Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Chinese Journal of Biotechnology ; (12): 205-216, 2017.
Article in Chinese | WPRIM | ID: wpr-310597

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is one of the major etiologies responsible for the acute, highly contagious disease in the digestive tract of pigs, especially neonatal piglets. Since PEDV was first identified in Europe in the late 1970s, it has resulted in significant economic losses in many Asian swine-raising countries, including China. Recently, reverse genetics techniques including targeted RNA recombination, bacteria artificial chromosome system and in vitro ligation have been successfully used to manipulate the genome of PEDV, which providing new strategies for the clear delineation of the functions of the viral proteins, the mechanisms behind PEDV pathogenesis and the design of novel vaccines against PEDV. Here, we review the progresses of different reverse genetics platforms developed for PEDV and their applications, covering the roles of trypsin in PEDV propagation, functions of S and ORF3 protein and the development of next generation PED vaccines, and the perspectives of reverse genetics for PEDV.

2.
Journal of Bacteriology and Virology ; : 159-166, 2016.
Article in English | WPRIM | ID: wpr-174370

ABSTRACT

The porcine epidemic diarrhea virus (PEDV) has recently been shown to cause huge economic losses in the global pork industry. Our results demonstrated that the extract dose-dependently inhibited the replication of PEDV and reduced the visible cytopathic effect (CPE). Treatment with C. heterophylla Fisch extract resulted in marked reduction of PEDVinduced cytokine and chemokine expression. The antiviral activity of C. heterophylla Fisch extract on PEDV replication was found to be primarily exerted at the early stages after infection. Taken together, our data indicate that C. heterophylla Fisch extract may be a good therapeutic agent for use against PEDV and also a potential candidate to be evaluated against other human and animal coronaviruses.


Subject(s)
Animals , Humans , Coronavirus , Corylus , Porcine epidemic diarrhea virus , Red Meat
SELECTION OF CITATIONS
SEARCH DETAIL