Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Protein & Cell ; (12): 825-845, 2020.
Article in English | WPRIM | ID: wpr-880875

ABSTRACT

This study was designed to evaluate ERK5 expression in lung cancer and malignant melanoma progression and to ascertain the involvement of ERK5 signaling in lung cancer and melanoma. We show that ERK5 expression is abundant in human lung cancer samples, and elevated ERK5 expression in lung cancer was linked to the acquisition of increased metastatic and invasive potential. Importantly, we observed a significant correlation between ERK5 activity and FAK expression and its phosphorylation at the Ser


Subject(s)
Animals , Humans , Mice , A549 Cells , Cell Movement , Epithelial-Mesenchymal Transition/genetics , Focal Adhesion Kinase 1/metabolism , Lung Neoplasms/pathology , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 7/metabolism , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplasm Proteins/metabolism
2.
Journal of Korean Medical Science ; : 83-88, 2008.
Article in English | WPRIM | ID: wpr-157440

ABSTRACT

The upstream stimulatory factor 1 (USF1) gene has been shown to play an essential role as the cause of familial combined hyperlipidemia, and there are several association studies on the relationship between USF1 and metabolic disorders. In this study, we analyzed two single nucleotide polymorphisms in USF1 rs2073653 (306A>G) and rs2516840 (1748C>T) between the case (dyslipidemia or obesity) group and the control group in premenopausal females, postmenopausal females, and males among 275 Korean subjects. We observed a statistically significant difference in the GC haplotype between body mass index (BMI) > or =25 kg/m(2) and BMI <25 kg/m(2) groups in premenopausal females ( chi-square=4.23, p=0.04). It seems that the USF1 GC haplotype is associated with BMI in premenopausal Korean females.


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Body Mass Index , Cholesterol, HDL/blood , Genotype , Haplotypes , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Premenopause , Upstream Stimulatory Factors/genetics
3.
Journal of Korean Society of Endocrinology ; : 127-140, 2004.
Article in Korean | WPRIM | ID: wpr-21321

ABSTRACT

BACKGROUND: Upstream stimulatory factors (USFs) and PTEN are known to be tumor suppressants. USFs and PAX-8 were reported to be the functional competitors in sodium iodide symporter (NIS) gene expression. We investigated the effects of USF-1, USF-2, PTEN, and thyroid-specific transcription factors (TTF-1, PAX-8) on the function and growth of thyrocytes of FRTL 5 rat thyroid cells. METHODS: Complementary DNAs of the USF-1, USF-2, PTEN, TTF-1 (homeodomain), and PAX-8 were synthesized from RNA extracted from FRTL-5using an RT-PCR kit. Each of them was transiently transfected to the FRTL-5 cells using the lipofectamine after being cloned into the pcDNA3.1 vectors. Stable cell lines, which were transfected by USF-1, PTEN, TTF-1, and PAX-8, were also obtained from the FRTL-5 cells, respectively. Extracellular cAMP concentrations were measured after 24 hours of incubation with varying concentrations of bTSH (0.1~100 mIU/mL). After, [Methyl-3H] thymidine uptake or 5-bromo-2'-deoxyuridine (BrdU) assay was performed. RESULTS: USF-1 and USF-2 significantly increased cAMP levels and decreased thymidine uptake in both transiently and stably transfected cells (p<0.01). PTEN had a tendency to increase both the cAMP levels and BrdU uptake in stable cells, but had a tendency to decrease thymidine uptake in transiently transfected cells. TTF-1 significantly increased the cAMP levels and either thymidine or BrdU uptake in both transiently and stably transfected cells (p<0.05). PAX-8 significantly increased both the cAMP levels and BrdU assay in stable cells, but in transiently transfected cells, it significantly decreased cAMP concentrations (p<0.01). CONCLUSIONS: These results suggested that both the USF-1 and USF-2 play a role in suppressing the growth of thyrocytes but at the same time, they kept the ability to produce cAMP after TSH stimulation. They had opposing effects on TTF-1 and PAX-8 in terms of the proliferation of thyrocytes


Subject(s)
Animals , Rats , Bromodeoxyuridine , Cell Line , Clone Cells , DNA, Complementary , Gene Expression , Ion Transport , RNA , Sodium Iodide , Thymidine , Thyroid Gland , Transcription Factors , Upstream Stimulatory Factors
SELECTION OF CITATIONS
SEARCH DETAIL