Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
1.
Acta Pharmaceutica Sinica ; (12): 43-60, 2024.
Article in Chinese | WPRIM | ID: wpr-1005438

ABSTRACT

Influenza virus causes serious threat to human life and health. Due to the inherent high variability of influenza virus, clinically resistant mutant strains of currently approved anti-influenza virus drugs have emerged. Therefore, it is urgent to develop antiviral drugs with new targets or mechanisms of action. RNA-dependent RNA polymerase is directly responsible for viral RNA transcription and replication, and plays key roles in the viral life cycle, which is considered an important target of anti-influenza drug design. From the point of view of medicinal chemistry, this review summarizes current advances in diverse small-molecule inhibitors targeting influenza virus RNA-dependent RNA polymerase, hoping to provide valuable reference for development of novel antiviral drugs.

2.
Acta Pharmaceutica Sinica ; (12): 35-42, 2024.
Article in Chinese | WPRIM | ID: wpr-1005437

ABSTRACT

Sesquiterpenoids are widely found in nature, while nitrobenzoyl sesquiterpenoids are relatively rare. Twelve natural nitrobenzoyl sesquiterpenoids were all derived from marine Aspergillus fungi, which are typical natural products with marine characteristics. These natural products exhibit good antitumor, antiviral, and inhibition of osteoclast differentiation activity, especially in the treatment of osteoclast-related diseases, showing good medicinal development value. This article reviews the natural product sources, chemical structure, chemical synthesis, biosynthesis, bioactivity, and pharmacological mechanisms of nitrobenzoyl sesquiterpenoids and predicts and discusses their absorption, distribution, metabolism, excretion, toxicity (ADME/T), and drug-likeness, providing a comprehensive understanding of the natural products of nitrobenzoyl sesquiterpenoids from marine sources and their potential for pharmaceutical development.

3.
Acta Pharmaceutica Sinica ; (12): 3549-3556, 2023.
Article in Chinese | WPRIM | ID: wpr-1004653

ABSTRACT

The exploration of drug toxicity and mechanisms is a vital component in ensuring the safe use of drugs in clinical practice, as this topic has attracted widespread concern. The intestinal flora holds great significance for drug metabolism, efficacy and mechanism, and is an instrumental metabolic organ that facilitates material information transfer and biotransformation. However, an increasing number of studies have shown that intestinal bacteria are closely related to the toxicity of specific drugs. On the one hand, drugs are transformed into toxic metabolites under the influence of intestinal bacteria, thus inducing direct drug toxicity. On the other hand, the composition and function of the intestinal flora are altered under drug influence, resulting in disruption of endogenous metabolic pathways. Consequently, this disruption compromises the intestinal barrier and affects other organs, leading to indirect drug toxicity. This review meticulously compiles recent examples of drug toxicity attributed to intestinal bacteria, explores in depth the contention that metabolic enzymes of gut microbiota may be of great influence on oral drug toxicity, and outlines prospective avenues for future research on gut microbiota and drug toxicity and mechanisms. This not only provides novel perspectives for the judicious clinical utilization of drugs but also offers insights for the safety assessment of innovative pharmaceuticals.

4.
Acta Pharmaceutica Sinica ; (12): 3508-3518, 2023.
Article in Chinese | WPRIM | ID: wpr-1004648

ABSTRACT

Tumor brings great threat to human public health. In recent years, incidence rate and mortality of tumor were rapidly increased in the world. Anti-tumor therapies have undergone the development of cytotoxic therapy, targeted therapy, and immunotherapy. Among them, tumor immunotherapy is rapidly developed and becomes an important anti-tumor therapy in recent years, although it also brings some related side effects. Tumor microenvironment (TME) is composed of immune cells, vascular vessels, fibroblasts, the extracellular matrix, etc. TME significantly affects the efficacy of immunotherapy. Macrophages in the TME are named as tumor associated macrophages (TAMs). Recently, increasing studies have shown that TAMs play an important role in the regulation of tumor immunity, especially in tumor immune surveillance and immune escape. Currently, more and more anti-tumor immunotherapy strategies targeting TAMs are at the development stage. Based on the important role of TAMs in the TME and their potential as therapeutic targets in tumor immunotherapy, we first reviewed the subtypes and functions of TAMs, as well as the roles of TAMs in tumors. Furthermore, we summarized the research progress on anti-tumor strategies targeting TAMs and the current status of drug targeting TAMs. The current review will provide new ideas and novel insights for tumor immunotherapy.

5.
Acta Pharmaceutica Sinica ; (12): 3674-3683, 2023.
Article in Chinese | WPRIM | ID: wpr-1004638

ABSTRACT

Ramulus Mori (Sangzhi) alkaloids (SZ-A) are a group of polyhydroxy alkaloids extracted and isolated from the traditional Chinese medicine mulberry twig, which is mainly used for the treatment of type 2 diabetes mellitus (T2DM). In addition to acting as a glycosidase inhibitor in the small intestine after oral administration, SZ-A can also be absorbed into blood and widely distributed to target organs related to diabetes, exerting multiple pharmacological effects. It is important to elucidate the possible pharmacokinetic influences of SZ-A for its clinical rational applications, such as drug interactions, the effects of food and alcohol on the absorption of SZ-A. However, studies in this area are limited. Therefore, the pharmacokinetic interactions between orally administrated SZ-A (50 mg·kg-1) and metformin hydrochloride (Met, 200 mg·kg-1) in Sprague-Dawley (SD) rats were examined. Then, the effect of food (standard feed) on the pharmacokinetics of SZ-A was investigated using fasting administration of SZ-A (50 mg·kg-1) in rats as a control. Finally, we investigated the pharmacokinetic characteristics of SZ-A (50 mg·kg-1) in different concentrations alcohol solutions using aqueous solution of SZ-A administered to rats as a control to evaluate the effect of alcohol on the bioabsorption of SZ-A. The results showed no significant pharmacokinetic interactions between SZ-A and Met after combination treatment. The standard feed had little effect on the pharmacokinetic profile of SZ-A. Alcohol retarded the absorption of SZ-A, resulting in a significant decrease in the Cmax of SZ-A. The decrease was greater at higher alcohol concentrations; however, no significant difference was observed in the AUC0-t. These results support the clinical rational applications of SZ-A. All animal protocols were approved by the Ethics Committee of Kangtai Medical Laboratory Service Hebei Co., Ltd. (Hebei, China) (No. MDL2022-01-17-1).

6.
Acta Pharmaceutica Sinica ; (12): 3572-3582, 2023.
Article in Chinese | WPRIM | ID: wpr-1004636

ABSTRACT

The natural products containing 3-acyl tetramic acid units have a large number of complex and diverse structures, showing a variety of biological activities such as antibacterial, antiviral, anti-tumor and so on, especially antibacterial activity which are regarded as a potential reservoir of new antibiotics. In this paper, the antibacterial activities of various natural products containing 3-acyl tetramic acids and the new research hotspots and directions are reviewed.

7.
Acta Pharmaceutica Sinica ; (12): 2203-2217, 2023.
Article in Chinese | WPRIM | ID: wpr-999143

ABSTRACT

To address the continuous emergence of drug-resistant strains of viruses and the outbreaks of novel virus infections, developing new antiviral drugs based on novel strategies has become an important and urgent research topic. In recent years, the rapidly developing multi-specific binding strategy has become a focus and been widely applied in antiviral. This review summarizes the recent progress of the multi-specific binding strategy in the antiviral field from the perspective of medicinal chemistry and discusses existing challenges as well as future opportunities for antiviral drug discovery.

8.
Acta Pharmaceutica Sinica ; (12): 2292-2299, 2023.
Article in Chinese | WPRIM | ID: wpr-999127

ABSTRACT

Small interfering RNA (siRNA) is the initiator of RNA interference and inhibits gene expression by targeted degradation of specific messenger RNA. siRNA-mediated gene regulation has high efficiency and specificity and exhibits great significance in the treatment of diseases. However, the naked or unmodified siRNA has poor stability, easy to degrade by nuclease, short half-life, and low intracellular delivery. As an emerging non-viral nucleic acid delivery system, ionizable lipid nanoparticles play an important role in improving the druggability of siRNA. At present, one siRNA drug based on ionizable lipid nanoparticles has been approved for the treatment of rare disease. This review introduces the research progress in ionizable lipid nanoparticles for siRNA delivery, focusing on the effect of each component of lipid nanoparticles on the efficiency of siRNA-mediated gene silencing, which provides new references for the studies on ionizable lipid nanocarriers for siRNA delivery.

9.
Acta Pharmaceutica Sinica ; (12): 2035-2046, 2023.
Article in Chinese | WPRIM | ID: wpr-999125

ABSTRACT

Molecular chaperone system, which mainly consist of heat shock proteins family and their cochaperones, is crucial for maintaining proteostasis in life. It assists in folding, maturation and ubiquitin-proteasome-mediated degradation of proteins, thus to play a key role in cell proliferation and apoptosis. Functional disorder of molecular chaperone system is highly relevant to occurrence and development of multiple diseases including cancers, autoimmune disease/inflammatory, infective diseases, neurodegenerative disease, etc. Therefore, molecular chaperone system has long been regarded as potential drug targets. In this review, we outline the progress in the design of small molecules targeting molecular chaperone system and analyze the features of small molecules with different mechanisms. Finally, we put forward expects about potential development directions for future drug design in this field.

10.
Acta Pharmaceutica Sinica ; (12): 2016-2034, 2023.
Article in Chinese | WPRIM | ID: wpr-999116

ABSTRACT

Although small molecule drugs (SMD) are still mainstream for the treatment of diseases, large molecule biologicss of many advantages, pose a challenge to the further discovery and use of SMD. The advantages of SMD are the convenience of oral administration and good patient compliance. However, the challenge with SMD is to integrate the PD, PK, selectivity and safety into a chemical structure. Because of their small size and surface area they often bind to various proteins, and off-target actions can cause adverse reactions. In this sense, selectivity is critical. Based upon target as the core to construct a chemical structure, it is necessary to consider the requirements of all the attributes, but achievement of the full-dimensional optimization is difficult. Modern drug discovery has been greatly enhanced by molecular biology and structural biology, and new strategies and technologies have emerged, which have created many successful medicines. For example, under the guidance of structural biology, covalent binding drugs connect moderate "electrophilic warheads" to the appropriate positions of molecules, and upon binding to their targets the electrophiles are irreversibly linked to the target by covalent bonds. Molecular biology can be directly applied to the development of antibody-coupled drugs (ADC). The antibody (A) acts as a carrier and a guide (for PK), and carries toxic molecules (D) into cancer cells, thus playing a killing role (for PD). The separate pharmacodynamic and pharmacokinetic entities are coupled (C) by linkers. PROTACs are also bifunctional molecules, which recruit a target protein and ubiquitin ligase E3 to form a ternary complex, which then acts as a catalyst to ubiquitinate the target protein and lead to degradation by the proteasome. In addition, in recent years, the combination of two fixed-dose drugs has improved selectivity, safety, and long-term benefit with many severe diseases, and can be regarded as an innovative strategy of physical combination. This review discusses some successful examples to briefly present the principles from the perspective of medicinal chemistry and therapeutic application.

11.
Acta Pharmaceutica Sinica ; (12): 2341-2352, 2023.
Article in Chinese | WPRIM | ID: wpr-999107

ABSTRACT

Cancer is still one of the major diseases threatening human life and health. At present, how to achieve precise diagnosis and treatment of tumors is the biggest challenge in cancer treatment. Prodrugs use the tumor specificity of targeting molecules to deliver anticancer drugs to tumor sites, which can effectively improve drug bioavailability, therapeutic efficacy and safety, and are currently a hot spot in the research and development of anticancer drugs. The targeting molecules of prodrugs mainly include nucleic acid aptamers, polymers, antibodies, polypeptides, etc. Among them, polypeptides have the advantages of good biocompatibility, controllable degradation performance, high in vivo responsiveness, and simple and easy preparation methods, and are widely used. It is used to construct peptide-drug conjugates (PDC) prodrugs to achieve targeted therapy of tumors. In recent years, with the development of phage peptide library technology and peptide standard solid-phase synthesis technology, more and more targeted peptides have been discovered and effectively synthesized and modified, providing strong support for the development of PDC. This review briefly introduces the types and functions of functional peptides and linkers in PDC, and discusses the application of PDC in chemotherapy, immunotherapy and photodynamic therapy in tumor targeted diagnosis and treatment, and finally summarizes the difficulties faced by PDC drug development.

12.
Acta Pharmaceutica Sinica ; (12): 3349-3353, 2023.
Article in Chinese | WPRIM | ID: wpr-999080

ABSTRACT

Natural products are an important source for the development of antitumor lead compounds, but the pharmacological effects and regulatory mechanisms of natural products in osimertinib resistance in non-small cell lung cancer (NSCLC) are not well understood. The natural product ligustroflavone was used as the research object to analyze its efficacy in osimertinib-resistant NSCLC cells by cell proliferation assay and cell cycle detection. The potential targets of ligustroflavone in osimertinib-resistant NSCLC cells were screened by public databases and bioinformatics, molecular docking and microscale thermophoresis were used to identify the interaction between privet and target molecules. Western blot was used to detect the effect of privet on the target molecules and their downstream pathways. Ligustroflavone reduced the proliferation of osimertinib-resistant NSCLC cells, and could arrest the cell cycle. Cyclin-dependent kinase 6 (CDK6) was the potential target of ligustroflavone in osimertinib-resistant NSCLC cells. Ligustroflavone inhibited the activation of CDK6-Rb axis. Together, ligustroflavone could regulate osimertinib resistance in NSCLC cells by binding cell cyclin-related molecules. This study provides a theoretical basis for the targeted drug resistance of NSCLC with natural products, and also provides a new idea for the development of clinical drug combination.

13.
Acta Pharmaceutica Sinica ; (12): 3285-3295, 2023.
Article in Chinese | WPRIM | ID: wpr-999076

ABSTRACT

The "toxicity" and safety of traditional Chinese medicines have been seriously concerned. Alkaloids are the main pharmacodynamic components of many kinds of traditional Chinese medicines, which show strong biological activity at low concentration. It will also cause toxic side effects but if used improperly. Some alkaloids are both active and toxic, and the safety of related traditional Chinese medicines is particularly noteworthy. The efficacy or toxicity of alkaloids may be the result of the combined action of parent compounds and metabolites, which is not only related to the structural types of compounds, but also has obvious species differences between humans and animals. This review focused on the alkaloids contained in the "toxic" traditional Chinese medicines that are officially recorded in Chinese Pharmacopoeia and the metabolism patterns of alkaloids with different structures as well as the enzymes involved were summarized and discussed by referencing the publications in recent two decades. The present study will be beneficial to the rational use of these traditional Chinese medicines in clinic.

14.
Acta Pharmaceutica Sinica ; (12): 3270-3284, 2023.
Article in Chinese | WPRIM | ID: wpr-999071

ABSTRACT

Hepatitis B virus infection is a serious threat to human life and health. The approved anti-HBV drugs including interferons and nucleos(t)ide analogues have serious adverse effect, rebound phenomena after drug withdrawal, and drug resistance. And the cccDNA cannot be completely eliminated by both of them, which is the reason why a complete cure for hepatitis B cannot be achieved. Therefore, developing anti-HBV drugs directly targeting protein or nucleic acid of HBV remains a current public health priority. Based on the analysis of representative literature from the last decade, this article reviews recent developments in small molecule inhibitors directly targeting HBV from a medicinal chemistry perspective.

15.
Acta Pharmaceutica Sinica ; (12): 3254-3269, 2023.
Article in Chinese | WPRIM | ID: wpr-999070

ABSTRACT

Hemagglutinin and neuraminidase, two important glycoproteins on the surface of influenza virus, play a considerable role in the entry and release stage of the viral life cycle, respectively. With in-depth investigation of influenza virus glycoproteins and the continuous innovation of drug discovery strategies, a new generation of glycoproteins inhibitors have been continuously discovered. From the point of view of medicinal chemistry, this review summarizes the current advances in seeking small-molecule inhibitors targeting influenza virus glycoproteins, hoping to provide valuable guidance for future development of novel antiviral drugs.

16.
Acta Pharmaceutica Sinica ; (12): 3151-3159, 2023.
Article in Chinese | WPRIM | ID: wpr-999068

ABSTRACT

The taste of oral dosage forms has become a critical factor affecting the drug compliance and adherence to the treatment, and clinical application of the drug product may seriously restricted due to its bad taste. On the basis of the statement for the basic principle and specific performance of existing instruments, the application progress of electronic tongue on drug taste evaluation is addressed in detail. In view of its objective, fatigue-free, less harmful and accurate advantages, electronic tongue has been widely and meaningfully applied in the aspects of bitterness masking, and quality assessment and assurance of drug products. In addition, the reasons limiting the popularization of electronic tongue are mentioned in the paper, and some suggestions might be useful to enlarge the further application in the future.

17.
Acta Pharmaceutica Sinica ; (12): 3004-3015, 2023.
Article in Chinese | WPRIM | ID: wpr-999065

ABSTRACT

Cancer is the most important leading cause of death worldwide, with about 10 million deaths caused by cancer in 2020. In situ gel drug delivery systems have attracted much attention in the field of pharmacy and biotechnology due to their good histo-compatibility, excellent injectability, high drug delivery capacity, slow-release drug delivery, and less influence by the in vivo environment. Meanwhile, in situ gel can be combined with chemotherapy, photo-thermal therapy, chemokinetic therapy, immunotherapy and so on to deliver drugs into the tumor site in a less invasive way without surgical operation, forming a semi-solid gel reservoir in the tumor site to realize in situ tumor combined therapy. In this paper, the author summarized the research progress of anti-tumor in situ gel delivery system in the past 10 years, introduced its commonly used polymer materials, classification principles and specific application examples, and finally summarized and discussed the key issues, in order to provide reference for the development of new anti-tumor drug delivery system in the future.

18.
Acta Pharmaceutica Sinica ; (12): 2979-2994, 2023.
Article in Chinese | WPRIM | ID: wpr-999040

ABSTRACT

Hepatitis B virus (HBV) represents a significant global public health challenge. Despite the availability of several approved drugs for hepatitis B treatment, the persistence of covalently closed circular DNA (cccDNA) renders HBV eradication elusive, thereby leading to disease relapse after drug withdrawal. This paper reviews the regulatory mechanisms of cccDNA formation, transcription and replication, and summarizes the research progress of related small molecule regulators from the perspective of medicinal chemistry.

19.
Acta Pharmaceutica Sinica ; (12): 2560-2568, 2023.
Article in Chinese | WPRIM | ID: wpr-999027

ABSTRACT

A breakthrough in molecular biology for the twenty-first century is CRISPR/Cas gene editing, which has been used in a variety of fields due to its simplicity, adaptability, and targeting. Given the current global challenge of severe bacterial resistance, difficulties in detecting antimicrobial resistance, and slow development of antimicrobial drugs, CRISPR/Cas gene-editing technology offers a promising avenue for the development of antibacterial treatments. On the one hand, CRISPR/Cas gene editing technology helps advance the study of bacterial functions and serves as a toolbox. For instance, Cas proteins and exogenous repair systems enable efficient and precise gene editing, nCas proteins and deaminase systems facilitate template-free and single base precision editing, dCas proteins and reverse transcriptase allow for repair-free gene editing, and dCas proteins and modified sgRNA enable gene expression level regulation and gene function analysis. On the other hand, its specific gene recognition and targeted DNA cleavage characteristics can be used for pathogen detection, elimination of drug-resistant bacteria and genes, and hold promise as a new strategy for clinical diagnosis and treatment.

20.
Acta Pharmaceutica Sinica ; (12): 2551-2559, 2023.
Article in Chinese | WPRIM | ID: wpr-999023

ABSTRACT

Single cell RNA sequencing (scRNA-seq) is an advanced technology to study the transcriptome information at the single cell level. The application of this technology can attribute to analyze the heterogeneous map of cells in the process of disease development, and precisely identify the specific cell subsets that are responsive to pharmacological therapy. Currently, scRNA-seq technology has been widely applied in the field of drug research, including studies on therapeutic targets, drug-induced adverse reactions, drug resistance and vaccine. This work reviews the application of scRNA-seq technology in drug discovery, which offers a scientific basis for personalized and accurate medication therapy.

SELECTION OF CITATIONS
SEARCH DETAIL