Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Chinese Journal of Blood Transfusion ; (12): 851-856, 2023.
Article in Chinese | WPRIM | ID: wpr-1004758

ABSTRACT

Platelets play a role in hemostasis in vivo, and platelet transfusion is the main means to treat bleeding diseases caused by thrombocytopenia or platelet dysfunction. However, platelets are in short supply due to the increasing demand for platelet products in clinical, the limited number of blood donors and the disadvantages of platelet products such as short shelf life and bacteria contamination. Currently, induced pluripotent stem cells are considered an ideal source for producing platelets in vitro. They have the potential for self-renewal and differentiation into any cell type, and can be obtained and manipulated easily. Given the recent advances in megakaryocytic series, bioreactors, feeder-free cell production and large-scale propagation research, platelet preparations derived from induced pluripotent stem cells have gradually shown great potential for clinical applications. Considering the minimal risk of alloimmunization and tumorigenesis with these blood products, they are promising to become the standard source of future blood transfusions. This paper reviews the research progress of the methodological techniques of in vitro generation of platelets from induced pluripotent stem cells.

2.
Organ Transplantation ; (6): 397-2021.
Article in Chinese | WPRIM | ID: wpr-881523

ABSTRACT

Organoids are tissue structures, generated from pluripotent stem cells and cultured in vitro, which form self-organize and recapitulate tissues with similar structure and function to the original organs. Organoids have similar appearance and function to the original tissues, and have been widely applied in basic research and clinical trial. At present, the organoids of liver, kidney, islet, brain, intestine and other organs have been successfully cultivated. The use of islet organoid is a hotspot in the field of organoid research. However, islet organoid is currently applied in basic research because rejection after organ transplantation and other issues remain unresolved. In this article, the origin, development and basic application of islet organoid were reviewed, aiming to provide reference for the transformation from basic research of islet organoid into clinical application as well as the treatment of diabetes mellitus.

3.
Article | IMSEAR | ID: sea-210907

ABSTRACT

Induced pluripotent stem cells (iPSCs) are promising cell source for cardiac tissue engineering and cell based therapies for heart repair as they can be expanded in vitro and differentiated into most cardiovascular cell types, including cardiomyocytes. During embryonic heart development, this differentiation occurs under the influence of internal and external stimuli that guide cells to go down the cardiac lineage. The aim of this study was to characterize the cardiac differentiation potential of a canine iPS cell. With the use of a standard embryoid body–based differentiation protocol for iPS cells were differentiated for 24 days. In vitro differentiations of canine iPSCs via embryoid bodies (EBs) were produced by ‘Hanging Drop’ method. EB’s were differentiated using 5-azacytidine (5-Aza). During differentiation, EBs were collected on day 4, 6, 8, 12, 16, 20 and 24 to evaluate the expression of cardiomyocyte specific marker. Analyses on molecular, structural, and functional levels demonstrated that iPS cell– derived cardiomyocytes show typical features of ES cell– derived cardiomyocytes. Reverse transcription polymerase chain reaction analyses demonstrated expression of marker genes. The differentiated cells expressed cardiac-specific gene myosin light chain 2 (MYL2) which started from day 8 of differentiation and highest expression was observed on day 16. Immunocytochemistry and relative expression of cardiac specific genes revealed that iPS cells differentiate into functional cardiomyocytes and allow to derivation of autologous functional cardiomyocytes for cellular cardiomyoplasty and myocardial tissue engineering

4.
Experimental Neurobiology ; : 329-336, 2019.
Article in English | WPRIM | ID: wpr-763771

ABSTRACT

Alzheimer's Disease (AD) is a progressive neurodegenerative disease, which is pathologically defined by the accumulation of amyloid plaques and hyper-phosphorylated tau aggregates in the brain. Mitochondrial dysfunction is also a prominent feature in AD, and the extracellular Aβ and phosphorylated tau result in the impaired mitochondrial dynamics. In this study, we generated an induced pluripotent stem cell (iPSC) line from an AD patient with amyloid precursor protein (APP) mutation (Val715Met; APP-V715M) for the first time. We demonstrated that both extracellular and intracellular levels of Aβ were dramatically increased in the APP-V715M iPSC-derived neurons. Furthermore, the APP-V715M iPSC-derived neurons exhibited high expression levels of phosphorylated tau (AT8), which was also detected in the soma and neurites by immunocytochemistry. We next investigated mitochondrial dynamics in the iPSC-derived neurons using Mito-tracker, which showed a significant decrease of anterograde and retrograde velocity in the APP-V715M iPSC-derived neurons. We also found that as the Aβ and tau pathology accumulates, fusion-related protein Mfn1 was decreased, whereas fission-related protein DRP1 was increased in the APP-V715M iPSC-derived neurons, compared with the control group. Taken together, we established the first iPSC line derived from an AD patient carrying APP-V715M mutation and showed that this iPSC-derived neurons exhibited typical AD pathological features, including a distinct mitochondrial dysfunction.


Subject(s)
Humans , Alzheimer Disease , Amyloid , Brain , Carisoprodol , Immunohistochemistry , Mitochondrial Dynamics , Neurites , Neurodegenerative Diseases , Neurons , Pathology , Plaque, Amyloid , Pluripotent Stem Cells
5.
Protein & Cell ; (12): 249-271, 2019.
Article in English | WPRIM | ID: wpr-757893

ABSTRACT

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary cerebrovascular disease caused by a NOTCH3 mutation. However, the underlying cellular and molecular mechanisms remain unidentified. Here, we generated non-integrative induced pluripotent stem cells (iPSCs) from fibroblasts of a CADASIL patient harboring a heterozygous NOTCH3 mutation (c.3226C>T, p.R1076C). Vascular smooth muscle cells (VSMCs) differentiated from CADASIL-specific iPSCs showed gene expression changes associated with disease phenotypes, including activation of the NOTCH and NF-κB signaling pathway, cytoskeleton disorganization, and excessive cell proliferation. In comparison, these abnormalities were not observed in vascular endothelial cells (VECs) derived from the patient's iPSCs. Importantly, the abnormal upregulation of NF-κB target genes in CADASIL VSMCs was diminished by a NOTCH pathway inhibitor, providing a potential therapeutic strategy for CADASIL. Overall, using this iPSC-based disease model, our study identified clues for studying the pathogenic mechanisms of CADASIL and developing treatment strategies for this disease.

6.
International Journal of Stem Cells ; : 430-439, 2019.
Article in English | WPRIM | ID: wpr-785831

ABSTRACT

BACKGROUND AND OBJECTIVES: Several recent studies have claimed that cancer cells can be reprogrammed into induced pluripotent stem cells (iPSCs). However, in most cases, cancer cells seem to be resistant to cellular reprogramming. Furthermore, the underlying mechanisms of limited reprogramming in cancer cells are largely unknown. Here, we identified the candidate barrier genes and their target genes at the early stage of reprogramming for investigating cancer reprogramming.METHODS: We tried induction of pluripotency in normal human fibroblasts (BJ) and both human benign (MCF10A) and malignant (MCF7) breast cancer cell lines using a classical retroviral reprogramming method. We conducted RNA-sequencing analysis to compare the transcriptome of the three cell lines at early stage of reprogramming.RESULTS: We could generate iPSCs from BJ, whereas we were unable to obtain iPSCs from cancer cell lines. To address the underlying mechanism of limited reprogramming in cancer cells, we identified 29 the candidate barrier genes based on RNA-sequencing data. In addition, we found 40 their target genes using Cytoscape software.CONCLUSIONS: Our data suggest that these genes might one of the roadblock for cancer cell reprogramming. Furthermore, we provide new insights into application of iPSCs technology in cancer cell field for therapeutic purposes.


Subject(s)
Humans , Breast Neoplasms , Cell Line , Cellular Reprogramming , Fibroblasts , Induced Pluripotent Stem Cells , Methods , Transcriptome , Zidovudine
7.
The Malaysian Journal of Pathology ; : 325-329, 2018.
Article in English | WPRIM | ID: wpr-750377

ABSTRACT

@#Introduction: Induced pluripotent stem cells (iPSC) that exhibit embryonic stem cell-like properties with unlimited self-renewal and multilineage differentiation properties, are a potential cell source in regenerative medicine and cell-based therapy. Although retroviral and lentiviral transduction methods to generate iPSC are well established, the risk of mutagenesis limits the use of these products for therapeutic applications. Materials and Methods: In this study, reprogramming of human dermal fibroblasts (NHDF) into iPSC was carried out using non-integrative Sendai virus for transduction. The iPSC clones were characterised based on the morphological changes, gene expression of pluripotency markers, and spontaneous and directed differentiation abilities into cells of different germ layers. Results: On day 18-25 post-transduction, colonies with embryonic stem cell-like morphology were obtained. The iPSC generated were free of Sendai genome and transgene after passage 10, as confirmed by RT-PCR. NHDF-derived iPSC expressed multiple pluripotency markers in qRT-PCR and immunofluorescence staining. When cultured in suspension for 8 days, iPSC successfully formed embryoid body-like spheres. NHDF-derived iPSC also demonstrated the ability to undergo directed differentiation into ectoderm and endoderm. Conclusion: NHDF were successfully reprogrammed into iPSC using non-integrating Sendai virus for transduction.

8.
Protein & Cell ; (12): 365-378, 2017.
Article in English | WPRIM | ID: wpr-756992

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1 and FUS mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis of motor neurons derived from SOD1 and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.


Subject(s)
Humans , Amyotrophic Lateral Sclerosis , Genetics , Metabolism , Therapeutics , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Therapy , Genome-Wide Association Study , Induced Pluripotent Stem Cells , Metabolism , Mutation, Missense , RNA-Binding Protein FUS , Genetics , Metabolism , Superoxide Dismutase-1 , Genetics , Metabolism
9.
J Biosci ; 2016 Mar; 41(1): 157-165
Article in English | IMSEAR | ID: sea-181556

ABSTRACT

The main objective of regenerative medicine is to replenish cells or tissues or even to restore different body parts that are lost or damaged due to disease, injury and aging. Several avenues have been explored over many decades to address the fascinating problem of regeneration at the cell, tissue and organ levels. Here we discuss some of the primary approaches adopted by researchers in the context of enhancing the regenerating ability of mammals. Natural regeneration can occur in different animal species, and the underlying mechanism is highly relevant to regenerative medicine-based intervention. Significant progress has been achieved in understanding the endogenous regeneration in urodeles and fishes with the hope that they could help to reach our goal of designing future strategies for human regeneration.

10.
International Journal of Stem Cells ; : 21-30, 2016.
Article in English | WPRIM | ID: wpr-196826

ABSTRACT

Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field.


Subject(s)
Humans , Blood Cells , Bone Marrow , Fetal Blood , Heart Diseases , Heart Failure , Heart Transplantation , Incidence , Mortality , Muscle Cells , Myocardial Infarction , Myocardial Ischemia , Myocytes, Cardiac , Neurons , Organ Transplantation , Pluripotent Stem Cells , Regeneration , Skin , Stem Cells , Tissue Donors , Transplants , Ventricular Dysfunction, Left , Ventricular Function, Left
11.
Journal of International Pharmaceutical Research ; (6): 183-190, 2016.
Article in Chinese | WPRIM | ID: wpr-845567

ABSTRACT

In recent years, continuous progress has been made in the induced pluripotent stem cells (iPSC) research. iPSC can differentiate into many kinds of expected neural cells to treat nervous system diseases which lack of neural cells, and play relevant functional roles. Since the iPSC are generated from the somatic cells, they do not have the problems of the ethics and immune rejections and open the windows for their clinical applications to study the mechanisms, drug screening and autotransplantation therapy of the human diseases. Here we reviewe the recent research and application of iPSC on some neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALC) and Huntington's disease (HD).

12.
Protein & Cell ; (12): 210-221, 2016.
Article in English | WPRIM | ID: wpr-757146

ABSTRACT

Xeroderma pigmentosum (XP) is a group of genetic disorders caused by mutations of XP-associated genes, resulting in impairment of DNA repair. XP patients frequently exhibit neurological degeneration, but the underlying mechanism is unknown, in part due to lack of proper disease models. Here, we generated patient-specific induced pluripotent stem cells (iPSCs) harboring mutations in five different XP genes including XPA, XPB, XPC, XPG, and XPV. These iPSCs were further differentiated to neural cells, and their susceptibility to DNA damage stress was investigated. Mutation of XPA in either neural stem cells (NSCs) or neurons resulted in severe DNA damage repair defects, and these neural cells with mutant XPA were hyper-sensitive to DNA damage-induced apoptosis. Thus, XP-mutant neural cells represent valuable tools to clarify the molecular mechanisms of neurological abnormalities in the XP patients.


Subject(s)
Female , Humans , Male , DNA Damage , DNA Repair , DNA-Binding Proteins , Genetics , Metabolism , Induced Pluripotent Stem Cells , Metabolism , Pathology , Models, Biological , Mutation , Neural Stem Cells , Metabolism , Pathology , Xeroderma Pigmentosum , Genetics , Metabolism , Pathology
13.
Hanyang Medical Reviews ; : 190-195, 2015.
Article in English | WPRIM | ID: wpr-29874

ABSTRACT

Induced pluripotent stem cells (iPSC) are specially manipulated cells from somatic cells by the introduction of four factors that are reprogrammed. The properties of iPSC are similar to embryonic stem cells (ESC) characteristic of self-renewal and pluripotency. The technology of reprogramming somatic cells to iPSC enables the generation of patient-specific cells that can be used as powerful tools for drug screening, in vitro models for human disease and autologous transplantation. The iPSC technology provides a priceless resource for regenerative medicine but there are still changing obstacles over the safety of iPSC in avoiding induction of tumorigenicity and maintaining high purity of re-differentiated cells from iPSC to produce more functional cells for cell therapy. A variety of methods to overcome the limitation of iPSC application applied in the clinical setting have been developed. In this review, we summarize the recent progress in iPSC generation and differentiation techniques to facilitate clinical application of iPSC with future potential in regenerative medicine.


Subject(s)
Humans , Autografts , Cell- and Tissue-Based Therapy , Drug Evaluation, Preclinical , Embryonic Stem Cells , Induced Pluripotent Stem Cells , Regenerative Medicine , Stem Cells , Transplantation, Autologous
14.
Experimental Neurobiology ; : 207-214, 2014.
Article in English | WPRIM | ID: wpr-91757

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, characterized by the predominant loss of motor neurons (MNs) in primary motor cortex, the brainstem, and the spinal cord, causing premature death in most cases. Minimal delay of pathological development by available medicine has prompted the search for novel therapeutic treatments to cure ALS. Cell-based therapy has been proposed as an ultimate source for regeneration of MNs. Recent completion of non-autologous fetal spinal stem cell transplant to ALS patients brought renewed hope for further human trials to cure the disease. Autologous somatic stem cell-based human trials are now in track to reveal the outcome of the ongoing trials. Furthermore, induced pluripotent stem cell (iPSC)-based ALS disease drug screen and autologous cell transplant options will broaden therapeutic options. In this review paper, we discuss recent accomplishments in cell transplant treatment for ALS and future options with iPSC technology.


Subject(s)
Humans , Amyotrophic Lateral Sclerosis , Brain Stem , Hope , Mortality, Premature , Motor Cortex , Motor Neurons , Neural Stem Cells , Neurodegenerative Diseases , Pluripotent Stem Cells , Regeneration , Spinal Cord , Stem Cells , Transplants
15.
Blood Research ; : 7-14, 2014.
Article in English | WPRIM | ID: wpr-61201

ABSTRACT

Induced pluripotent stem cell (iPSC) technology has shown us great hope to treat various human diseases which have been known as untreatable and further endows personalized medicine for future therapy without ethical issues and immunological rejection which embryonic stem cell (hES) treatment has faced. It has been agreed that iPSCs knowledge can be harnessed from disease modeling which mimics human pathological development rather than trials utilizing conventional rodent and cell lines. Now, we can routinely generate iPSC from patient specific cell sources, such as skin fibroblast, hair follicle cells, patient blood samples and even urine containing small amount of epithelial cells. iPSC has both similarity and dissimilarity to hES. iPSC is similar enough to regenerate tissue and even full organism as ES does, however what we want for therapeutic advantage is limited to regenerated tissue and lineage specific differentiation. Depending on the lineage and type of cells, both tissue memory containing (DNA rearrangement/epigenetics) and non-containing iPSC can be generated. This makes iPSC even better choice to perform disease modeling as well as cell based therapy. Tissue memory containing iPSC from mature leukocytes would be beneficial for curing cancer and infectious disease. In this review, the benefit of iPSC for translational approaches will be presented.


Subject(s)
Humans , Cell Line , Communicable Diseases , Embryonic Stem Cells , Epithelial Cells , Ethics , Fibroblasts , Hair Follicle , Hope , Precision Medicine , Leukocytes , Memory , Pluripotent Stem Cells , Rodentia , Skin , Stem Cells , Transplants
16.
Gac. méd. Caracas ; 120(1): 68-71, ene.-mar. 2012. ilus
Article in Spanish | LILACS | ID: lil-661906

ABSTRACT

Se presenta en forma resumida los principales hallazgos del trabajo de Liu y col (1), investigadores del Instituto Salk, California, publicado en abril de 2011, donde se describe un modelo celular in vitro del síndrome de progeria de Hutchison-Gilford (SPHG), basado en células madre pluripotentes inducidas po reprogramación de fibroblastos. Tiene gran interés porque ofrece la posibilidad de estudiar la fisiopatología de las enfermedades que cursan con envejecimiento rápido, prematuro y ayudar a compreder mejor los procesos de envejecimiento que ocurren en la población humana general. Se incluye información básica relacionada con la progeria


A summary of the main findings published in April 2011 by Liu et al (1), researchers at the Salk Institute, California, where a cellular in vitro model of Hutchinson-Gilford progeria syndrome (HGPS) was described based on induced pluripotent stem cells derived from reprogrammed fibroblasts. It is of great interest because it allows the study of the pathogenesis of premature, rapid aging and helps understand ageing of the general human population. Basic information about progeria is included


Subject(s)
Humans , Stem Cells/radiation effects , Cellular Senescence/physiology , Progeria/diagnosis
17.
The Korean Journal of Physiology and Pharmacology ; : 71-80, 2002.
Article in English | WPRIM | ID: wpr-728069

ABSTRACT

Previous studies have suggested that brain stem noradrenergic inputs differentially modulate neurons in the paraventricular nucleus (PVN). Here, we compared the effects of norepinephrine (NE) on spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs) in identified PVN neurons using slice patch technique. In 17 of 18 type I neurons, NE (30-100microM) reversibly decreased sIPSC frequency to 41+/-7% of the baseline value (4.4+/-0.8 Hz, p<0.001). This effect was blocked by yohimbine (2-20microM), an alpha2-adrenoceptor antagonist and mimicked by clonidine (50 microM), an alpha2-adrenoceptor agonist. In contrast, NE increased sIPSC frequency to 248+/-32% of the control (3.06+/-0.37 Hz, p<0.001) in 31 of 54 type II neurons, but decreased the frequency to 41+/-7% of the control (5.5+/-1.3 Hz) in the rest of type II neurons (p<0.001). In both types of PVN neurons, NE did not affect the mean amplitude and decay time constant of sIPSCs. In addition, membrane input resistance and amplitude of sIPSC of type I neurons were larger than those of type II neurons tested (1209 vs. 736 M omega, p<0.001; 110 vs. 81 pS, p<0.001). The results suggest that noradrenergic modulation of inhibitory synaptic transmission in the PVN decreases the neuronal excitability in most type I neurons via alpha2-adrenoceptor, however, either increases in about 60% or decreases in 40% of type II neurons.


Subject(s)
Brain Stem , Clonidine , Inhibitory Postsynaptic Potentials , Membranes , Neurons , Norepinephrine , Paraventricular Hypothalamic Nucleus , Synaptic Transmission , Yohimbine
SELECTION OF CITATIONS
SEARCH DETAIL