Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Genomics & Informatics ; : 152-155, 2015.
Article in English | WPRIM | ID: wpr-42758

ABSTRACT

Recently, the Encyclopedia of DNA Elements (ENCODE) Analysis Working Group converted data from ChIP-seq analyses from the Broad Histone track into 15 corresponding chromatic maps that label sequences with different kinds of histone modifications in promoter regions. Here, we publish a frequency profile of the three ChromHMM promoter states, at 200-bp intervals, with particular reference to the existence of sequence patterns of promoter elements, GC-richness, and transcription starting sites. Through detailed and diligent analysis of promoter regions, researchers will be able to uncover new and significant information about transcription initiation and gene function.


Subject(s)
DNA , Epigenomics , Histones , Promoter Regions, Genetic
2.
J. appl. oral sci ; 18(5): 482-486, Sept.-Oct. 2010. ilus, graf
Article in English | LILACS | ID: lil-564182

ABSTRACT

OBJECTIVES: PAX9 belongs to the Pax family of transcriptional factor genes. This gene is expressed in embryonic tissues such as somites, pharyngeal pouch endoderm, distal limb buds and neural crest-derived mesenchyme. Polymorphisms in the upstream promoter region of the human PAX9 have been associated with human non-syndromic tooth agenesis. In the present study, we verified the in vitro mRNA expression of this gene and the luciferase activity of two constructs containing promoter sequences of the PAX9 gene. MATERIAL AND METHODS: Embryonic tissues were obtained from digits, face, and midbrain/hindbrain regions. Fragments containing PAX9 promoter sequences were cloned into reporter plasmids and were transfected into the different cell cultures. mRNA were extracted from primary cell cultures. RESULTS: The semi-quantitative RT-PCR results showed that in vitro E13.5 limb bud and CNS cells express PAX9, but cells derived from the facial region do not. Moreover, the luciferase assay showed that protein activity of the constructed vector was weaker than pgl3 -basic alone. CONCLUSIONS: The present results suggest that the promoter sequences analyzed are not sufficient to drive PAX9 gene transcription.


Subject(s)
Animals , Humans , Rats , Anodontia/genetics , Gene Expression Profiling , Luciferases/analysis , PAX9 Transcription Factor/genetics , Transcription, Genetic , Cells, Cultured , Luciferases/genetics , PAX9 Transcription Factor/metabolism , Promoter Regions, Genetic , Plasmids/genetics , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL