiting the activity of PI3K/AKT signaling pathway, blocks TNBC cell cycle, and thus exerts its anti-tumor activity.

13.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 113-121, 2023.
Article in Chinese | WPRIM | ID: wpr-998169

ABSTRACT

ObjectiveTo investigate the effect and underlying molecular mechanism of astragaloside-Ⅳ (AS-Ⅳ) on autophagy and apoptosis of nasopharyngeal carcinoma cells. MethodIn experiments in vitro, the effect of AS-Ⅳ on the autophagy of nasopharyngeal carcinoma cells was observed by monodansylcadaverine (MDC) staining and transmission electron microscopy (TEM). In experiments in vivo, immunofluorescence (IF) and Western blot were used to detect the changes in autophagy and apoptosis and the expression of key proteins in the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway after the establishment of a xenograft tumor model in nude mice. ResultAfter 5-8F cells were treated with AS-Ⅳ of different doses (5, 10, 20 μmol·L-1), the fluorescence intensity of autophagy in AS-Ⅳ groups significantly increased as compared with that in the blank group. The fluorescence expression of autophagy in AS-Ⅳ groups was the strongest after intervention for 24 hours, and the fluorescence expression in the 10 μmol·L-1 AS-Ⅳ group was the most obvious. The autophagy activator rapamycin (RAPA) induced more autophagosomes in 5-8F cells under the transmission electron microscope, and 3-methyladenine (3-MA), an autophagy inhibitor, did not induce autophagosome formation in 5-8F cells under the transmission electron microscope as compared with the results in the blank group. In the 10 μmol·L-1 AS-Ⅳ group, the intracellular structure and cell membrane were intact and clear, and autophagosome formation was observed. Compared with the blank group, the AS-Ⅳ groups showed inhibited tumor volume (P<0.05, P<0.01), potentiated fluorescence signals of microtubule-associated protein l light chain 3 type Ⅱ/microtubule-associated protein l light chain 3 type Ⅰ (LC3 Ⅱ/Ⅰ) and cleaved Caspase-3 (P<0.05, P<0.01), increased expression levels of the mammalian homolog of yeast ATG6 (Beclin-1), LC3 Ⅱ/Ⅰ, cleaved Caspase-3, and cleaved PARP (P<0.05, P<0.01), down-regulated expression of ubiquitin-binding protein (p62) (P<0.05, P<0.01), and reduced protein expression levels of phosphorylated PI3K (p-PI3K), phosphorylated Akt (p-Akt), and phosphorylated mTOR (p-mTOR) (P<0.05, P<0.01). ConclusionAS-Ⅳ can induce autophagy and apoptosis of nasopharyngeal carcinoma cells, and the mechanism is presumably attributed to the activation of the PI3K/Akt/mTOR signaling pathway.

14.
Chinese Journal of Cancer Biotherapy ; (6): 874-880, 2023.
Article in Chinese | WPRIM | ID: wpr-997082

ABSTRACT

@#[摘 要] 目的:探讨银杏内酯B(GKB)是否通过阻抑PI3K/Akt/mTOR信号通路抑制胃癌HGC-27细胞的增殖、凋亡、迁移及侵袭。方法:将HGC-27细胞分为对照、GKB低剂量(100 mg/L)、GKB高剂量(200 mg/L)、GKB高剂量(200 mg/L)+740Y-P(PI3K激活剂)、Ly294002(PI3K抑制剂)组。采用MTT、Edu、FCM、Transwell实验分别检测各组细胞的增殖、凋亡、迁移和侵袭能力,qPCR和WB法分别检测各组细胞中PI3K mRNA、Akt mRNA、mTOR mRNA和Ki-67、caspase-3、p-PI3K/PI3K、p-Akt/Akt、p-mTOR/mTOR蛋白的表达。构建胃癌HGC-27细胞裸鼠移植瘤模型,观察GKB对移植瘤生长的影响,WB法检测移植瘤组织中Ki-67、caspase-3、p-PI3K/PI3K、p-Akt/Akt、p-mTOR/mTOR蛋白的表达。结果:体外实验结果表明,与对照组相比,GKB低剂量组、GKB高剂量组、Ly294002组HGC-27细胞的增殖活力及细胞增殖率、迁移和侵袭细胞数,PI3K、Akt、mTOR mRNA表达,以及Ki-67、p-PI3K/PI3K、p-Akt/Akt、p-mTOR/mTOR蛋白表达均显著降低(均P<0.05);细胞凋亡率、caspase-3蛋白表达均显著升高(均P<0.05);740Y-P可部分逆转GKB对HGC-27细胞的抑制作用(均P<0.05)。荷瘤裸鼠实验结果显示,GKB可显著抑制HGC-27细胞裸鼠移植瘤的生长(P<0.05),且可下调PI3K/Akt/mTOR通路相关蛋白的表达。结论:GKB可通过阻抑PI3K/Akt/mTOR信号通路而抑制胃癌HGC-27细胞增殖、迁移与侵袭并促进其凋亡。

15.
China Pharmacy ; (12): 2459-2464, 2023.
Article in Chinese | WPRIM | ID: wpr-997002

ABSTRACT

OBJECTIVE To investigate the effect and mechanism of anwulignan on improving hepatic fibrosis in rats. METHODS Fifty SD rats were randomly divided into the normal group, model group, colchicine tablet group (0.1 mg/kg), and anwulignan high-dose and low-dose groups (2.8 and 0.7 mg/kg), with 10 rats in each group. Except for the normal group, all groups of rats were intraperitoneally injected with 50% CCl4 olive oil mixed solution to replicate the rat model of liver fibrosis. At the end of the modeling, rats in each group were given the corresponding drugs or distilled water intragastrically from the 9th week, once a day, for 4 weeks consecutively. During the experimental period, the general condition of the rats was observed; the liver index was calculated; the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), superoxide dismutase (SOD) and malondialdehyde (MDA) were detected by colorimetric assay; the pathomorphology of the liver tissues and liver fibrosis were observed by HE staining and Masson staining; Western blot was used to detect the expression levels of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway and apoptosis-related proteins in liver tissues. RESULTS Compared with the normal group, the dietary amount of rats in the model group decreased, with sparse and disheveled fur, slow response, and a slower rate of weight growth or weight loss; the liver index was significantly increased (P<0.01); the serum levels of ALT, AST and MDA were significantly increased, and the SOD level was significantly decreased (P<0.01); HE and Masson staining showed that a large amount of fibrous proliferation was present in the liver tissues of the rats, and the collagen volume fraction was significantly increased (P<0.01); the protein expressions of PI3K, Akt, phosphorylated Akt and B-cell lymphoma (Bcl-2) were down-regulated significantly, while the protein expression of Bcl-2-associated X protein was increased significantly (P<0.01). Compared with the model group, the above indexes of the anwulignan high-dose and low-dose groups and the colchicine tablets group were all reversed significantly. CONCLUSIONS Anwulignan may reduce oxidative stress and inhibit hepatocyte apoptosis by activating the PI3K/Akt signaling pathway, and play the role of anti-hepatic fibrosis.

16.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 29-36, 2023.
Article in Chinese | WPRIM | ID: wpr-996807

ABSTRACT

ObjectiveTo explore the inhibitory effect of water extract of Broussonetiae Fructus on hepatocellular carcinoma (HCC) induced by diethyl nitrosamine (DEN) in mice based on homologous phosphatase and tensin homolog/phosphatidylinositol 3-kinase/protein kinase B (PTEN/PI3K/Akt) signaling pathway. MethodThe primary HCC mouse model was constructed by intraperitoneal injection of DEN solution, and the HCC mice were randomly divided into model group, sorafenib group (0.01 g·kg-1·d-1), low-dose Broussonetiae Fructus water extract group (0.9 g·kg-1·d-1), medium-dose Broussonetiae Fructus water extract group (1.8 g·kg-1·d-1), and high-dose Broussonetiae Fructus water extract group (3.6 g·kg-1·d-1), with 10 mice in each group. Another 10 C57BL/6 mice were selected as a control group and intraperitoneally injected with an equal volume of normal saline. Mice were treated with different concentrations of Broussonetiae Fructus water extract when liver cancer-like white nodules appeared. sorafenib group was treated with sorafenib. The control group and model group were intraperitoneally injected with normal saline. The activities of alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and γ-glutamyl transferase (γ-GT) in the serum of mice were detected by the biochemical analyzer. The expression levels of alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA) were detected by enzyme-linked immunosorbent assay (ELISA). The degree of hepatocyte canceration and hepatocyte injury were observed by Hematoxylin-eosin (HE) and Masson staining. The proliferation of HCC cells was observed by immunohistochemical staining. The apoptosis of HCC cells in mice was observed by erminal-deoxynucleotidyl transferase mediated nick end labelling (TUNEL) staining. The expression levels of PTEN, PI3K, Akt, and p-Akt proteins related to the PTEN/PI3K/Akt signaling pathway were detected by Western blot. ResultCompared with the control group, the activities of ALP, AST, ALT, and γ-GT, as well as the expression levels of AFP and CEA in the model group were significantly increased (P<0.01). Carcinogenesis and inflammatory cell infiltration were obvious in liver tissue of mice, and a large number of blue collagen fiber hyperplasia was found. The number of Ki67 positive cells was significantly increased (P<0.01), and the expression level of PTEN protein was significantly decreased, while PI3K and p-Akt protein expression was increased (P<0.01). Compared with the model group, the activities of ALP, AST, ALT, and γ-GT, as well as the expression levels of AFP and CEA in the medium-dose and high-dose Broussonetiae Fructus water extract groups were significantly decreased (P<0.05, P<0.01). The degree of carcinogenesis and inflammatory cell infiltration in liver tissue were reduced, and the collagen fiber hyperplasia was significantly reduced. The number of Ki67 positive cells was significantly decreased, and the number of TUNEL positive apoptotic cells was significantly increased (P<0.05, P<0.01). PTEN protein expression was increased, while p-Akt protein expression was significantly decreased (P<0.05, P<0.01). ConclusionThe water extract of Broussonetiae Fructus has a significant inhibitory effect on DEN-induced primary HCC in mice, and its mechanism may be related to the regulation of key protein expressions in the PTEN/PI3K/Akt signaling pathway.

17.
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery ; (12): 614-621, 2023.
Article in Chinese | WPRIM | ID: wpr-996471

ABSTRACT

@#Objective    To study the effect of Tangeretin on non-small cell lung cancer (NSCLC) and the tumor stemness, and to find the molecular mechanism of its effect. Methods    We used cell counting and cell cloning experiments to study the effect of Tangeretin on the proliferation of NSCLC cells in vitro. The effect of Tangeretin on the invasion of NSCLC cells was detected by transwell assay. We detected the effect of Tangeretin on the proliferation of NSCLC cells in vivo by nude mouse tumor-bearing experiment. The effect of Tangeretin on tumor stemness of NSCLC cells was detected by self-renew assay, and CD133 and Nanog protein expressions. The expressions of PI3K/AKT/mTOR signaling pathway-related proteins were detected by Western blotting (WB). Results    Tangeretin had a good inhibitory effect on the proliferation of NSCLC cells in vivo and in vitro. Cell counting experiment, clonal formation experiment and nude mouse tumor-bearing experiment showed that Tangeretin could inhibit the proliferation activity, clonal formation ability, and tumor size of NSCLC cells in vivo. Self-renew experiments showed that Tangeretin could inhibit the self-renew ability of NSCLC cells. WB experiments showed that Tangeretin inhibited the expressions of tumor stemness markers CD133 and Nanog in NSCLC cells. Tangeretin could inhibit the activation of PI3K/AKT/mTOR signaling pathway-related proteins in NSCLC cells, and the activation of PI3K/AKT/mTOR signaling pathway could partially remit the inhibitory  effect of Tangeretin on tumor stemness of NSCLC cells. Conclusion    Tangeretin can inhibit the tumor stemness of NSCLC cells, which may be related to the regulation of PI3K/AKT/mTOR signaling pathway.

18.
China Pharmacy ; (12): 2427-2432, 2023.
Article in Chinese | WPRIM | ID: wpr-996404

ABSTRACT

Pancreatic cancer is one of the most destructive malignant tumors; the pathogenesis of this disease is complex and is closely related to genetic susceptibility, chronic pancreatitis, and gene mutations in signaling pathways. The phosphoinositide 3- kinase (PI3K)/protein kinase B (Akt) signaling pathway is a classical cancer signaling pathway that is aberrantly activated in pancreatic cancer cells. In recent years, it has been found that traditional Chinese medicine (TCM) monomers show special activity in the treatment of pancreatic cancer and can be potential drug for the treatment of pancreatic cancer. Based on PI3K/Akt signaling pathway, this paper summarizes the mechanism of TCM monomer intervening in pancreatic cancer and finds that TCM monomer of alkaloids (sinomenine, dictamnine, dauricine, etc.), terpenoids (saikosaponin A, linderalactone, isoalantolactone, etc.), phenols (6-gingerol, curcumin, pterostilbene, etc.), flavonoids (fisetin, kaempferol, quercetin, etc.) and quinones (β-hydroxyisovaleryl shikonin, rhein, lucidone, etc.) can inhibit the proliferation, invasion and migration of pancreatic cancer cells, regulate autophagy and apoptosis, and then inhibit the pathological process of pancreatic cancer by inhibiting PI3K/Akt signaling pathway.

19.
China Pharmacy ; (12): 2344-2349, 2023.
Article in Chinese | WPRIM | ID: wpr-996390

ABSTRACT

OBJECTIVE To study the tocolysis effects of Angelica sinensis polysaccharides on threatened abortion model rats and their impacts on Th1/Th2 balance by regulating the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. METHODS Pregnant rats were randomly grouped into the control group, model group, A. sinensis polysaccharide group (200 mg/kg), PI3K/AKT signaling pathway inhibitor LY294002 group (5 mg/kg), and A. sinensis polysaccharide+LY294002 group (200 mg/kg A. sinensis polysaccharide+5 mg/kg LY294002), with 10 rats in each group. Except for the control group, rats in all other groups were given mifepristone (8.3 mg/kg) and misoprostol (100 μg/kg) intragastrically to establish a threatened abortion model, and intragastric or intraperitoneal injection of corresponding drugs. The serum levels of estrogen, progesterone, interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-4 (IL-4) in each group of rats were detected, and the uterine ovarian index and embryonic mortality rate of rats in each group were measured; the morphology of uterine tissue in rats was observed in each group; Th1/Th2 balance in peripheral blood of rats as well as the expression of PI3K/AKT signaling pathway-related proteins in the uterine tissues of rats in each group were detected. RESULTS Compared with the control group, the uterine tissue of rats in the model group showed pathological damage; the serum levels of estrogen, progesterone and IL-4, uterine ovarian index, peripheral blood Th2 cell ratio, and the ratios of phosphorylated PI3K (p-PI3K)/PI3K and phosphorylated AKT (p-AKT)/AKT in uterine tissue were all decreased (P<0.05); the embryo mortality rate, Th1 cell ratio, Th1/Th2 ratio, and serum levels of IFN-γ and TNF-α were increased (P<0.05). Compared with the model group, the pathological damage of uterine tissue in the A. sinensis polysaccharide group was reduced, and the above indexes were all improved significantly (P<0.05); LY294002 could weaken the effect of A. sinensis polysaccharide on model rats (P<0.05). CONCLUSIONS A. sinensis polysaccharides can improve Th1/Th2 imbalance in threatened abortion model rats by activating the PI3K/AKT signaling pathway, thereby inhibiting immune inflammation, and promoting embryo survival.

20.
Chinese Journal of Microbiology and Immunology ; (12): 547-554, 2023.
Article in Chinese | WPRIM | ID: wpr-995323

ABSTRACT

Objective:To observe the effects of sacubitril/valsartan (LCZ696) on viral replication and cardiomyocyte apoptosis in mice with coxsackievirus B3 (CVB3)-induced viral myocarditis (VMC) and to analyze the underlying mechanisms.Methods:Forty BALB/c mice were randomly divided into four groups with 10 in each group: Sham, Sham+ LCZ696, VMC, and VMC+ LCZ696 groups. VMC model was established by intraperitoneal injection of 0.1 ml of CVB3 with a concentration of 10 6 TCID 50/ml into BALB/c mice, while the sham intervention was an equal volume of saline. The day of virus injection was defined as day 0. LCZ696 was administered by gavage at a dose of 60 mg/kg every day for seven consecutive days starting from day 1. Mouse survival rates were calculated. Echocardiography was used to evaluate the cardiac function of mice. The level of creatine kinase-MB (CK-MB) was detected by ELISA. Western blot was used to detect the levels of inflammatory cytokines (IL-6, TNF-α), apoptosis-related proteins (caspase-3, cleaved-caspase-3, Bax, Bcl-2), CVB3 surface protein (VP-1) and p-AKT/AKT in the hearts of mice. CVB3 mRNA in mouse hearts was measured by PCR. Inflammatory cell infiltration and cell apoptosis in mouse hearts were observed by HE staining and TUNEL staining, respectively. Results:Compared with the Sham group, the mice in the VMC group had a decreased survival rate and impaired cardiac function ( P<0.05). The levels of CK-MB, IL-6, TNF-α, cleaved-caspase-3/caspase-3, Bax/Bcl-2, VP-1, and CVB3 mRNA in the hearts of VMC mice increased significantly ( P<0.05), accompanied by increased expression of AKT, decreased phosphorylation of AKT ( P<0.05) and increased cell apoptosis. LCZ696 reversed the above changes. It could increase the survival rate, improve the cardiac function ( P<0.05), decrease cardiac inflammation, cell apoptosis and viral replication ( P<0.05), and increase the phosphorylation of AKT ( P<0.05). LCZ696 had no significant effects on the survival rate, cardiac function, myocardial injury, cardiac inflammation, cell apoptosis, viral replication or the expression of PI3K/AKT signaling pathway-related proteins in normal mice. Conclusions:LCZ696 could significantly inhibit cardiomyocyte apoptosis and reduce CVB3 replication in the hearts of VMC mice by regulating the PI3K/AKT pathway, thereby improving mouse cardiac function and survival rate.

SELECTION OF CITATIONS
SEARCH DETAIL