Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Article | IMSEAR | ID: sea-200706

ABSTRACT

Aim:To analyze the most complex multi-subunit (MSU) DNA dependent RNA polymerases (RNAPs) of eukaryotic organisms and find out conserved motifs, metal binding sites and catalytic regions and propose a plausible mechanism of action for these complex eukaryoticMSU RNAPs, using yeast (Saccharomyces cerevisiae) RNAP II, as a model enzyme.Study Design: Bioinformatics, Biochemical, Site-directed mutagenesis and X-ray crystallographic data were analyzed.Place and Duration of Study: School of Biotechnology, MaduraiKamaraj University, Madurai, India, between 2007-2013. Methodology:Bioinformatics, Biochemical, Site-directed mutagenesis (SDM) and X-ray crystallographic data of the enzyme were analyzed. The advanced version of Clustal Omega was used for protein sequence analysis of the MSU DNA dependent RNAPs from various eukaryotic sources. Along with the conserved motifs identified by the bioinformatics analysis, the data already available by biochemical and SDM experiments and X-ray crystallographic analysis of these enzymes were used to confirm the possible amino acids involved in the active sites and catalysis. Results:Multiple sequence alignment (MSA) of RNAPs from different eukaryotic organisms showed a large number of highly conserved motifs among them. Possible catalytic regions in the catalytic subunits of the yeast Rpb2 (= β in eubacteria) and Rpb1 (= β’ in eubacteria) consist of an absolutely conserved amino acid R, in contrast to a K that was reported for DNA polymerases and single subunit (SSU) RNAPs. However, the invariant ‘gatekeeper/DNA template binding’ YG pair that was reported in all SSU RNAPs, prokaryotic MSU RNAPs and DNA polymerases is also highly conserved in eukaryotic Rpb2 initiation subunits, but unusually a KG pair is found in higher eukaryotes including the human RNAPs. Like the eubacterial initiation subunits of MSU RNAPs, the eukaryotic initiation subunits, viz. Rpb2, exhibit very similar active site and catalytic regions but slightly different distance conservations between the templatebinding YG/KG pair and the catalytic R. In the eukaryotic initiation subunits, the proposed catalytic R is placed at the -9thposition from the YG/KG pair and an invariant R is placed at -5 which are implicated to play a role in nucleoside triphosphate (NTP) selection as reported for SSU RNAPs (viral family) and DNA polymerases. Similarly, the eukaryotic elongation subunits (Rpb1) are also found to be very much homologous to the elongation subunits (β’) of prokaryotes. Interestingly, the catalytic regionsare highly conserved, and the metal binding sites are absolutely conserved as in prokaryotic MSU RNAPs. In eukaryotes, the template binding YG pair is replaced with an FG pair. Another interesting observation is, similar to the prokaryotic β’ subunits, inthe eukaryotic Rpb1 elongation subunits also, the proposed catalytic R is placed double the distance, i.e., -18 amino acids downstream from the FG pair unlike in the SSU RNAPs and DNA polymerases where the distance is only -8 amino acids downstream from the YG pair. Thus, the completely conserved FG pair, catalytic R with an invariant R, at -6thposition are proposed to play a crucial role in template binding, NTP selection and polymerization reactions in the elongation subunits of eukaryotic MSU RNAPs. Moreover, the Zn binding motif with the three completely conserved Cs is also highly conserved in the eukaryotic elongation subunits. Another important difference is that the catalytic region is placed very close to the N-terminal region in eukaryotes.Conclusions: Unlike reported for the DNA polymerases and SSU RNA polymerases, the of eukaryotic MSU RNAPs use an R as the catalytic amino acid and exhibit a different distance conservation in the initiation and elongation subunits. An invariant Zn2+binding motif found in the Rpb1 elongation subunits is proposed to participate in proof-reading function. Differences in the active sites of bacterial and human RNA polymerases may pave the way for the design of new and effective drugs for many bacterial infections, including the multidrug resistant strains which are a global crisis at present

3.
Mycobiology ; : 191-201, 2013.
Article in English | WPRIM | ID: wpr-729412

ABSTRACT

Distinguishing individual Russula species has been difficult due to extensive phenotypic plasticity and obscure morphological and anatomical discontinuities. Due to highly similar macroscopic features, such as the presence of a red-cap, species identification within the Russula subgenus Amoenula is particularly difficult. Three species of the subgenus Amoneula have been reported in Korea. We used a combination of morphology and three molecular markers, the internal transcribed spacer (ITS), 28S nuclear ribosomal large subunit (LSU), and RNA polymerase II gene (RPB2), for identification and study of the genetic diversity of Russula subgenus Amoenula in Korea. We identified only two species in Korea (R. mariae and R. violeipes); these two species were indistinguishable according to morphology and LSU, but were found to be reciprocally monophyletic species using ITS and RPB2. The markers, ITS, LSU, and RPB2, have been tested in the past for use as DNA barcoding markers, and findings of our study suggest that ITS and RPB2 had the best performance for the Russula subgenus Amoneula.


Subject(s)
DNA , Genetic Variation , Korea , Plastics , RNA Polymerase II
4.
Mem. Inst. Oswaldo Cruz ; 107(4): 522-531, June 2012. ilus
Article in English | LILACS | ID: lil-626447

ABSTRACT

The addition of a capped mini-exon [spliced leader (SL)] through trans-splicing is essential for the maturation of RNA polymerase (pol) II-transcribed polycistronic pre-mRNAs in all members of the Trypanosomatidae family. This process is an inter-molecular splicing reaction that follows the same basic rules of cis-splicing reactions. In this study, we demonstrated that mini-exons were added to precursor ribosomal RNA (pre-rRNA) are transcribed by RNA pol I, including the 5' external transcribed spacer (ETS) region. Additionally, we detected the SL-5'ETS molecule using three distinct methods and located the acceptor site between two known 5'ETS rRNA processing sites (A' and A1) in four different trypanosomatids. Moreover, we detected a polyadenylated 5'ETS upstream of the trans-splicing acceptor site, which also occurs in pre-mRNA trans-splicing. After treatment with an indirect trans-splicing inhibitor (sinefungin), we observed SL-5'ETS decay. However, treatment with 5-fluorouracil (a precursor of RNA synthesis that inhibits the degradation of pre-rRNA) led to the accumulation of SL-5'ETS, suggesting that the molecule may play a role in rRNA degradation. The detection of trans-splicing in these molecules may indicate broad RNA-joining properties, regardless of the polymerase used for transcription.


Subject(s)
Leishmania mexicana/genetics , RNA Precursors/genetics , RNA, Spliced Leader/genetics , Trans-Splicing/genetics , Exons/genetics , Nucleic Acid Conformation , Reverse Transcriptase Polymerase Chain Reaction
5.
An. acad. bras. ciênc ; 80(1): 157-166, Mar. 2008. ilus, graf
Article in English | LILACS | ID: lil-477423

ABSTRACT

The differentiation of proliferating epimastigote forms of Trypanosoma cruzi , the protozoan parasite that causes Chagas’ disease, into the infective and non-proliferating metacyclic forms can be reproduced in the laboratory by incubating the cells in a chemically-defined medium that mimics the urine of the insect vector. Epimastigotes have a spherical nucleus, a flagellum protruding from the middle of the protozoan cell, and a disk-shaped kinetoplast - an organelle that corresponds to the mitochondrial DNA. Metacyclic trypomastigotes have an elongated shape with the flagellum protruding from the posterior portion of the cell and associated with a spherical kinetoplast. Here we describe the morphological events of this transformation and characterize a novel intermediate stage by three-dimensional reconstruction of electron microscope serial sections. This new intermediate stage is characterized by a kinetoplast compressing an already elongated nucleus, indicating that metacyclogenesis involves active movements of the flagellar structure relative to the cell body. As transcription occurs more intensely in proliferating epimastigotes than in metacyclics, we also examined the presence of RNA polymerase II and measured transcriptional activity during the differentiation process. Both the presence of the enzyme and transcriptional activity remain unchanged during all steps of metacyclogenesis. RNA polymerase II levels and transcriptional activity only decrease after metacyclics are formed. We suggest that transcription is required during the epimastigote-to-metacyclic trypomastigote differentiation process, until the kinetoplast and flagellum reach the posterior position of the parasites in the infective form.


A diferenciação de formas epimastigotas (proliferativas) do Trypanosoma cruzi, parasita protozoário causador da doença de Chagas, em formas metacíclicas tripomastigotas (infectivas e não proliferativas), pode ser reproduzida em laboratório incubando-se as células em um meio quimicamente definido que imita a urina do inseto vetor deste parasita. Os epimastigotas têm um núcleo esférico, o flagelo se projeta da metade do corpo do protozoário e o cinetoplasto (organela que possui o DNA mitocondrial) possui formato de disco. Os tripomastigotas metacíclicos têm um núcleo alongado com o flagelo emergindo da extremidade posterior da célula associado ao cinetoplasto esférico. Neste trabalho descrevemos as mudanças morfológicas que ocorrem durante essa transformação e caracterizamos uma nova forma intermediária do parasita usando reconstrução tridimensional de cortes seriados, visualizados por microscopia eletrônica de transmissão. Essa nova forma intermediária é caracterizada pela compressão do cinetoplasto contra o núcleo alongado, indicando que a metaciclogênese envolve movimentos ativos do cinetoplasto associado à estrutura flagelar em relação ao corpo celular. Como tripomastigotas metacíclicos transcrevem menos que as formas epimastigotas proliferativas, verificamos a presença da RNA polimerase II e medimos a atividade transcricional durante o processo de diferenciação. A presença da enzima e a atividade transcricional permanecem inalteradas durante todas as etapas da metaciclogênese, desaparecendo apenas quando as formas metacíclicas são formadas. Sugerimos que a diferenciação requer uma atividade transcricional, necessária para uma intensa remodelação da célula, que acontece até o cinetoplasto e o flagelo atingirem uma posição posterior do corpo do tripomastigota metacíclico.


Subject(s)
Animals , Trypanosoma cruzi/growth & development , Imaging, Three-Dimensional , Microscopy, Electron , RNA Polymerase II , Transcription, Genetic , Trypanosoma cruzi/cytology , Trypanosoma cruzi/genetics , Trypanosoma cruzi/ultrastructure
6.
Experimental & Molecular Medicine ; : 247-254, 2007.
Article in English | WPRIM | ID: wpr-201430

ABSTRACT

The largest subunit of eukaryotic RNA polymerase II contains a unique domain at its carboxy-terminus, which is referred to as the carboxy-terminal domain (CTD). The CTD is made up of an evolutionarily conserved heptapeptide repeat (YSPTSPS). Over the past decade, there has been increasing attention on the role of the CTD in transcription regulation in the view of mRNA processing and chromatin remodeling. This paper provides a brief overview of the recent progress in the dynamic changes in CTD phosphorylation and its role in integrating multiple nuclear events.


Subject(s)
Animals , Humans , Amino Acid Motifs , Amino Acid Sequence , Chromatin/physiology , Chromatin Assembly and Disassembly , Conserved Sequence , Histones/metabolism , Isomerism , Phosphorylation , Protein Structure, Tertiary , RNA Polymerase II/chemistry , RNA, Messenger/metabolism , Transcription, Genetic
7.
Experimental & Molecular Medicine ; : 259-264, 2002.
Article in English | WPRIM | ID: wpr-134601

ABSTRACT

The core promoter is an important yet often overlooked component in the regulation of transcription by RNA polymerase II. In fact, the core promoter is the ultimate target of action of all of the factors and coregulators that control the transcriptional activity of every gene. In this review, I describe our current knowledge of a downstream core promoter element termed the DPE, which is a TFIID recognition site that is conserved from Drosophila to humans. The DPE is located from +28 to +32 relative to the +1 transcription start site, and is mainly present in core promoters that lack a TATA box motif. Moreover, in Drosophila, the DPE appears to be about as common as the TATA box. There are distinct mechanisms of basal transcription from DPE- versus TATA-dependent core promoters. For instance, NC2/Dr1-Drap1 is a repressor of TATA-dependent transcription and an activator of DPE-dependent transcription. In addition, DPE-specific and TATA-specific transcriptional enhancers have been identified. These findings further indicate that the core promoter is an active participant in the regulation of eukaryotic gene expression.


Subject(s)
Animals , Humans , Base Sequence , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic , Feedback, Physiological , Gene Expression Regulation , Models, Genetic , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Transcription Factors/chemistry , Transcription, Genetic
8.
Experimental & Molecular Medicine ; : 259-264, 2002.
Article in English | WPRIM | ID: wpr-134600

ABSTRACT

The core promoter is an important yet often overlooked component in the regulation of transcription by RNA polymerase II. In fact, the core promoter is the ultimate target of action of all of the factors and coregulators that control the transcriptional activity of every gene. In this review, I describe our current knowledge of a downstream core promoter element termed the DPE, which is a TFIID recognition site that is conserved from Drosophila to humans. The DPE is located from +28 to +32 relative to the +1 transcription start site, and is mainly present in core promoters that lack a TATA box motif. Moreover, in Drosophila, the DPE appears to be about as common as the TATA box. There are distinct mechanisms of basal transcription from DPE- versus TATA-dependent core promoters. For instance, NC2/Dr1-Drap1 is a repressor of TATA-dependent transcription and an activator of DPE-dependent transcription. In addition, DPE-specific and TATA-specific transcriptional enhancers have been identified. These findings further indicate that the core promoter is an active participant in the regulation of eukaryotic gene expression.


Subject(s)
Animals , Humans , Base Sequence , DNA-Binding Proteins/metabolism , Enhancer Elements, Genetic , Feedback, Physiological , Gene Expression Regulation , Models, Genetic , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Transcription Factors/chemistry , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL