Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Chinese Journal of Forensic Medicine ; (6): 39-42, 2018.
Article in Chinese | WPRIM | ID: wpr-701479

ABSTRACT

In addition to obtaining DNA-STR typing of an evidentiary stain for individual identification and paternity tests, knowing the time since deposition (TSD) is also highly desired in forensics. To provide a reference for the research of predicting the TSD, this article reviews the reported optical, cell biological and molecular biological methods of determining the age of bloodstains domestic and overseas, and also introduces the application of microbial forensics, a new field of forensic science, to provide space-time clues of evidentiary stains.

2.
Protein & Cell ; (12): 735-749, 2017.
Article in English | WPRIM | ID: wpr-756951

ABSTRACT

Mammalian mitochondrial genome encodes a small set of tRNAs, rRNAs, and mRNAs. The RNA synthesis process has been well characterized. How the RNAs are degraded, however, is poorly understood. It was long assumed that the degradation happens in the matrix where transcription and translation machineries reside. Here we show that contrary to the assumption, mammalian mitochondrial RNA degradation occurs in the mitochondrial intermembrane space (IMS) and the IMS-localized RNASET2 is the enzyme that degrades the RNAs. This provides a new paradigm for understanding mitochondrial RNA metabolism and transport.


Subject(s)
Humans , Cell Line , Mitochondrial Membranes , Metabolism , Protein Transport , RNA , Chemistry , Metabolism , RNA Stability , RNA, Mitochondrial , Ribonucleases , Metabolism , Tumor Suppressor Proteins , Metabolism
3.
J Biosci ; 2013 Sept; 38(3): 471-478
Article in English | IMSEAR | ID: sea-161835

ABSTRACT

Chemically synthetic siRNA and miRNA have become powerful tools to study gene function in the past decade. Fluorescent dyes covalently attached to the 5′ or 3′ ends of synthetic small RNAs are widely used for fluorescently imaging and detection of these RNAs. However, the reliability of fluorescent tags as small RNA markers in different conditions has not attracted enough attention. We used Cy3-labelled small RNAs to explore the reliability of fluorescent tags as small RNA markers in cell cultures involving serum. A strong Cy3-fluorescence signal was observed in the cytoplasm of the cells transfected with Cy3-miR24 in the culture medium containing fetal bovine serum (FBS), but qRT-PCR results showed that little miR24 were detected in these cells. Further study demonstrated that small RNAs were degraded in the presence of FBS, suggesting that it was Cy3-RNA fragments, rather than the original Cy3-miR24, diffused into cells. These phenomena disappeared when FBS was replaced by boiled-FBS, further supporting that the Cy3-fluorescence we observed in cells in the presence of FBS could not represent the presence of intact small RNAs. These findings addressed that fluorescent tags are not reliable for small RNA transfection in the presence of serum in culture.

4.
J Biosci ; 2012 Mar; 37 (1): 103-113
Article in English | IMSEAR | ID: sea-161644

ABSTRACT

The interferon (IFN)-inducible, 2′,5′-oligoadenylate (2-5A)-dependent ribonuclease L (RNase L) plays key role in antiviral defense of mammalian cells. Induction by IFN and activation by double-stranded RNA lead to 2-5A cofactor synthesis, which activates RNase L by causing its dimerization. Active RNase L degrades single-stranded viral as well as cellular RNAs causing apoptosis of virus-infected cells. Earlier, we had reported that expression of recombinant human RNase L caused RNA-degradation and cell-growth inhibition in E. coli without the need for exogenous 2-5A. Expression of human RNase L in E. coli usually leads to problems of leaky expression, low yield and degradation of the recombinant protein, which demands number of chromatographic steps for its subsequent purification thereby, compromising its biochemical activity. Here, we report a convenient protocol for expression of full-length, soluble and biochemically active recombinant human RNase L as GST-RNase L fusion protein from E. coli utilizing a single-step affinity purification with an appreciable yield of the highly purified protein. Recombinant RNase L was characterized by SDS-PAGE, immunoblotting and MALDI-TOF analysis. A semi-quantitative agarose-gel-based ribonuclease assay was developed for measuring its 2-5A-dependent RNase L activity against cellular large rRNAs as substrates. The optimized expression conditions minimized degradation of the protein, making it a convenient method for purification of RNase L, which can be utilized to study effects of various agents on the RNase L activity and its protein– protein interactions.

SELECTION OF CITATIONS
SEARCH DETAIL