Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Braz. j. biol ; 83: 1-7, 2023. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1468839

ABSTRACT

Zinc is an essential micronutrient that is required for optimum plant growth. It is present in soil in insoluble forms. Bacterial solubilization of soil unavailable form of Zn into available form, is an emerging approach to alleviate the Zn deficiency for plants and human beings. Zinc solubilizing bacteria (ZSB) could be a substitute for chemical Zn fertilizer. The present study aimed to isolate and characterize bacterial species from the contaminated soil and evaluate their Zn solubilizing potential. Zn resistant bacteria were isolated and evaluated for their MIC against Zn. Among the 13 isolated bacterial strains ZSB13 showed maximum MIC value upto 30mM/L. The bacterial strain with the highest resistance against Zn was selected for further analysis. Molecular characterization of ZSB13 was performed by 16S rRNA gene amplification which confirmed it as Pseudomonas oleovorans. Zn solubilization was determined through plate assay and broth medium. Four insoluble salts (zinc oxide (ZnO), zinc carbonate (ZnCO3), zinc sulphite (ZnS) and zinc phosphate (Zn3(PO4)2) were used for solubilization assay. Our results shows 11 mm clear halo zone on agar plates amended with ZnO. Likewise, ZSB13 showed significant release of Zn in broth amended with ZnCO3 (17 and 16.8 ppm) and ZnO (18.2 ppm). Furthermore, Zn resistance genes czcD was also enriched in ZSB13. In our study, bacterial strain comprising Zn solubilization potential has been isolated that could be further used for the growth enhancement of crops.


O zinco é um micronutriente essencial necessário para o crescimento ideal das plantas. Ele está presente no solo em formas insolúveis. A solubilização bacteriana da forma indisponível de Zn no solo para a forma disponível é uma abordagem emergente para aliviar a deficiência de Zn em plantas e seres humanos. Bactérias solubilizadoras de zinco (ZSB) podem ser um substituto para fertilizantes químicos de Zn. O presente estudo teve como objetivo isolar e caracterizar espécies bacterianas de solo contaminado e avaliar seu potencial de solubilização de Zn. Bactérias resistentes ao Zn foram isoladas e avaliadas quanto ao seu MIC contra o Zn. Entre as 13 cepas bacterianas isoladas, ZSB13 apresentou valor máximo de MIC de até 30 mM/L. A cepa bacteriana com maior resistência ao Zn foi selecionada para análise posterior. A caracterização molecular de ZSB13 foi realizada por amplificação do gene 16S rRNA que o confirmou como Pseudomonas oleovorans. A solubilização do Zn foi determinada através de ensaio em placa e meio caldo. Quatro sais insolúveis (óxido de zinco (ZnO), carbonato de zinco (ZnCO3), sulfito de zinco (ZnS) e fosfato de zinco (Zn3 (PO4) 2) foram usados para o ensaio de solubilização. Nossos resultados mostram uma zona de halo clara de 11 mm em placas de ágar corrigidas com ZnO. Da mesma forma, ZSB13 mostrou liberação significativa de Zn em caldo alterado com ZnCO3 (17 e 16,8 ppm) e ZnO (18,2 ppm). Além disso, os genes de resistência ao Zn czcD também foram enriquecidos em ZSB13. Em nosso estudo, a cepa bacteriana compreendendo potencial de solubilização de Zn foi isolada e poderia ser usada posteriormente para o aumento do crescimento de safras.


Subject(s)
Pseudomonas/genetics , Pseudomonas/isolation & purification , Soil Chemistry/analysis , Zinc , Zinc Oxide
2.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469055

ABSTRACT

Abstract Zinc is an essential micronutrient that is required for optimum plant growth. It is present in soil in insoluble forms. Bacterial solubilization of soil unavailable form of Zn into available form, is an emerging approach to alleviate the Zn deficiency for plants and human beings. Zinc solubilizing bacteria (ZSB) could be a substitute for chemical Zn fertilizer. The present study aimed to isolate and characterize bacterial species from the contaminated soil and evaluate their Zn solubilizing potential. Zn resistant bacteria were isolated and evaluated for their MIC against Zn. Among the 13 isolated bacterial strains ZSB13 showed maximum MIC value upto 30mM/L. The bacterial strain with the highest resistance against Zn was selected for further analysis. Molecular characterization of ZSB13 was performed by 16S rRNA gene amplification which confirmed it as Pseudomonas oleovorans. Zn solubilization was determined through plate assay and broth medium. Four insoluble salts (zinc oxide (ZnO), zinc carbonate (ZnCO3), zinc sulphite (ZnS) and zinc phosphate (Zn3(PO4)2) were used for solubilization assay. Our results shows 11 mm clear halo zone on agar plates amended with ZnO. Likewise, ZSB13 showed significant release of Zn in broth amended with ZnCO3 (17 and 16.8 ppm) and ZnO (18.2 ppm). Furthermore, Zn resistance genes czcD was also enriched in ZSB13. In our study, bacterial strain comprising Zn solubilization potential has been isolated that could be further used for the growth enhancement of crops.


Resumo O zinco é um micronutriente essencial necessário para o crescimento ideal das plantas. Ele está presente no solo em formas insolúveis. A solubilização bacteriana da forma indisponível de Zn no solo para a forma disponível é uma abordagem emergente para aliviar a deficiência de Zn em plantas e seres humanos. Bactérias solubilizadoras de zinco (ZSB) podem ser um substituto para fertilizantes químicos de Zn. O presente estudo teve como objetivo isolar e caracterizar espécies bacterianas de solo contaminado e avaliar seu potencial de solubilização de Zn. Bactérias resistentes ao Zn foram isoladas e avaliadas quanto ao seu MIC contra o Zn. Entre as 13 cepas bacterianas isoladas, ZSB13 apresentou valor máximo de MIC de até 30 mM/L. A cepa bacteriana com maior resistência ao Zn foi selecionada para análise posterior. A caracterização molecular de ZSB13 foi realizada por amplificação do gene 16S rRNA que o confirmou como Pseudomonas oleovorans. A solubilização do Zn foi determinada através de ensaio em placa e meio caldo. Quatro sais insolúveis (óxido de zinco (ZnO), carbonato de zinco (ZnCO3), sulfito de zinco (ZnS) e fosfato de zinco (Zn3 (PO4) 2) foram usados para o ensaio de solubilização. Nossos resultados mostram uma zona de halo clara de 11 mm em placas de ágar corrigidas com ZnO. Da mesma forma, ZSB13 mostrou liberação significativa de Zn em caldo alterado com ZnCO3 (17 e 16,8 ppm) e ZnO (18,2 ppm). Além disso, os genes de resistência ao Zn czcD também foram enriquecidos em ZSB13. Em nosso estudo, a cepa bacteriana compreendendo potencial de solubilização de Zn foi isolada e poderia ser usada posteriormente para o aumento do crescimento de safras.

3.
Braz. j. biol ; 83: e240015, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1285624

ABSTRACT

Abstract Zinc is an essential micronutrient that is required for optimum plant growth. It is present in soil in insoluble forms. Bacterial solubilization of soil unavailable form of Zn into available form, is an emerging approach to alleviate the Zn deficiency for plants and human beings. Zinc solubilizing bacteria (ZSB) could be a substitute for chemical Zn fertilizer. The present study aimed to isolate and characterize bacterial species from the contaminated soil and evaluate their Zn solubilizing potential. Zn resistant bacteria were isolated and evaluated for their MIC against Zn. Among the 13 isolated bacterial strains ZSB13 showed maximum MIC value upto 30mM/L. The bacterial strain with the highest resistance against Zn was selected for further analysis. Molecular characterization of ZSB13 was performed by 16S rRNA gene amplification which confirmed it as Pseudomonas oleovorans. Zn solubilization was determined through plate assay and broth medium. Four insoluble salts (zinc oxide (ZnO), zinc carbonate (ZnCO3), zinc sulphite (ZnS) and zinc phosphate (Zn3(PO4)2) were used for solubilization assay. Our results shows 11 mm clear halo zone on agar plates amended with ZnO. Likewise, ZSB13 showed significant release of Zn in broth amended with ZnCO3 (17 and 16.8 ppm) and ZnO (18.2 ppm). Furthermore, Zn resistance genes czcD was also enriched in ZSB13. In our study, bacterial strain comprising Zn solubilization potential has been isolated that could be further used for the growth enhancement of crops.


Resumo O zinco é um micronutriente essencial necessário para o crescimento ideal das plantas. Ele está presente no solo em formas insolúveis. A solubilização bacteriana da forma indisponível de Zn no solo para a forma disponível é uma abordagem emergente para aliviar a deficiência de Zn em plantas e seres humanos. Bactérias solubilizadoras de zinco (ZSB) podem ser um substituto para fertilizantes químicos de Zn. O presente estudo teve como objetivo isolar e caracterizar espécies bacterianas de solo contaminado e avaliar seu potencial de solubilização de Zn. Bactérias resistentes ao Zn foram isoladas e avaliadas quanto ao seu MIC contra o Zn. Entre as 13 cepas bacterianas isoladas, ZSB13 apresentou valor máximo de MIC de até 30 mM/L. A cepa bacteriana com maior resistência ao Zn foi selecionada para análise posterior. A caracterização molecular de ZSB13 foi realizada por amplificação do gene 16S rRNA que o confirmou como Pseudomonas oleovorans. A solubilização do Zn foi determinada através de ensaio em placa e meio caldo. Quatro sais insolúveis (óxido de zinco (ZnO), carbonato de zinco (ZnCO3), sulfito de zinco (ZnS) e fosfato de zinco (Zn3 (PO4) 2) foram usados ​​para o ensaio de solubilização. Nossos resultados mostram uma zona de halo clara de 11 mm em placas de ágar corrigidas com ZnO. Da mesma forma, ZSB13 mostrou liberação significativa de Zn em caldo alterado com ZnCO3 (17 e 16,8 ppm) e ZnO (18,2 ppm). Além disso, os genes de resistência ao Zn czcD também foram enriquecidos em ZSB13. Em nosso estudo, a cepa bacteriana compreendendo potencial de solubilização de Zn foi isolada e poderia ser usada posteriormente para o aumento do crescimento de safras.


Subject(s)
Humans , Soil Pollutants , Pseudomonas oleovorans , Soil , Soil Microbiology , Zinc , RNA, Ribosomal, 16S/genetics
4.
Article | IMSEAR | ID: sea-217167

ABSTRACT

Microorganisms in close association with the roots of plants can enhance plant growth, through nitrogen fixation (NF) and phosphorus solubilization (PS). Although the type of microbes in close association with different plants varies, their population and genetic capabilities is affected by several factors. Therefore, in this study, the plant growth promoting properties of rhizobacteria present in the rhizosphere of two cassava varieties (Sweet cassava US, bitter cassava ST) indigenous to Iyamho community was explored. The samples were analyzed for total culturable heterotrophic bacteria community and the obtained isolates were screened for NF and PS abilities using a semi-solid N-free medium and Pikovaskya agar respectively. The bacterial population in both agar medium varied, however, the bacterial counts on Luria Bertani (3.67 x 105, 3.35 x 106) was higher than Nutrient agar (2.73 x 105, 2.68 x 105) after incubation for 24 hours at 37oC for sweet and bitter cassava rhizosp here respectively. Also, isolates from sweet cassava had the highest bacteria count in both Nutrient agar and Luria Bertani agar. A total of sixteen isolates were obtained, six phosphate solubilizers, five nitrogen fixers, and five without traits for either NF or PS. The Gram-negative bacterial group was more dominant across all isolates while the dominant genus was Bacillus. This study indicates that the nitrogen fixers and phosphate solubilizers are major constituents of the rhizomicrobe of cassava plants although the distribution varies across cassava varieties. However, sweet cassava rhizosphere harbored more nitrogen-fixing bacteria while both varieties had the same amount of phosphate solubilizing rhizobacteria.

5.
Rev. argent. microbiol ; 54(3): 101-110, set. 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1407200

ABSTRACT

Abstract Phosphate fertilizers tend to precipitate with soil components, affecting fertilization efficiency and causing negative environmental effects. Soil microorganisms have been used to solve this problem. However, the ability of dark septate endophytic fungi (DSE) to dissolve phosphates and increase crop yield are not well known. The activity of DSE fungi capable of solubilizing reagent grade phosphates was studied in a Typic Hapludoll (Hapludol típico). The effect of the fungi on the inorganic phosphorus fractions was evaluated and an experiment was conducted in pots with sorghum as a crop. No fungal structures were found in the roots. Curvularia sp. aerial biomass and root length increased; however, P concentration was not affected. Although the results are not conclusive, they represent an advance in the potential use of DSE fungi as P solubilizers to treat crop nutrition.


Resumen Los fertilizantes fosfatados tienden a precipitar con componentes del suelo, lo que afecta la eficiencia de la fertilización y causa efectos negativos. Para resolver este problema se han utilizado microorganismos del suelo. Sin embargo, no se conoce bien la capacidad de los hongos endófitos septados oscuros (ESO) para disolver fosfatos y aumentar el rendimiento de los cultivos. Se estudió en un hapludol típico (typic hapludoll) la actividad de hongos ESO capaces de solubilizar fosfatos de grado reactivo. Se evaluó el efecto de los hongos sobre las fracciones de fósforo inorgánico y se realizó un experimento en macetas con sorgo como cultivo. No se encontraron estructuras fúngicas en las raíces. Curvularia sp. aumentó la biomasa aérea y la longitud radical, pero la concentración de fósforo no se vio afectada. Aunque los resultados no son concluyentes, representan un avance en el uso potencial de hongos ESO como solubilizadores de fósforo para tratar la nutrición de cultivos.

6.
Braz. J. Pharm. Sci. (Online) ; 58: e18553, 2022. tab, graf
Article in English | LILACS | ID: biblio-1360166

ABSTRACT

Abstract The aqueous solubility of cefixime trihydrate (a water insoluble drug) using different hydrotropic agents was determined and solid dispersions of cefixime trihydrate were prepared by hydrotropic solubilization technique. The drugs content were determined. The aqueous solubility of v was increased many fold in presence of sodium acetate trihydrate as hydrotropic agent. This hydrotropic agent was used to prepare solid dispersion of cefixime trihydrate. Cefixime trihydrate and sodium acetate trihydrate were accurately weighed and taken in a 200 mL beaker. Distilled water 10-15 mL was taken to dissolve hydrotropic agent using heat (48-50 °C). The drug was then added to it and magnetically stirred till whole mass get viscous. The solid dispersions of cefixime trihydrate were characterized by XRD, DSC and IR studies. DSC thermogram, XRD and Infra-Red spectra were studied. Solid dispersions, thus prepared, showed faster release of the drug as compared to pure drug and physical mixture.


Subject(s)
Solubility/drug effects , Pharmaceutical Preparations/analysis , Methods , Water , Sodium Acetate/administration & dosage , Cefixime/adverse effects
7.
Braz. J. Pharm. Sci. (Online) ; 58: e19731, 2022. tab, graf
Article in English | LILACS | ID: biblio-1394038

ABSTRACT

Abstract Poorly water-soluble drugs, such as the antifungal drug griseofulvin (GF), exhibit limited bioavailability, despite their high membrane permeability. Several technological approaches have been proposed to enhance the water solubility and bioavailability of GF, including micellar solubilization. Poloxamers are amphiphilic block copolymers that increase drug solubility by forming micelles and supra-micellar structures via molecular self-association. In this regard, the aim of this study was to evaluate the water solubility increment of GF by poloxamer 407 (P407) and its effect on the antifungal activity against three Trichophyton mentagrophytes and two T. rubrum isolates. The GF water solubility profile with P407 revealed a non-linear behavior, well-fitted by the sigmoid model of Morgan-Mercer-Flodin. The polymer promoted an 8-fold increase in GF water solubility. Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and 2D nuclear magnetic resonance (NMR Roesy) spectroscopy suggested a GF-P407 interaction, which occurs in the GF cyclohexene ring. These results were supported by an increase in the water solubility of the GF impurities with the same molecular structure. The MIC values recorded for GF ranged from 0.0028 to 0.0172 mM, except for T. Mentagrophytes TME34. Notably, the micellar solubilization of GF did not increase its antifungal activity, which could be related to the high binding constant between GF and P407.


Subject(s)
Solubility , Spectrum Analysis/methods , Trichophyton/classification , Poloxamer/analogs & derivatives , Griseofulvin/agonists , Pharmaceutical Preparations/administration & dosage , Biological Availability , Magnetic Resonance Spectroscopy/methods , Molecular Structure , Antifungal Agents/administration & dosage
8.
Arq. Inst. Biol. (Online) ; 89: e00162021, 2022. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1416879

ABSTRACT

Endophytic bacteria Bacillus safensis RS95 and Pseudomonas hibiscicola RS121 were evaluated for their ability to promote the growth of rice seedlings and produce indole-acetic acid (IAA) and siderophores and to solubilize phosphates. 'Guri' rice seeds were immersed in bacterial endophyte cell suspensions (separated and two-strain mixed), as well as in Escherichia coli DH5α, phosphate-buffered saline (PBS) and water treatments (negative controls). Seeds were sown on agar-water in Petri plates placed vertically at an angle of 65°. The ability of plant growth-promoting endophytic bacteria (PGPEB) to produce IAA and siderophores was determined by Salkowski colorimetric and chrome azurol S (CAS) assays, respectively. Mineral phosphate solubilization activity was calculated by inoculating the endophytes onto medium containing insoluble phosphate. PGPEB showed a positive effect on the growth of rice seedlings, causing a mean growth of shoots and primary-roots of 60 and 67%, respectively. Bacterial strains also showed positive traits for IAA and siderophore production, as well as phosphate-solubilization activity


Subject(s)
Pseudomonas , Oryza/growth & development , Bacillus , Siderophores , Endophytes , Indoleacetic Acids/analysis , Phosphates
9.
China Journal of Chinese Materia Medica ; (24): 3198-3204, 2021.
Article in Chinese | WPRIM | ID: wpr-887967

ABSTRACT

Indigo Naturalis( IN) is mainly composed of 10% organic matter and 90% inorganic matter,with a poor wettability and strong hydrophobicity. Indigo,indirubin and effective ingredients are almost insoluble in water. And how it exerts its effect after oral administration still needs to be revealed. For this reason,this study put forward the hypothesis that " Indigo Naturalis forms a slightly soluble calcium carbonate carrier in a strong acid environment of gastric fluid,and organic substances are solubilized in the bile environment of intestinal fluid",and then verified the hypothesis. First,the dissolution apparatus was used to simulate the change process of IN in different digestive fluid,and the effects of low-dose and normal bile on the dissolution of inorganic substances and the release of organic substances were compared. After the surface morphology and element changes of IN in different digestive fluid were observed,it was found that bile is the key to promoting the dissolution of organic and inorganic substances in IN. Furthermore,the rat fever model induced by 2,4-dinitrophenol was used to study the antipyretic effect of IN in normal rats and bile duct ligation rats. It was found that the antipyretic effect of IN on normal rats was better than that of bile duct ligation rats. The above results indicated that after oral administration of IN,the calcium carbonate carrier was transformed into a slightly soluble state in acidic gastric fluid,and a small amount of organic matter was released. When IN entered the intestinal fluid mixed with bile,the carrier dissolved in a large amount,and indigo and indirubin were dissolved in a large amount,so as to absorb the blood and exert the effect. This study has a certain significance for guiding clinical application of IN. For patients with insufficient bile secretion( such as bile duct resection),oral administration with IN may not be effective and shall be paid attention.


Subject(s)
Animals , Humans , Rats , Bile , Hydrophobic and Hydrophilic Interactions , Indigo Carmine , Indigofera , Plant Extracts
10.
Acta sci., Biol. sci ; 43: e51737, 2021. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1460974

ABSTRACT

Endophytes are growth-promoting agents capable of synthesizing phytohormones, uptaking nutrients, and controlling pathogens. There is a strong potential to exploit them in the agriculture field like biofertilizers and biocontrol agents. In this work, we aimed to evaluate endophytic fungi isolated from Pachystachys lutea for their potential to solubilize phosphate, synthesise indole acetic acid (IAA), antagonize phytopathogens, and promote plant growth under greenhouse conditions. The phosphate solubilization efficiency was assessed on Pikovskaya’s agar medium. For analysis of IAA production, mycelia plugs of endophytes were cultured in Potato Dextrose Broth medium supplemented with L-tryptophan, with Salkowski Reagent, and the absorbance of the culture was measured. The antagonism evaluation of strain Alternaria sp. PL75 against phytopathogens was performed using the paired-culture technique. The promotion of plant growth provided by Alternaria sp. PL75 was evaluated in tomato plants. All strains evaluated were able to solubilize phosphate; however, the strain Alternaria sp. PL75 was the most effective (4.29). Two strains, Nemania sp. PL27 and Alternaria sp. PL75, produced 1.86 and 1.73 & 956;g mL-1 of IAA, respectively. In the antagonism assay, the endophyte Alternaria sp. PL75 and its fungal extract showed the best results against the pathogen Moniliophthora perniciosa. The greenhouse experiment result showed the endophyte Alternaria sp. PL75 increased the plantlets emergency speed index and the percentage of germination from 60 to 81.63%. It was also observed a statistical significance in the shoot length of the treated plants with the endophyte suspension (55.38 cm) compared to the control (41.67 cm).


Subject(s)
Endophytes , Phosphates , Lamiales/growth & development , Acetic Acid/analysis
11.
Malaysian Journal of Microbiology ; : 548-559, 2021.
Article in English | WPRIM | ID: wpr-973860

ABSTRACT

Aims@#This study aims to isolate, characterize and screen the plant growth-promoting bacteria from Zingiberaceae plants. Plant promoting activities such as indole-3-acetic acid (IAA), phosphate solubilization, zinc solubilization and nitrogen-fixing capabilities are determined, and the IAA production of selected isolates are optimized. @*Methodology and results@#Endophytic bacteria were isolated from the plant samples by surface sterilization on nutrient agar (NA) plates and incubated at 30 °C for 2-3 days. The bacteria were identified based on their phenotypic characteristics and 16S rRNA gene sequence analyses. All isolates were identified as genera Bacillus, Lysinibacillus, Kerstersia, Klebsiella and Brucella. The isolates exhibited phosphate solubilization (1.5 ± 0.75-37.5 ± 8.75 Solubilization Index, SI), zinc solubilization (2.5 ± 0-60 ± 1.5 SI) and IAA production (0.1 ± 0.2-115.7 ± 1.6 µg/mL), while 3 isolates possessed nitrogen-fixing capabilities. Five isolates (PHAS-2, PWS-2, PWR-2, PHBS-2 and SCG-2) were selected for IAA optimization. Isolate PWR-2 produced the maximum IAA at 447.7 ± 0 µg/mL when tryptophan concentration was maintained at 1.0%.@*Conclusion, significance and impact of study@#Genera of bacteria included Bacillus, Lysinibacillus, Kerstersia, Klebsiella and Brucella were successfully isolated from Zingiberaceae plants. All the isolates showed the capability to produce IAA, while some isolates exhibited phosphate solubilization and zinc solubilization, and a few possessed nitrogen-fixing capabilities. The potential IAA production isolates could be applied for the enhancement of agricultural production that will be becoming a more widely accepted practice.


Subject(s)
Plant Growth Regulators , Endophytes , Zingiberaceae
12.
China Journal of Chinese Materia Medica ; (24): 5825-5831, 2021.
Article in Chinese | WPRIM | ID: wpr-921702

ABSTRACT

This study evaluated the effects of epimedium polysaccharide(EPS) on the solubility of icariin and baohuoside Ⅰ so as to preliminary explore its solubilization function and the underlying mechanism. The solubility of these two insoluble flavonoids in water and polysaccharide solutions was compared by high performance liquid chromatography, and the mechanism was investigated by diffe-rential scanning calorimetry(DSC) and critical micelle concentration determination. The results indicated that their solubilization in crude EPS solutions was concentration-dependent. The solubility of icariin and baohuoside Ⅰ in 20 mg·mL~(-1) EPS-1-1 was 9.05 times and 5.76 times that in water, respectively; while their solubility in 20 mg·mL~(-1) EPS-2-1 was 10.55 and 8.39 times that in water, respectively. The change of the DSC thermograms suggested the formation of new complexes from icariin and baohuoside Ⅰ with polysaccharides. The critical micelle concentrations proved the micellar properties of both EPS-1-1 and EPS-2-1. In short, EPS can significantly increase the solubility of icariin and baohuoside Ⅰ, the mechanism of which may be related to the formation of micellar complexes between EPS and insoluble flavonoids.


Subject(s)
Epimedium , Flavonoids , Polysaccharides , Solubility
13.
Electron. j. biotechnol ; 48: 86-94, nov. 2020. tab, graf, ilus
Article in English | LILACS | ID: biblio-1254836

ABSTRACT

BACKGROUND: Chinese hamster ovary (CHO) cells are the workhorse for obtaining recombinant proteins. Proteomic studies of these cells intend to understand cell biology and obtain more productive and robust cell lines for therapeutic protein production in the pharmaceutical industry. Because of the great importance of precipitation methods for the processing of samples in proteomics, the acetone, methanol-chloroform (M/C), and trichloroacetic acid (TCA)-acetone protocols were compared for CHO cells in terms of protein recovery, band pattern resolution, and presence on SDS-PAGE. RESULTS: Higher recovery and similar band profile with cellular homogenates were obtained using acetone precipitation with ultrasonic bath cycles (104.18 ± 2.67%) or NaOH addition (103.12 ± 5.74%), compared to the other two protocols tested. TCA-acetone precipitates were difficult to solubilize, which negatively influenced recovery percentage (77.91 ± 8.79%) and band presence. M/C with ultrasonic homogenization showed an intermediate recovery between the other two protocols (94.22 ± 4.86%) without affecting protein pattern on SDS-PAGE. These precipitation methods affected the recovery of low MW proteins (< 15 kDa). CONCLUSIONS: These results help in the processing of samples of CHO cells for their proteomic study by means of an easily accessible, fast protocol, with an almost complete recovery of cellular proteins and the capture of the original complexity of the cellular composition. Acetone protocol could be incorporated to sample-preparation workflows in a straightforward manner and can probably be applied to other mammalian cell lines as well.


Subject(s)
Animals , Recombinant Proteins , CHO Cells , Proteomics/methods , Acetone , Chemical Precipitation , Solubility , Trichloroacetic Acid , Cell Separation , Chloroform , Cell Culture Techniques , Methanol , Electrophoresis, Polyacrylamide Gel
14.
Rev. argent. microbiol ; 52(3): 111-120, Sept. 2020. graf
Article in English | LILACS | ID: biblio-1340910

ABSTRACT

Abstract Mine tailings contain high concentrations of heavy metals such as As, Pb, Cu, Mn, andFe, which are detrimental to the health of humans and the environment. In tailings at the ElFraile mine in Guerrero, Mexico, some plant species are apparently tolerant of heavy metals andcan be found growing in the tailings. These plants could be associating with heavy metal-tolerantbacteria that promote plant growth and improve biomass production, and these bacteria couldbe a useful alternative for bacteria-assisted phytoremediation. The objective of this study wasto isolate bacteria detected in the mine tailings at El Fraile-Taxco, focusing on those in the soilfrom the rhizosphere, the inner tissue of the root, leachate, and water, which have the poten-tial to promote plant growth. The ability of the isolated bacteria to promote plant growth wasevaluated in vitro. Of the 151 morphotypes isolated, 51% fix nitrogen, 12% dissolve phosphates,and 12%, 39.7%, and 48.3% produce indole acetic acid, gibberellins, and siderophores, respec-tively. In addition, 66.7% were observed to produce lytic enzymes, such as proteases, celluloses,lipases, esterases, and amylases, which exhibited activity against Fusarium, Aspergillus, andColletotrichum. The use of 16S rRNA analysis led to the identification of the bacterial generaChryseobacterium, Bacillus, Pseudomonas, Mycobacterium, Staphylococcus, Curtobacterium,Enterobacter, Agrobacterium, Ochrobactrum, Serratia, Stenotrophomonas, and Acinetobac-ter. The bacteria isolated from the rhizosphere exhibited the greatest ability to fix nitrogenand produced indole acetic acid, gibberellins, siderophore, and lytic enzymes. In addition, theisolates collected from the soil samples demonstrated ability to solubilize phosphate.


Resumen Los jales mineros contienen una alta concentración de metales pesados como As, Pb, Cu, Mn y Fe. Estas altas concentraciones de metales son perjudiciales para la salud humana y el medio ambiente. En los jales mineros de El Fraile, México, es posible detectar especies de plantas tolerantes a los metales pesados; estas plantas podrían estar asociadas con bacterias capaces de promover su crecimiento, además de poseer actividad antagonista contra hongos. El objetivo de este estudio fue aislar de diferentes microambientes (suelo rizosférico, tejido de raíz, lixiviado y agua) del área del jale El Fraile bacterias con potencial de promover el crecimiento vegetal y actividad antagonista contra hongos fitopatógenos. Estudios in vitro demostraron que el 51% de los morfotipos aislados (151 en total) fijan nitrógeno y el 12% disuelven fosfatos. Asimismo, el 12, 39,7 y 48,3% producen ácido indolacético, giberelinas y sideróforos, respectivamente. Por otro lado, se observó que el 66,7% producía enzimas líticas como proteasas, celulasas, lipasas, esterasas y amilasas, además de exhibir actividad antagonista contra Fusarium, Aspergillus y Colletotrichum. Mediante análisis del gen 16S ARNr, se identificó a estas bacterias como pertenecientes a los géneros Chryseobacterium, Bacillus, Pseudomonas, Mycobacterium, Staphylococcus, Curtobacterium, Enterobacter, Agrobacterium, Ochrobac-trum, Serratia, Stenotrophomonas y Acinetobacter. Las bacterias de la rizosfera exhibieron la mayor capacidad para fijar nitrógeno y produjeron ácido indolacético, giberelinas, sideróforos y enzimas líticas. Además, se detectó que las cepas aisladas de suelo rizosférico eran las que tenían la capacidad de solubilizar fosfatos.


Subject(s)
Humans , Bacteria , Rhizosphere , Soil Microbiology , Biodegradation, Environmental , RNA, Ribosomal, 16S/genetics , Plant Roots , Mexico
15.
Biosci. j. (Online) ; 36(5): 1577-1582, 01-09-2020. tab
Article in English | LILACS | ID: biblio-1147812

ABSTRACT

This study aimed to verify whether inoculation with strains of diazotrophic bacteria, with proven ability to solubilize potassium (K) in vitro, contributes towards the release of K in the soil after fertilization with phonolite rock powder. The experiment was conducted in containers with 0.3 dm-3 of soil containing low potassium content. Fifteen treatments were used, namely, 12 inoculated with the bacterial strains, a control treatment (without phonolite and without inoculation), one containing phonolite without inoculation and one containing KCl, soluble fertilizer, without inoculation. In treatments with phonolite and KCl, the doses of these materials were applied to provide the soil with 195 mg dm-3 of K. A completely randomized design with four replications was used. The soil was incubated during 90 days at room temperature and humidity at about 70% retention capacity. After this period, the content of K+ (Mehlich and resin), pH value and potential acidity (H+Al) were evaluated. Phonolite, associated with inoculation with most bacterial strains, increased the availability of potassium in the soil, pH rate and reduced potential acidity. Among the strains tested, UNIFENAS 100-01, UNIFENAS 100-16, UNIFENAS 100-27, UNIFENAS 100-39 and UNIFENAS 100-93 were the most efficient for the solubilization of K+ of the phonolite. In spite of the observed results, K content released by the bacterial strains in the soil decreased when compared to in vitroconditions, thus justifying the need for studies on bio-solubilization of soil to select the most efficient strains in the process.


O objetivo desse estudo foi avaliar se a inoculação com estirpes de bactérias diazotróficas de comprovada capacidade de solubilizar potássio (K) in vitro, contribui para a liberação de K no solo, após adubação com o pó da rocha fonolito. O experimento foi conduzido em recipientes contendo 0,3 dm-3 de solo contendo baixo teor de potássio. Foram utilizados 15 tratamentos, sendo: 12 com fonolito inoculados com as estirpes bacterianas e 3 tratamentos controle, um sem fonolito e sem inoculação, um contendo fonolito sem inoculação e um contendo KCl, fertilizante solúvel, sem inoculação. Nos tratamentos contendo fonolito e KCl, foi aplicada doses desses materiais para fornecer ao solo 195 mg dm-3 de K. Foi utilizado delineamento inteiramente casualizado com quatro repetições. O solo foi incubado por 90 dias, em temperatura ambiente e a umidade foi mantida a cerca de 70% da capacidade de retenção. Após esse período, foram avaliados o teor de K+ (Mehlich e resina), valor de pH e da acidez potencial (H+Al). A utilização do fonolito, associado a inoculação com a maioria das estirpes bacterianas contribuiu para aumentar a disponibilidade de potássio no solo, o valor de pH e reduzir a acidez potencial. Dentre as estirpes testadas, destacaram-se UNIFENAS 100-01, UNIFENAS 100-16, UNIFENAS 100-27, UNIFENAS 100-39 e UNIFENAS 100-93, que foram as mais eficientes para a solubilização do K+ do fonolito. Apesar dos resultados observados, verificou-se que o teor de K liberado pelas estirpes bacterianas no solo foi reduzido quando comparado às condições in vitro, justificando assim, a necessidade de estudos de biossolubilização no solo visando selecionar as estirpes mais eficientes para desempenhar o processo


Subject(s)
Potassium , Soil , Bacteria
16.
Article | IMSEAR | ID: sea-209918

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) with multiple beneficial traits serve as potentially, ecofriendly,and cost-effective alternatives to chemical fertilizers and pesticides. They have both direct and indirectaffirmative impacts on overall plant growth and health. PGPRs are well known to directly improve the plantgrowth by phytohormone production and availability of minerals in soil. A total of nine soil samples were takenfrom near the rhizospheric zone of different crops and 56 rhizobacterial strains were isolated. Only 16 out of56 rhizobacterial strains were found positive for more than one beneficial trait that included solubilization ofphosphate, indole acetic acid (IAA), siderophore, ammonia and H2S production. Among all PGPR strains,RKM15 was observed having the highest phosphate solubilizing index (3.4), solubilized phosphorus (339mg L−1) and also siderophore unit (70.54 %). The maximum IAA production was observed by RKM25 strain(35.56 µg ml−1). The most promising RKM15 isolate was identified as Pantoea dispersa (MN629239) through16S rRNA gene sequencing technique. This characterized PGPR strain may be used for the development ofbiofertilizers to enhance crop productivity and improvement in soil fertility

17.
J Environ Biol ; 2020 May; 41(3): 592-599
Article | IMSEAR | ID: sea-214516

ABSTRACT

Aim: The present study aimed to investigate the phosphate solubilization potential of agriculturally important fungi, i.e., Aspergillus sp. isolated from the rhizosphere of healthy plants in Abha city, Saudi Arabia.Methodology: Sixteen Aspergillus sp. isolated and tested for phosphate solubilization potential were identified by 5.8S-ITS region sequencing and characterized by 11 ISSR-PCR markers. Finally, the highest phosphate solubilization potential isolates were used in field experiments on cucumber and tomato plants. Results: All Aspergillus niger isolates showed 96–100% similarity to A. niger strains available at GenBank database, Isolate ASAB-5 was most efficient at solubilizing phosphate on Pikovskaya’s medium, with a solubilization index of 2.67, and 235.22 mg l-1 of solubilized phosphate. ISSR-PCR markers revealed is total 142 bands in all isolates, with about 32.3% showing monomorphism and 67.6% polymorphism. Based on genetic similarity and intraspecies variability, the Aspergillus isolates were grouped into two different clusters with about 67.9% genetic similarity. The results of field experiments showed no significant difference between seeds treated with culture filtrate or conidial suspension of ASAB-5; however, both differed remarkably from untreated seeds. Interpretation: The current study confirms the existence of several useful phosphate solubilizing fungi in plants, which may serve as potential biological fertilizers. They are safer than chemical fertilizers and increase the bioavailability of soil phosphates for plants

18.
Acta amaz ; 49(4): 257-267, out. - dez. 2019.
Article in English | LILACS | ID: biblio-1118924

ABSTRACT

Brazil nut is a very important nontimber forest product in the Amazon region. Propagation of this tree still represents a challenge due to slow and uneven seed germination. In this context, plant growth-promoting bacteria can facilitate the process of propagation. The aims of this study were to isolate and characterize endophytic bacteria from the roots of Brazil nut trees in native terra firme forest and cultivation areas in northern Brazil, and to identify mechanisms by which bacteria act in plant growth promotion. Overall, 90 bacterial isolates were obtained from the roots of Brazil nut trees in monoculture, agroforestry and native forest areas by using different semisolid media. The isolates were characterized by sequencing the 16S rRNA gene. Plant growth-promoting characteristics were evaluated by the presence of the nifH gene, aluminum phosphate solubilization and the production of indole compounds. The isolates were affiliated with 18 genera belonging to 5 different classes (α-Proteobacteria, ß-Proteobacteria, γ-Proteobacteria, Bacilli and Actinobacteria). The genus Bacillus was predominant in the forest and monoculture areas. Fourteen isolates presented the nifH gene. Most of the bacteria were able to solubilize aluminum phosphate and synthetize indole compounds. The results indicated high diversity of endophytic bacteria present among the roots of Brazil nut trees, mainly in the agroforestry area, which could be related to soil attributes. Among the 90 isolates, the 22 that presented the best results regarding plant growth promotion traits were good candidates for testing in seedling production of Brazil nut trees. (AU)


Subject(s)
RNA, Ribosomal, 16S , Amazonian Ecosystem , Indole Alkaloids , Bertholletia , Nitrogen Fixation
19.
Article | IMSEAR | ID: sea-209834

ABSTRACT

In the present study, diversity and plant growth promoting traits of bacteria isolated from Renuka Lake,Himachal Pradesh was investigated. A total of three samples, including sediment (pH-7.3), sub-surface water(pH-8.1), and surface water (pH-8.2), were collected. A total of 65 bacterial isolates were obtained on differentgrowth media. Among 65 isolates 18 isolates were found to be solubilizers of phosphorus. The maximumamount of phosphorus was solubilized by EU-RL 54 (7,976 ± 0.01 µg/l) followed by EU-RL 53 (6,322 ± 0.01µg/l). Phosphorus solubilizers also possessed other plant growth promoting traits, such as the production ofammonia, hydrogen cyanide, zinc solubilization, production of hydrolytic enzymes. The isolates were identifiedbelonging to different genera Acinetobacter, Bacillus, Enterobacter, Klebsiella, Proteus, Pseudomonas, andStaphylococcus. This is the first report for these plant growth promoting bacteria to solubilize a considerableamount of phosphorus isolated from Ecosystems, Lesser Himalayas.

20.
Article | IMSEAR | ID: sea-214160

ABSTRACT

Abstract: This study evaluated root endophyte bacteria and rhizobacteria in terms ofmultifaceted plant growth promotion (PGP) traits and antagonistic potential against majorfungal pathogens of rice (viz. Rhizoctonia solani, Bipolaris oryzae, Pyricularia oryzae,Ustilaginoidea virens and Sarocladium oryzae). Twenty bacterial isolates from each group(viz. endorhiza and rhizosphere) were isolated from different rice types of North EastIndia. Cultivated rice types were Upland rice (Mima, Kochi and Minil), Lowland HYV rice(Ranjit and Jaya) and Lowland scented rice (Keteki Joha and Kunkuni Joha). Thepopulation of rhizospheric bacteria was higher than the endophyte isolates. Thepopulation counts of endophyte bacteria were the highest in scented rice cultivar(Kunkuni Joha) and for rhizobacterial isolates; the population density was maximum inthe lowland HYV rice (Jaya). The endophytes were more efficient than the rhizobacteria interms of the activity of cellulase, pectinase, ACC-deaminase, production of IAA- likesubstances, solubilization of zinc and mineralization of organic phosphates. In contrast,the rhizobacterial isolates were more efficient in solubilization of inorganic phosphatesand antagonism against major rice fungal pathogens. Through 16S rDNA sequenceanalysis, the promising rhizobacterial isolates showing antagonism against all the fungalpathogens were identified as Brevibacillus reuszeri 12R, Lysinibacillus xylanticus 48R,Bacillus megaterium 58R and Serratia marcescens 79R. These results suggest that the rootbacterial endophytes and rhizobacteria characterized in this study could be successfullyused to promote plant growth and induce fungal resistance in rice plants and can be usedas bioinoculants for enhancing rice growth in the acid soil regions.

SELECTION OF CITATIONS
SEARCH DETAIL