Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add filters








Year range
1.
Chinese Journal of Biotechnology ; (12): 2430-2448, 2023.
Article in Chinese | WPRIM | ID: wpr-981210

ABSTRACT

Methanol has become an attractive substrate for the biomanufacturing industry due to its abundant supply and low cost. The biotransformation of methanol to value-added chemicals using microbial cell factories has the advantages of green process, mild conditions and diversified products. These advantages may expand the product chain based on methanol and alleviate the current problem of biomanufacturing, which is competing with people for food. Elucidating the pathways involving methanol oxidation, formaldehyde assimilation and dissimilation in different natural methylotrophs is essential for subsequent genetic engineering modification, and is more conducive to the construction of novel non-natural methylotrophs. This review discusses the current status of research on methanol metabolic pathways in methylotrophs, and presents recent advances and challenges in natural and synthetic methylotrophs and their applications in methanol bioconversion.


Subject(s)
Humans , Methanol/metabolism , Metabolic Engineering , Metabolic Networks and Pathways , Biotransformation
2.
Chinese Journal of Biotechnology ; (12): 1912-1929, 2023.
Article in Chinese | WPRIM | ID: wpr-981179

ABSTRACT

With the escalation of plastic bans and restrictions, bio-based plastics, represented by polylactic acid (PLA), have become a major alternative to traditional plastics in the current market and are unanimously regarded as having potential for development. However, there are still several misconceptions about bio-based plastics, whose complete degradation requires specific composting conditions. Bio-based plastics might be slow to degrade when it is released into the natural environment. They might also be harmful to humans, biodiversity and ecosystem function as traditional petroleum-based plastics do. In recent years, with the increasing production capacity and market size of PLA plastics in China, there is an urgent need to investigate and further strengthen the management of the life cycle of PLA and other bio-based plastics. In particular, the in-situ biodegradability and recycling of hard-to-recycle bio-based plastics in the ecological environment should be focused. This review introduces the characteristics, synthesis and commercialization of PLA plastics, summarizes the current research progress of microbial and enzymatic degradation of PLA plastics, and discusses their biodegradation mechanisms. Moreover, two bio-disposal methods against PLA plastic waste, including microbial in-situ treatment and enzymatic closed-loop recycling, are proposed. At last, the prospects and trends for the development of PLA plastics are presented.


Subject(s)
Humans , Ecosystem , Biodegradable Plastics , Polyesters , Biodegradation, Environmental
3.
Chinese Journal of Biotechnology ; (12): 807-841, 2023.
Article in Chinese | WPRIM | ID: wpr-970408

ABSTRACT

This article summarizes the reviews and original research papers published in Chinese Journaol of Biotechnology in the area of biomanufacturing driven by engineered organisms in the year of 2022. The enabling technologies including DNA sequencing, DNA synthesis, and DNA editing as well as regulation of gene expression and in silico cell modeling were highlighted. This was followed by discussing the biomanufacturing of biocatalytics products, amino acids and its derivatives, organic acids, natural products, antibiotics and active peptides, functional polysaccharides, and functional proteins. Lastly, the technologies for utilizing C1 compounds and biomass as well as synthetic microbial consortia were discussed. The aim of this article was to help the readers to gain insights into this rapidly developing field from the journal point of view.


Subject(s)
Biotechnology , Microbial Consortia , DNA , Biological Products , Publications , Synthetic Biology
4.
Chinese Journal of Biotechnology ; (12): 1659-1676, 2021.
Article in Chinese | WPRIM | ID: wpr-878660

ABSTRACT

Over the past 30 years, Yarrowia lipolytica, Kluyveromyces, Pichia, Candida, Hansenula and other non-conventional yeasts have attracted wide attention because of their desirable phenotypes, such as rapid growth, capability of utilizing multiple substrates, and stress tolerance. A variety of synthetic biology tools are being developed for exploitation of their unique phenotypes, making them potential cell factories for the production of recombinant proteins and renewable bio-based chemicals. This review summarizes the gene editing tools and the metabolic engineering strategies recently developed for non-conventional yeasts. Moreover, the challenges and future perspectives for developing non-conventional yeasts into efficient cell factories for the production of useful products through metabolic engineering are discussed.


Subject(s)
Gene Editing , Metabolic Engineering , Pichia/genetics , Synthetic Biology , Yarrowia/genetics , Yeasts
5.
Chinese Journal of Biotechnology ; (12): 1637-1658, 2021.
Article in Chinese | WPRIM | ID: wpr-878659

ABSTRACT

Filamentous fungi are important industrial microorganisms that play important roles in the production of bio-based products such as organic acids, proteins and secondary metabolites. The development of metabolic engineering and its enabling techniques have greatly promoted the design, construction and application of filamentous fungal cell factories. This article systematically reviews the development of filamentous fungal cell factories constructed through metabolic engineering, and discusses the challenges and future perspectives for systems metabolic engineering of filamentous fungi.


Subject(s)
Fungi/genetics , Metabolic Engineering
6.
Chinese Journal of Biotechnology ; (12): 1477-1493, 2021.
Article in Chinese | WPRIM | ID: wpr-878650

ABSTRACT

Since its establishment 30 years ago, the discipline of metabolic engineering has developed rapidly based on its deep integration with molecular biology, systems biology and synthetic biology successively, which has greatly contributed to advancing and upgrading biotechnology industry. This review firstly analyzes the current status of academic research and China's competence in the area of metabolic engineering according to the data of papers published in SCI-indexed journals in the past 30 years. Subsequently, the article summarizes the development of systems biology methods and enabling technologies of synthetic biology and their applications in metabolic engineering in the past 10 years. Finally, the major challenges and future perspectives for the development of metabolic engineering are briefly discussed.


Subject(s)
Biotechnology , Industry , Metabolic Engineering , Synthetic Biology , Systems Biology
7.
Chinese Journal of Biotechnology ; (12): 541-560, 2021.
Article in Chinese | WPRIM | ID: wpr-878581

ABSTRACT

Nano-metallic materials are playing an important role in the application of medicine, catalysis, antibacterial and anti-toxin due to their obvious advantages, including nanocrystalline strengthening effect, high photo-absorptivity, high surface energy and single magnetic region performance. In recent years, with the increasing consumption of global petrochemical resources and the aggravation of environmental pollution, nanomaterials based on bio-based molecules have aroused great concern. Bio-based molecules refer to small molecules and macromolecules directly or indirectly derived from biomass. They usually have good biocompatibility, low toxicity, degradability, wide source and low price. Besides, most bio-based molecules have unique physical, chemical properties and physiological activity, such as optical activity, acid/alkali amphoteric property, hydrophilic property and easy coordination with metal ions. Thus, the corresponding nano-materials based on bio-based molecules also have unique functions, such as anti-inflammatory, anti-cancer, anti-oxidation, antiviral fall blood sugar and blood fat etc. In this paper, we give a comprehensive overview of the preparation and application of nano-metallic materials based on bio-based molecules in recent years.


Subject(s)
Anti-Infective Agents , Catalysis , Metals , Nanostructures
8.
Chinese Journal of Biotechnology ; (12): 1528-1535, 2020.
Article in Chinese | WPRIM | ID: wpr-826824

ABSTRACT

The advent of the bioeconomy era is triggers a new wave of technology and industrial revolution. Bioeconomy has become the commanding heights that major developed countries and emerging economies try to seize. This paper analyzes the spatiotemporal characteristics of global bioindustry development from four perspectives: biomedical industry, genetically modified crop planting industry, bioenergy industry, and bio-based chemical industry. Then it summarizes the main characteristics of the development of the global bioindustry, and further put forward policy recommendations for the bottleneck problems in the development of China's bioindustry, which can guide the future development of China's bioeconomy.

9.
Chinese Journal of Biotechnology ; (12): 2216-2225, 2020.
Article in Chinese | WPRIM | ID: wpr-878480

ABSTRACT

The era of bioeconomy has ushered in a new wave of technological and industrial revolution for mankind. The strategic deployment for the bioindustry in China has achieved remarkable results. However, there are still problems such as unbalanced regional development in the process of bioindustry development. In order to comprehensively assess the current situation of the competitiveness of the bioindustry in various regions of China, the assessment indicator system of the overall competitiveness of the bioindustry is constructed from the perspective of the four sub-industries of biomedicine, bioenergy, bioagriculture and bio-based industry. The weight of each assessment indicator is determined by the analytic hierarchy process. According to geographical administrative division and regional economic relations, an empirical analysis of the comprehensive competitiveness score of the bioindustry in seven regions of China is carried out. The assessment results show that the competition of bioindustry in various regions of China presents a gradient distribution in space. In view of this, relevant policy recommendations are put forward from four aspects: (1) implementing the strategy of rural revitalization, (2) implementing the strategy of regional coordinated development, (3) deepening the supply-side structural reform for the bioindustry, and (4) establishing regional unified information collaboration network system.


Subject(s)
Biotechnology/statistics & numerical data , China , Industry
10.
Chinese Journal of Biotechnology ; (12): 1496-1506, 2016.
Article in Chinese | WPRIM | ID: wpr-243705

ABSTRACT

Using cheap biomass resources is a hotspot of research on industrial biotechnology. It is difficult for traditional fermentations with single strain to treat so complex components and more impurities, which becomes the key problem in industrialization. In this review, some existing industrial bioprocesses involving microbial consortia were described. Comparison of 1,3-propanediol production by microbial consortia and pure cultures were then introduced and the relationship between cells in microbial consortia were summarized. Finally, the perspective was also addressed to design and apply microbial consortia in the future.

11.
Chinese Journal of Biotechnology ; (12): 711-714, 2016.
Article in Chinese | WPRIM | ID: wpr-337429

ABSTRACT

Bio-based materials are new materials or chemicals with renewable biomass as raw materials such as grain, legume, straw, bamboo and wood powder. This class of materials includes bio-based polymer, biobased fiber, glycotechnology products, biobased rubber and plastics produced by biomass thermoplastic processing and basic biobased chemicals, for instance, bio-alcohols, organic acids, alkanes, and alkenes, obtained by bio-synthesis, bio-processing and bio-refinery. Owing to its environmental friendly and resource conservation, bio-based materials are becoming a new dominant industry taking the lead in the world scientific and technological innovation and economic development. An overview of bio-based materials development is reported in this special issue, and the industrial status and research progress of the following aspects, including biobased fiber, polyhydroxyalkanoates, biodegradable mulching film, bio-based polyamide, protein based biomedical materials, bio-based polyurethane, and modification and processing of poly(lactic acid), are introduced.


Subject(s)
Biomass , Biotechnology , Organic Chemicals , Plastics , Polymers , Rubber
12.
Chinese Journal of Biotechnology ; (12): 715-725, 2016.
Article in Chinese | WPRIM | ID: wpr-337428

ABSTRACT

In recent years, bio-based materials are becoming a new dominant industry leading the scientific and technological innovation, and economic development of the world. We reviewed the new development of bio-based materials industry in China, analyzed the entire market of bio-based materials products comprehensively, and also stated the industry status of bio-based chemicals, such as lactic acid, 1,3-propanediol, and succinic acid; biodegradable bio-based polymers, such as co-polyester of diacid and diol, polylactic acid, carbon dioxide based copolymer, polyhydroxyalknoates, polycaprolactone, and thermoplastic bio-based plastics; non-biodegradable bio-based polymers, such as bio-based polyamide, polytrimethylene terephthalate, bio-based polyurethane, and bio-based fibers.


Subject(s)
Biomass , Biotechnology , China , Lactic Acid , Phthalic Acids , Plastics , Polyesters , Polyhydroxyalkanoates , Polymers , Propylene Glycols , Succinic Acid
13.
Chinese Journal of Biotechnology ; (12): 761-774, 2016.
Article in Chinese | WPRIM | ID: wpr-337424

ABSTRACT

Bio-based polyamides are environment-friendly polymers. The precursors of bio-based polyamides come from bio-based materials such as castor oil, glucose and animal oil. Bio-based polyamides precursors include bio-based amino acids, bio-based lactams, bio-based diprotic acid and bio-based diamines. In this paper, we discussed the route of the precursors of bio-based polyamides that come from bio-based materials. We discussed the properties of bio-based polyamides. Bio-based PA11and bio-based PA1010 are well-known bio-based polyamides; we discussed the origin materials of the precursors, the route of manufacturing bio-based PA11 and PA1010, and their modifications status. The variety, classification and commercial production of bio-based polyamides were described in details, as well as bio-based polyamides development in China.


Subject(s)
Animals , Biotechnology , Castor Oil , China , Glucose , Nylons , Chemistry , Polymers
14.
Chinese Journal of Biotechnology ; (12): 775-785, 2016.
Article in Chinese | WPRIM | ID: wpr-337423

ABSTRACT

Bio-based fiber is environment friendly, reproducible, easily biodegradable. Therefore, rapid development of bio-based fiber industry is an obvious in progress to replace petrochemical resources, develop sustainable economy, build resource saving and environment friendly society. This article describes the current development of bio-based fiber industry, analyzes existing problems, indicates the trends and objectives of bio-based fiber materials technology innovation and recommends developing bio-based fibers industry of our country.


Subject(s)
Biotechnology , Chemical Industry
15.
Br Biotechnol J ; 2013 July; 3(3): 246-262
Article in English | IMSEAR | ID: sea-162484

ABSTRACT

Present research is aimed towards designing and development of environmental protection plasticizers using the fractionation heavy component in the industrial production of corn stalks as raw material. The plant-based rubber oil (PBRO) plasticizers are the reactants of the dihydric alcohols (Polyols) in heavy component with phthalic anhydride (PA) (the molar ratio of Polyols/PA as 2 : 1) at the temperature range of 180 -190ºC. The main advantage is that this substance does not contain any of the sixteen hazardous substances of PAHs (polycyclic aromatic hydrocarbons) and 38 hazardous substances of PAHs (polycyclic aromatic hydrocarbons) recorded in EU REACH regulation. In plasticization of NBR, the dosage of PBRO can reach 25 phr (parts per hundreds of rubber), but the plasticizing effects of PBRO is inferior to common rubber oil (paraffin oil, naphthenic oil, aromatic hydrocarbon oil and Dioctyl phthalate). In plasticization of SBR, the maximum amount of PBRO is 20 phr. Although the mechanical properties decrease; the aging resistance and thermal stability (the temperature of maximum weight losses of PBRO as 302ºC) are slightly higher than that of common rubber oil.

SELECTION OF CITATIONS
SEARCH DETAIL