Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 471-474, 2007.
Article in Chinese | WPRIM | ID: wpr-737187

ABSTRACT

The validity of 99mTc-YIGSR, a novel receptor radio-tracer, in imaging the Ehrlich ascites tumor was evaluated. YIGSR, a pentapeptide of laminin, was labeled with 99mTc by using a bifunctional chelator S-Acetly-NH3-MAG3. The MIBI was labeled with 99mTc by following the kit instruction. The mice of tumor group were intravenously injected 1-2 mCi of 99mTc-YIGSR or 99mTc-MIBI via caudal vein, immobilized and imaged under a Gamma camera. The same procedure was performed in mice of blockade group, in which the unlabeled YIGSR was previously injected to block the receptor-recognition sites, and inflammation group serving as control. The reverse-phase Sep-Pak C18 chromatogram was found to have an essentially complete conjugation between YIGSR and S-Acetly-NH3-MAG3. The conjugated YIGSR could be radio-labeled successfully with 99mTc at room temperature and neutral pH, with a radio-labeling yield of 62%. Without the chelator S-Acetly-NH3-MAG3, the YIGSR was labeled with 99mTc at an efficiency of 4%. The imagological study revealed obvious tumor accumulation of 99mTc-YIGSR 15 min after the injection, and the uptake peaked after 3 h with a tumor-to-muscle ratio (T/M) of 11.36. The radio-tracer was slowly cleared up and resulted in a T/M of 3.01 at the 8th h after the injection. As for blocked group, the tumor uptake of radiotracer was significantly lower, with the highest T/M being 4.61 after 3 h and 0.89 after 8 h. The T/M was 3.72 at the 3rd h and 1.29 at the 8th h after the 99mTc-YIGSR injection in the inflammatory group. The T/M was significantly higher in tumor group than in inflammatory group or control group (P<0.001). In the 99mTc-MIBI group, the T/M was 1.40 at the 3rd h and 0.55 at the 8th h after the injection, which showed a significant difference as compared with 99mTc-YIGSR (P<0.001).It is concluded that YIGSR can be successfully radiolabelled by using S-Acetly-NH3-MAG3.99mTc-YIGSR has many advantages in tumor imaging, such as quick and clear visualization, high sensitivity and specificity, and satisfactory target/non-target ratio (N/NT). It promises to be tumor radio-tracer.

2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 471-474, 2007.
Article in Chinese | WPRIM | ID: wpr-735719

ABSTRACT

The validity of 99mTc-YIGSR, a novel receptor radio-tracer, in imaging the Ehrlich ascites tumor was evaluated. YIGSR, a pentapeptide of laminin, was labeled with 99mTc by using a bifunctional chelator S-Acetly-NH3-MAG3. The MIBI was labeled with 99mTc by following the kit instruction. The mice of tumor group were intravenously injected 1-2 mCi of 99mTc-YIGSR or 99mTc-MIBI via caudal vein, immobilized and imaged under a Gamma camera. The same procedure was performed in mice of blockade group, in which the unlabeled YIGSR was previously injected to block the receptor-recognition sites, and inflammation group serving as control. The reverse-phase Sep-Pak C18 chromatogram was found to have an essentially complete conjugation between YIGSR and S-Acetly-NH3-MAG3. The conjugated YIGSR could be radio-labeled successfully with 99mTc at room temperature and neutral pH, with a radio-labeling yield of 62%. Without the chelator S-Acetly-NH3-MAG3, the YIGSR was labeled with 99mTc at an efficiency of 4%. The imagological study revealed obvious tumor accumulation of 99mTc-YIGSR 15 min after the injection, and the uptake peaked after 3 h with a tumor-to-muscle ratio (T/M) of 11.36. The radio-tracer was slowly cleared up and resulted in a T/M of 3.01 at the 8th h after the injection. As for blocked group, the tumor uptake of radiotracer was significantly lower, with the highest T/M being 4.61 after 3 h and 0.89 after 8 h. The T/M was 3.72 at the 3rd h and 1.29 at the 8th h after the 99mTc-YIGSR injection in the inflammatory group. The T/M was significantly higher in tumor group than in inflammatory group or control group (P<0.001). In the 99mTc-MIBI group, the T/M was 1.40 at the 3rd h and 0.55 at the 8th h after the injection, which showed a significant difference as compared with 99mTc-YIGSR (P<0.001).It is concluded that YIGSR can be successfully radiolabelled by using S-Acetly-NH3-MAG3.99mTc-YIGSR has many advantages in tumor imaging, such as quick and clear visualization, high sensitivity and specificity, and satisfactory target/non-target ratio (N/NT). It promises to be tumor radio-tracer.

3.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 712-714, 2005.
Article in Chinese | WPRIM | ID: wpr-234533

ABSTRACT

To investigate a new kind of tumor tracer 99mTc-YIGSR developed from a five amino structure (YIGSR) of the Laminin -chain,which can bind to the laminin receptors of tumor specifically, and radiolabeled with MAG3. (1) Preparation of the 99m Tc-YIGSR probe: with S-Acetly-NH3-MAG3as the chelator and with proper reductants YIGSR was labeled with 99mTc; (2) Cell culture and viability measurement: EAC was maintained in RPMI 1640 supplemented with calf serum; the trypan blue exclusion was applied to calculate the cell viability; (3) Study of the cell dynamic: The EACs uptake of 99mTc-YIGSR and99mTc-MIBI was observed at 37 ℃ and 22 ℃, respectively. (1)The labeling efficiencies of 99mTc-YIGSR and99mTc-MIBI were (62±3) % and (96±2) %, respectively; (2) The cell viability was declined with time of incubation; (3) At 37 ℃, the EACS uptake of 99mTc-YIGSR and99mTc-MIBI reached the peak of (43. 16±2.4) % and (24.4±1.8) % at 60min, respectively; and at 22 ℃, the highest uptake was (26.5±2.1) % and (9. 47±1.9) % at 60min, respectively. The in vitro study suggests that 99mTc-YIGSR is superior to 99mTc-MIBI in cell uptake and has potential value in tumor imaging.

SELECTION OF CITATIONS
SEARCH DETAIL