Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 74-80, 2022.
Article in English | WPRIM | ID: wpr-929238

ABSTRACT

Diversity-oriented synthesis is aimed to increase the chemical diversity of target natural products for extensive biological activity evaluation. Indole ring is an important functional group in a large number of drugs and other biologically active agents, and indole-containing natural products have been frequently isolated from marine sources in recent years. In this paper, a series of indole-containing marine natural hyrtioreticulin derivatives, including 19 new ones, were designed, synthesized through a key Pictet-Spengler reaction, and evaluated for their inflammation related activity. Compound 13b displayed the most promising activity by inhibiting TNF-α cytokine release with an inhibitory rate of 92% at a concentration of 20 μmol·L-1. A preliminary structure-activity relationship analysis was also discussed. This research may throw light on the discovery of marine indole alkaloid derived anti-inflammatory drug leads.


Subject(s)
Animals , Anti-Inflammatory Agents/pharmacology , Biological Products/pharmacology , Indole Alkaloids/pharmacology , Porifera , Structure-Activity Relationship
2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 591-607, 2021.
Article in English | WPRIM | ID: wpr-888788

ABSTRACT

Terpenoid indole (TIAs) and β-carboline alkaloids (BCAs), such as suppressant reserpine, vasodilatory yohimbine, and antimalarial quinine, are natural compounds derived from strictosidine. These compounds can exert powerful pharmacological effects but be obtained from limited source in nature. the whole biosynthetic pathway of TIAs and BCAs, The Pictet-Spengler reaction catalyzed by strictosidine synthase (STR; EC: 4.3.3.2) is the rate-limiting step. Therefore, it is necessary to investigate their biosynthesis pathways, especially the role of STR, and related findings will support the biosynthetic generation of natural and unnatural compounds. This review summarizes the latest studies concerning the function of STR in TIA and BCA biosynthesis, and illustrates the compounds derived from strictosidine. The substrate specificity of STR based on its structure is also summarized. Proteins that contain six-bladed four-stranded β-propeller folds in many organisms, other than plants, are listed. The presence of these folds may lead to similar functions among organisms. The expression of STR gene can greatly influence the production of many compounds. STR is mainly applied to product various valuable drugs in plant cell suspension culture and biosynthesis in other carriers.


Subject(s)
Alkaloids/biosynthesis , Carbolines/metabolism , Carbon-Nitrogen Lyases , Indoles/metabolism , Terpenes/metabolism
3.
Chinese Journal of Biotechnology ; (12): 2001-2016, 2020.
Article in Chinese | WPRIM | ID: wpr-878461

ABSTRACT

Pictet-Spenglerases (P-Sases) catalyze the Pictet-Spengler (P-S) reactions and exhibit high stereoselectivity and regioselectivity under mild conditions. The typical P-S reaction refers to the condensation and recyclization of β-arylethylamine with aldehyde or ketone under acidic conditions to form tetrahydroisoquinoline and β-carboline alkaloid derivatives. The related enzymatic products of P-Sases are the backbones of various bioactive compounds, including clinical drugs: morphine, noscapine, quinine, berberine, ajmaline, morphine. Furthermore, the activity of P-Sases in stereoselective and regioselective catalysis is also valuable for chemoenzymatic synthesis. Therefore, this review summarizes the research progress in the discovery, functional identification, biological characteristics and catalytic applications of P-Sases, which provide the useful theoretical reference in future P-Sases research and development.


Subject(s)
Alkaloids/chemistry , Catalysis , Enzymes/metabolism , Research/trends , Tetrahydroisoquinolines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL