Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Indian J Biochem Biophys ; 2023 Mar; 60(3): 167-176
Article | IMSEAR | ID: sea-221627

ABSTRACT

Imatinib is the most effective therapy for chronic myeloid leukemia (CML), but many patients eventually develop resistance to it after an initial satisfactory response. This study investigated the potential of three miRNAs (miR-106b-5p, miR-145-5p, miR-203a-5p) in overcoming imatinib resistance in leukemic cells. The imatinib-resistant K562 (IR-K562) cells were developed and transfected with one of the three miRNAs to evaluate their potency in overcoming imatinib resistance. The changes in the metabolic profile were studied using flux balance analysis (FBA) and the data was validated using qRT-PCR.Among the three miRNAs, the ectopic expression of either miR-145-5p or miR-203a-5p was able to sensitize the IR-K562 cells to imatinib. The concentration of key oncometabolites; glucose, lactate, and glutamine, in the culture media of the miR-transfected IR-K562 cells, reverted to the same levels as seen in imatinib-sensitive K562 cells. In addition, the FBA analysis revealed that the metabolism of lipid, fatty acids, and electron transport chain were significantly altered in resistant cells. The FBA data was also validated at the molecular level. Interestingly, the imatinib treatment coupled with the transfection of miR-145-5p or miR-203a-5p cells could reverse the metabolic flux of IR-K562 to the levels seen in imatinib-sensitive K562 cells. This study highlights the key metabolic changes that occur during development of imatinib resistance. It also identifies the specific miRNAs which can be targeted to overcome imatinib resistance in CML.

2.
Indian J Biochem Biophys ; 2023 Mar; 60(3): 167-176
Article | IMSEAR | ID: sea-221625

ABSTRACT

Imatinib is the most effective therapy for chronic myeloid leukemia (CML), but many patients eventually develop resistance to it after an initial satisfactory response. This study investigated the potential of three miRNAs (miR-106b-5p, miR-145-5p, miR-203a-5p) in overcoming imatinib resistance in leukemic cells. The imatinib-resistant K562 (IR-K562) cells were developed and transfected with one of the three miRNAs to evaluate their potency in overcoming imatinib resistance. The changes in the metabolic profile were studied using flux balance analysis (FBA) and the data was validated using qRT-PCR.Among the three miRNAs, the ectopic expression of either miR-145-5p or miR-203a-5p was able to sensitize the IR-K562 cells to imatinib. The concentration of key oncometabolites; glucose, lactate, and glutamine, in the culture media of the miR-transfected IR-K562 cells, reverted to the same levels as seen in imatinib-sensitive K562 cells. In addition, the FBA analysis revealed that the metabolism of lipid, fatty acids, and electron transport chain were significantly altered in resistant cells. The FBA data was also validated at the molecular level. Interestingly, the imatinib treatment coupled with the transfection of miR-145-5p or miR-203a-5p cells could reverse the metabolic flux of IR-K562 to the levels seen in imatinib-sensitive K562 cells. This study highlights the key metabolic changes that occur during development of imatinib resistance. It also identifies the specific miRNAs which can be targeted to overcome imatinib resistance in CML.

3.
Biol. Res ; 56: 28-28, 2023. ilus, graf, tab
Article in English | LILACS | ID: biblio-1513740

ABSTRACT

BACKGROUND: Skeletal muscle generates force and movements and maintains posture. Under pathological conditions, muscle fibers suffer an imbalance in protein synthesis/degradation. This event causes muscle mass loss and decreased strength and muscle function, a syndrome known as sarcopenia. Recently, our laboratory described secondary sarcopenia in a chronic cholestatic liver disease (CCLD) mouse model. Interestingly, the administration of ursodeoxycholic acid (UDCA), a hydrophilic bile acid, is an effective therapy for cholestatic hepatic alterations. However, the effect of UDCA on skeletal muscle mass and functionality has never been evaluated, nor the possible involved mechanisms. METHODS: We assessed the ability of UDCA to generate sarcopenia in C57BL6 mice and develop a sarcopenic-like phenotype in C2C12 myotubes and isolated muscle fibers. In mice, we measured muscle strength by a grip strength test, muscle mass by bioimpedance and mass for specific muscles, and physical function by a treadmill test. We also detected the fiber's diameter and content of sarcomeric proteins. In C2C12 myotubes and/or isolated muscle fibers, we determined the diameter and troponin I level to validate the cellular effect. Moreover, to evaluate possible mechanisms, we detected puromycin incorporation, p70S6K, and 4EBP1 to evaluate protein synthesis and ULK1, LC3 I, and II protein levels to determine autophagic flux. The mitophagosome-like structures were detected by transmission electron microscopy. RESULTS: UDCA induced sarcopenia in healthy mice, evidenced by decreased strength, muscle mass, and physical function, with a decline in the fiber's diameter and the troponin I protein levels. In the C2C12 myotubes, we observed that UDCA caused a reduction in the diameter and content of MHC, troponin I, puromycin incorporation, and phosphorylated forms of p70S6K and 4EBP1. Further, we detected increased levels of phosphorylated ULK1, the LC3II/LC3I ratio, and the number of mitophagosome-like structures. These data suggest that UDCA induces a sarcopenic-like phenotype with decreased protein synthesis and autophagic flux. CONCLUSIONS: Our results indicate that UDCA induces sarcopenia in mice and sarcopenic-like features in C2C12 myotubes and/or isolated muscle fibers concomitantly with decreased protein synthesis and alterations in autophagic flux.


Subject(s)
Animals , Mice , Sarcopenia/chemically induced , Sarcopenia/pathology , Ursodeoxycholic Acid/metabolism , Ursodeoxycholic Acid/pharmacology , Muscle, Skeletal/metabolism , Troponin I/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Mice, Inbred C57BL
4.
China Journal of Orthopaedics and Traumatology ; (12): 873-879, 2023.
Article in Chinese | WPRIM | ID: wpr-1009152

ABSTRACT

OBJECTIVE@#To investigate the mechanism of cytosolic phospholipase A2(cPLA2) inhibitor to improve neurological function after spinal cord injury (SCI).@*METHODS@#Thirty-six 3 months old female SD rats, with body mass (280±20) g, were divided into three groups (n=12):sham group, SCI group, and SCI+ arachidonyl trifluoromethyl ketone(AACOCF3) group. Balloon compression SCI model was established in all three groups. In the sham model group, the spinal cord compression model was created after the balloon was placed without pressure treatment, and the remaining two groups were pressurized with the balloon for 48 h. After successful modeling, rats in the SCI+AACOCF3 group were injected intraperitoneally with AACOCF3, a specific inhibitor of cPLA2. The remaining two groups of rats were injected intraperitoneally with saline. The animals were sacrificed in batches on 7 and 14 days after modeling, respectively. And the damaged spinal cord tissues were sampled for pathomorphological observation, to detect the expression of cPLA2 and various autophagic fluxPrelated molecules and test the recovery of motor function.@*RESULTS@#Spinal cord histomorphometry examination showed that the spinal cord tissue in the sham group was structurally intact, with normal numbers and morphology of neurons and glial cells. In the SCI group, spinal cord tissue fractures with large and prominent spinal cord cavities were seen. In the SCI+AACOCF3 group, the spinal cord tissue was more intact than in the SCI group, with more fused spinal cord cavities, more surviving neurons, and less glial cell hyperplasia. Western blot showed that the sham group had the lowest protein expression of LC3-Ⅱ, Beclin 1, p62, and cPLA2 compared with the SCI and SCI+AACOCF3 groups (P<0.05) and the highest protein expression of LC3-Ⅰ (P<0.05). P62 and cPLA2 expression in the SCI group were higher than in the SCI+AACOCF3 group (P<0.05). Behavioral observations showed that the time corresponding to BBB exercise scores was significantly lower in both the SCI and SCI+AACOCF3 groups than in the sham group (P<0.05). Scores at 3, 7, and 14 days after pressurization were higher in the SCI+AACOCF3 group than in the SCI group (P<0.05).@*CONCLUSION@#cPLA2 inhibitors can reduce neuronal damage secondary to SCI, promote neurological recovery and improve motor function by improving lysosomal membrane permeability and regulating autophagic flux.


Subject(s)
Female , Animals , Rats , Rats, Sprague-Dawley , Neuroprotective Agents/pharmacology , Spinal Cord Injuries/drug therapy , Spinal Cord Compression
5.
Chinese Journal of Experimental Ophthalmology ; (12): 795-800, 2023.
Article in Chinese | WPRIM | ID: wpr-990914

ABSTRACT

Visual electrophysiological examination has strict standards and quantitative methods for stimulating light, which involves the concepts of photopic and scotopic vision of human eyes.Photopic vision is a visual perceptual activity mainly involving cones in a bright environment, while scotopic vision is a visual perceptual activity mainly involving rod cells in a dark environment.Even if the rated power of the light source is the same, the brightness (luminous flux) perceived by human eyes is different for different spectral light sources in the same or different visual environments.To enable ophthalmologists and clinical visual electrophysiological examination technicians to accurately understand the setting mechanism and recording results of stimulating light in the international standard of visual electrophysiology, this paper introduced the basic concepts such as the concept of human eye photopic and scotopic vision, the measurement and expression of brightness in different visual environments, and the luminous flux of light sources under photopic and scotopic vision in detail, and interpreted the application of the concept of photopic and scotopic vision in clinical visual electrophysiology.

6.
Acta Pharmaceutica Sinica B ; (6): 4591-4606, 2023.
Article in English | WPRIM | ID: wpr-1011184

ABSTRACT

Although carbon monoxide (CO)-based treatments have demonstrated the high cancer efficacy by promoting mitochondrial damage and core-region penetrating ability, the efficiency was often compromised by protective autophagy (mitophagy). Herein, cannabidiol (CBD) is integrated into biomimetic carbon monoxide nanocomplexes (HMPOC@M) to address this issue by inducing excessive autophagy. The biomimetic membrane not only prevents premature drugs leakage, but also prolongs blood circulation for tumor enrichment. After entering the acidic tumor microenvironment, carbon monoxide (CO) donors are stimulated by hydrogen oxide (H2O2) to disintegrate into CO and Mn2+. The comprehensive effect of CO/Mn2+ and CBD can induce ROS-mediated cell apoptosis. In addition, HMPOC@M-mediated excessive autophagy can promote cancer cell death by increasing autophagic flux via class III PI3K/BECN1 complex activation and blocking autolysosome degradation via LAMP1 downregulation. Furthermore, in vivo experiments showed that HMPOC@M+ laser strongly inhibited tumor growth and attenuated liver and lung metastases by downregulating VEGF and MMP9 proteins. This strategy may highlight the pro-death role of excessive autophagy in TNBC treatment, providing a novel yet versatile avenue to enhance the efficacy of CO treatments. Importantly, this work also indicated the applicability of CBD for triple-negative breast cancer (TNBC) therapy through excessive autophagy.

7.
International Eye Science ; (12): 1477-1481, 2023.
Article in Chinese | WPRIM | ID: wpr-980536

ABSTRACT

Autophagic flux refers to a series of dynamic process of autophagic bilayer membrane formation, autophagosome formation, autophagolysosomes formation and degradation. The etiology of cataract is complex, including congenital abnormalities in lens development due to genetic mutations, oxidative damage due to aging, abnormalities in glucose metabolism due to diabetes, and proliferation of lens epithelial cells(LECs)stimulated by postoperative inflammatory factor, all of which are associated with the development of cataracts. A growing number of research in recent years have discovered that altering the status of LECs can contribute to the pathophysiological process of cataract by regulating autophagic flux. This review summarized the impacts of autophagic flux regulation on cataract.

8.
Acta Pharmaceutica Sinica B ; (6): 157-173, 2023.
Article in English | WPRIM | ID: wpr-971705

ABSTRACT

Metabolic reprogramming is a hallmark of cancer, including lung cancer. However, the exact underlying mechanism and therapeutic potential are largely unknown. Here we report that protein arginine methyltransferase 6 (PRMT6) is highly expressed in lung cancer and is required for cell metabolism, tumorigenicity, and cisplatin response of lung cancer. PRMT6 regulated the oxidative pentose phosphate pathway (PPP) flux and glycolysis pathway in human lung cancer by increasing the activity of 6-phospho-gluconate dehydrogenase (6PGD) and α-enolase (ENO1). Furthermore, PRMT6 methylated R324 of 6PGD to enhancing its activity; while methylation at R9 and R372 of ENO1 promotes formation of active ENO1 dimers and 2-phosphoglycerate (2-PG) binding to ENO1, respectively. Lastly, targeting PRMT6 blocked the oxidative PPP flux, glycolysis pathway, and tumor growth, as well as enhanced the anti-tumor effects of cisplatin in lung cancer. Together, this study demonstrates that PRMT6 acts as a post-translational modification (PTM) regulator of glucose metabolism, which leads to the pathogenesis of lung cancer. It was proven that the PRMT6-6PGD/ENO1 regulatory axis is an important determinant of carcinogenesis and may become a promising cancer therapeutic strategy.

9.
Braz. J. Pharm. Sci. (Online) ; 59: e22643, 2023. tab, graf
Article in English | LILACS | ID: biblio-1439528

ABSTRACT

Abstract Methotrexate on its oral and intravenous administration results in unwanted adverse effects. This drawback can be overcome by transdermal delivery because of its painless objective for systemic drug administration. Transfersomes are ultra-deformable vesicles with the flexibility to reach deeper tissues of the skin. The objective of this research work was to develop methotrexate transfersomal gel by thin film hydration technique, evaluated for entrapment efficiency, deformability, mean vesicle size, and stability, and incorporated into carbopol gel for ease of handling and skin applicability for a longer period of retention on skin. MTX-TFS gel & conventional gel were characterized for consistency, transparency, viscosity, and pH. Ex-vivo skin permeation studies were performed using abdominal goat skin and drug release kinetic parameters and transdermal flux were calculated using mathematical models. The results indicate that MTX was successfully entrapped (84.77 ± 2.35 %w/w) in transfersomes having 240±1.6 nm vesicle sizes and 27.13±0.7 deformability index. The gel was permeated through the skin at a rate of 28.12±2.58 µg/cm2/hr as compared to the conventional gel (10.35±2.14 µg/cm2/ hr). From the study, it was concluded that the MTX-TFS gel can be used as a possible substitute for the conventional formulation for transdermal drug delivery due to 3 times improvement in transdermal flux.


Subject(s)
Administration, Cutaneous , Methotrexate/adverse effects , Skin , Administration, Intravenous/classification
10.
Indian J Exp Biol ; 2022 Mar; 60(3): 207-214
Article | IMSEAR | ID: sea-222473

ABSTRACT

Conservation tillage has proven advantageous in improving soil health and productivity. However, the greenhouse gases (GHGs) emission and intensity from different conservation tillage and nutrient management systems under Indian conditions are less understood. Therefore, here, we compared the effect of tillage and nutrient management on GHGs emissions, net global warming potential (NGWP), and greenhouse gas intensity (GHGI) from a field experiment under five years in a soybean-wheat cropping system in the Vertisols. The tillage treatments comprised of reduced tillage (RT) and no tillage (NT). The three nutrient management treatments included application of 100% NPK (T1), 100% NPK + 1.0 Mg FYM-C ha-1 (T2), 100% NPK +2.0 Mg FYM-C ha-1 (T3). The results showed significantly higher SOC sequestration under NT (1388 kg ha-1 yr-1) followed byRT (1134 kg ha-1 yr-1) with application of FYM (2.0 Mg C ha-1) (T3) every year. Across tillage, integrated nutrient management(T2 and T3) lowered NGWP and GHGI compared to NPK (T1). The GHGI of NT system was less by 33% compared to RT. The results suggest that GHGs mitigation and sustained food production in the soybean-wheat system can be achieved in NT and RT with integrated use of organic and inorganic fertilizer as the major component of nutrient management.

11.
Braz. J. Pharm. Sci. (Online) ; 58: e21131, 2022. tab, graf
Article in English | LILACS | ID: biblio-1420447

ABSTRACT

Abstract The study is aimed to develop a monolithic controlled matrix transdermal patches containing Metoclopramide as a model drug by solvent casting method. Eudragit L100, Polyvinylpyrrolidone K-30, and Methylcellulose were used in different ratios and Polyethylene glycol 400 added as a plasticizer. Resulting patches were evaluated for their physicochemical characters like organoleptic characters, weight variation, folding endurance, thickness, swelling index, flatness, drug content, swelling index, percentage erosion, moisture content, water vapor transmission rate and moisture uptake. Formed patches were also evaluated through Fourier transform spectroscopy (FT-IR), X-ray diffraction (XRD), Differential Scanning calorimetry (DSC) and Scanning Electron Microscopy (SEM). Results of SEM unveiled smooth surface of drug-loaded patches. In-vitro dissolution studies were conducted by using dissolution medium phosphate buffer saline pH 7.4. Effect of natural permeation enhancers was elucidated on two optimized formulations (Z4 and Z9). Different concentrations (5%-10 %) of permeation enhancers i.e. Olive oil, Castor oil and Eucalyptus oil were evaluated on Franz diffusion cell using excised abdominal rat skin. Z4-O2 (Olive oil 10%) had enhanced sustain effect and flux value (310.72) close to the desired flux value. Z4-O2 followed Higuchi release model (R2= 0.9833) with non-fickian diffusion release mechanism (n=0.612)


Subject(s)
Spectrum Analysis/methods , Oils, Volatile/analysis , Metoclopramide/agonists , X-Ray Diffraction/instrumentation , Calorimetry, Differential Scanning/methods , Microscopy, Electron, Scanning/methods
12.
Chinese Journal of Nuclear Medicine and Molecular Imaging ; (6): 563-567, 2022.
Article in Chinese | WPRIM | ID: wpr-957178

ABSTRACT

Metabolic reprogramming is a hallmark of tumors. Tumors own unique metabolic patterns in different stages of their occurrence and development. The stable isotope metabolic flux analysis technology uses stable isotope to trace the metabolites in tumors and crystallize tumor metabolism network. Stable isotope metabolic flux analysis is a useful tool for studying tumor metabolism, which can determine the nutritional sources, find the metabolic liabilities, confirm the metabolic pattern of tumors, and discover new mechanisms of tumor metabolic reprogramming, thus providing theoretical bases for imaging, diagnosis, treatment and evaluation of tumor. This article reviews the applications of stable isotope flux analysis in tumor metabolic reprogramming.

13.
Acta Pharmaceutica Sinica ; (12): 2731-2737, 2022.
Article in Chinese | WPRIM | ID: wpr-941498

ABSTRACT

With the wide application of stable isotope tracer metabolomics technology, its comprehensive analysis and in-depth mining of data are particularly important, and metabolic flux analysis is one of the main technical means, especially in the study of glucose metabolism. Metabolic flux analysis technology combines isotope tracing with mathematical models to deduce and calculate the metabolic flux between metabolites. The metabolic flux provides more information for research and reflects a dynamic metabolic process more clearly and specifically. This paper reviews the basic process, precautions, and application examples of metabolic flux analysis in glucose metabolism research, and provides a reference for the application of metabolic flux analysis based on stable isotope tracer metabolomics in glucose metabolism research.

14.
Journal of Southern Medical University ; (12): 785-793, 2022.
Article in Chinese | WPRIM | ID: wpr-941006

ABSTRACT

OBJECTIVE@#To explore the mechanism by which inositol-requiring enzyme-1α (IRE1α) regulates autophagy function of chondrocytes through calcium homeostasis endoplasmic reticulum protein (CHERP).@*METHODS@#Cultured human chondrocytes (C28/I2 cells) were treated with tunicamycin, 4μ8c, rapamycin, or both 4μ8c and rapamycin, and the expressions of endoplasmic reticulum (ER) stress- and autophagy-related proteins were detected with Western blotting. Primary chondrocytes from ERN1 knockout (ERN1 CKO) mice and wild-type mice were examined for ATG5 and ATG7 mRNA expressions, IRE1α and p-IRE1α protein expressions, and intracellular calcium ion content using qPCR, Western blotting and flow cytometry. The effect of bafilomycin A1 treatment on LC3 Ⅱ/LC3 Ⅰ ratio in the isolated chondrocytes was assessed with Western blotting. Changes in autophagic flux of the chondrocytes in response to rapamycin treatment were detected using autophagy dual fluorescent virus. The changes in autophagy level in C28/I2 cells overexpressing CHERP and IRE1α were detected using immunofluorescence assay.@*RESULTS@#Tunicamycin treatment significantly up-regulated ER stress-related proteins and LC3 Ⅱ/LC3 Ⅰ ratio and down-regulated the expression of p62 in C28/I2 cells (P < 0.05). Rapamycin obviously up-regulated LC3 Ⅱ/LC3 Ⅰ ratio (P < 0.001) in C28/I2 cells, but this effect was significantly attenuated by co-treatment with 4μ8c (P < 0.05). Compared with the cells from the wild-type mice, the primary chondrocytes from ERN1 knockout mice showed significantly down-regulated mRNA levels of ERN1 (P < 0.01), ATG5 (P < 0.001) and ATG7 (P < 0.001), lowered or even lost expressions of IRE1α and p-IRE1α proteins (PP < 0.01), and increased expression of CHERP (P < 0.05) and intracellular calcium ion content (P < 0.001). Bafilomycin A1 treatment obviously increased LC3 Ⅱ/ LC3 Ⅰ ratio in the chondrocytes from both wild-type and ERN1 knockout mice (P < 0.01 or 0.05), but the increment was more obvious in the wild-type chondrocytes (P < 0.05). Treatment with autophagy dual-fluorescence virus resulted in a significantly greater fluorescence intensity of LC3-GFP in rapamycin-treated ERN1 CKO chondrocytes than in wild-type chondrocytes (P < 0.05). In C28/I2 cells, overexpression of CHERP obviously decreased the fluorescence intensity of LC3, and overexpression of IRE1α enhanced the fluorescence intensity and partially rescued the fluorescence reduction of LC3 caused by CHERP.@*CONCLUSION@#IRE1α deficiency impairs autophagy in chondrocytes by upregulating CHERP and increasing intracellular calcium ion content.


Subject(s)
Animals , Mice , Autophagy , Calcium/metabolism , Chondrocytes , Endoplasmic Reticulum/metabolism , Endoribonucleases/pharmacology , Homeostasis , Inositol , Mice, Knockout , Protein Serine-Threonine Kinases , RNA, Messenger/metabolism , Sirolimus/pharmacology , Tunicamycin/pharmacology
15.
Acta Pharmaceutica Sinica B ; (6): 3124-3138, 2022.
Article in English | WPRIM | ID: wpr-939960

ABSTRACT

Tumor-associated macrophages (TAMs), one of the dominating constituents of tumor microenvironment, are important contributors to cancer progression and treatment resistance. Therefore, regulation of TAMs polarization from M2 phenotype towards M1 phenotype has emerged as a new strategy for tumor immunotherapy. Herein, we successfully initiated antitumor immunotherapy by inhibiting TAMs M2 polarization via autophagy intervention with polyethylene glycol-conjugated gold nanoparticles (PEG-AuNPs). PEG-AuNPs suppressed TAMs M2 polarization in both in vitro and in vivo models, elicited antitumor immunotherapy and inhibited subcutaneous tumor growth in mice. As demonstrated by the mRFP-GFP-LC3 assay and analyzing the autophagy-related proteins (LC3, beclin1 and P62), PEG-AuNPs induced autophagic flux inhibition in TAMs, which is attributed to the PEG-AuNPs induced lysosome alkalization and membrane permeabilization. Besides, TAMs were prone to polarize towards M2 phenotype following autophagy activation, whereas inhibition of autophagic flux could reduce the M2 polarization of TAMs. Our results revealed a mechanism underlying PEG-AuNPs induced antitumor immunotherapy, where PEG-AuNPs reduce TAMs M2 polarization via induction of lysosome dysfunction and autophagic flux inhibition. This study elucidated the biological effects of nanomaterials on TAMs polarization and provided insight into harnessing the intrinsic immunomodulation capacity of nanomaterials for effective cancer treatment.

16.
Chinese Journal of Biotechnology ; (12): 1889-1902, 2022.
Article in Chinese | WPRIM | ID: wpr-927825

ABSTRACT

In this study, voltage was used as a disturbance factor to investigate the relationship between microbial community and methane (CH4) production flux in a microbial electrolytic cell coupled anaerobic digestion (MEC-AD). Metabolic flux analysis (MFA) was used to explore the relationship between the CH4 metabolic flux produced and the microbes. The results showed that both methane production flux and hydrogen production flux changed significantly upon voltage disturbance, while the voltage disturbance had little effect on acetic acid production flux. The maximum CH4 production flux under 0.6 V disturbance was 0.522±0.051, which increased by 77% and 32%, respectively, compared with that of the control group under 1.0 V (0.295±0.013) and under 1.4 V (0.395±0.029). In addition, an average of 15.7%±2.9% of H2 (flux) was used to reduce CO2 to produce CH4 and acetic acid, and an average of 27.7%±6.9% of acetic acid (flux) was converted to CH4. Moreover, the abundance of Lachnospiraceae significantly affected the flux of acetic acid. The flux of CH4 production is positively correlated with the abundances of Petrimonas, Syntrophomonas, Blvii28, and Acinetobacter, and negatively correlated with the abundances of Tuzzerella and Sphaerochaeta. The species that affected the flux of H2 and CH4 were similar, mostly belonging to Bacteroides, Clostridium, Pseudomonas and Firmicutes. Furthermore, the interspecies interaction is also an important factor affecting the MEC-AD methanogenesis flux.


Subject(s)
Acetates , Anaerobiosis , Bioreactors , Electrolysis , Methane
17.
Philippine Journal of Ophthalmology ; : 56-63, 2022.
Article in English | WPRIM | ID: wpr-978912

ABSTRACT

Objective@#This study compared the peripapillary retinal nerve fiber layer (pRNFL) microangiographic properties [vessel area density (VAD) and blood flux index (BFI)] of unilateral open-angle glaucomatous eyes to contralateral eyes-at-risk, and to eyes of healthy age- and sex-matched subjects.@*Methods@#This was a single-center, case-control study of Filipinos diagnosed with unilateral primary openangle glaucoma (POAG) or normal-tension glaucoma (NTG). Mean overall and quadrantal VAD and BFI of the three groups were measured with optical coherence tomography- angiography (OCT-A). Area under the receiver operating characteristic (AROC) was used to measure diagnostic ability.@*Results@#Twenty-two (22) glaucomatous subjects (15 POAG and 7 NTG eyes), 22 contralateral eyes-at-risk, and 22 normal eyes from age- and sex-matched control subjects completed the study. Eyes with glaucoma showed lower mean overall VAD (40%) and BFI (0.37) compared to eyes-at-risk (44.4% and 0.42, respectively; p <0.001) and control eyes (45.6% and 0.44, respectively; p <0.001). Mean VAD and BFI values of eyes-at-risk and control groups did not significantly differ from each other. Overall pRNFL thickness showed highest diagnostic accuracy for glaucoma (AROC = 0.97), followed by VAD (0.94), and BFI (0.88) (p=0.46).@*Conclusion@#VAD and BFI were significantly diminished in unilateral open-angle glaucoma, suggesting that the utility of OCT-A in the detection of glaucoma is comparable to pRNFL thickness.


Subject(s)
Microcirculation , Glaucoma , Angiography
18.
Braz. j. med. biol. res ; 55: e12252, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1403899

ABSTRACT

Nanosized copper particles (nano Cu) have been incorporated into products in multiple industries, although studies have demonstrated that these particles are nephrotoxic. We investigated the cytotoxicity of nanosized copper particles on rat mesangial cells and measured rates of apoptosis, the expression of caspase-3, and generation of reactive oxygen species. We also measured autophagy through the acridine orange (AO) staining and expression of Beclin-1, microtubule-associated protein 1 light chain 3, and p62 to screen the underlying mechanism of toxicity. Nanosized copper particles inhibited mesangial cell viability, up-regulated the activity of caspase-3, and increased the rates of apoptosis and the generation of reactive oxygen species in a concentration-dependent manner. Exposure to nano Cu increased the formation of acidic vesicular organelles and the expression of Beclin-1, microtubule-associated protein 1 light chain 3, and p62, and treatment with an autophagy inhibitor reduced nephrotoxicity. This indicated that the autophagy pathway is involved in the toxicity induced by nanosized copper particles to mesangial cells. This finding can contribute to the development of safety guidelines for the evaluation of nanomaterials in the future.

19.
Biol. Res ; 54: 27-27, 2021. ilus, graf
Article in English | LILACS | ID: biblio-1505815

ABSTRACT

BACKGROUND: Demethylzeylasteral (T-96) is a pharmacologically active triterpenoid monomer extracted from Tripterygium wilfordii Hook F (TWHF) that has been reported to exhibit anti-neoplastic effects against several types of cancer cells. However, the potential anti-tumour effects of T-96 against human Prostate cancer (CaP) cells and the possible underlying mechanisms have not been well studied. RESULTS: In the current study, T-96 exerted significant cytotoxicity to CaP cells in vitro and induced cell cycle arrest at S-phase in a dose-dependent manner. Mechanistically, T-96 promoted the initiation of autophagy but inhibited autophagic flux by inducing ROS-mediated endoplasmic reticulum (ER) stress which subsequently activated the extrinsic apoptosis pathway in CaP cells. These findings implied that T-96-induced ER stress activated the caspase-dependent apoptosis pathway to inhibit proliferation of CaP cells. Moreover, we observed that T-96 enhances the sensitivity of CaP cells to the chemotherapeutic drug, cisplatin. CONCLUSIONS: Taken together, our data demonstrated that T-96 is a novel modulator of ER stress and autophagy, and has potential therapeutic applications against CaP in the clinic.


Subject(s)
Humans , Male , Prostatic Neoplasms/drug therapy , Autophagy , Triterpenes , Reactive Oxygen Species , Apoptosis , Cell Line, Tumor
20.
Acta Pharmaceutica Sinica ; (12): 1286-1292, 2021.
Article in Chinese | WPRIM | ID: wpr-887093

ABSTRACT

With the rapid development of high sensitivity detection techniques such as nuclear magnetic resonance and mass spectrometry, stable isotope-resolved metabolomics has been widely used in elucidating the regulatory mechanism of metabolic pathways and metabolic flow analysis, and some breakthroughs have been made. In this paper the application of stable isotope-resolved metabolomics in glucose catabolic regulation, metabolic flow analysis and functional interpretation of key metabolic pathways is reviewed, providing references for the wider use and application of this technology.

SELECTION OF CITATIONS
SEARCH DETAIL