Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 130
Filter
1.
Acta Pharmaceutica Sinica B ; (6): 421-432, 2024.
Article in English | WPRIM | ID: wpr-1011246

ABSTRACT

A biosynthetic gene cluster for the bioactive fungal sesterterpenoids variecolin ( 1) and variecolactone ( 2) was identified in Aspergillus aculeatus ATCC 16872. Heterologous production of 1 and 2 was achieved in Aspergillus oryzae by expressing the sesterterpene synthase VrcA and the cytochrome P450 VrcB. Intriguingly, the replacement of VrcB with homologous P450s from other fungal terpenoid pathways yielded three new variecolin analogues ( 5- 7). Analysis of the compounds' anticancer activity in vitro and in vivo revealed that although 5 and 1 had comparable activities, 5 was associated with significantly reduced toxic side effects in cancer-bearing mice, indicating its potentially broader therapeutic window. Our study describes the first tests of variecolin and its analogues in animals and demonstrates the utility of synthetic biology for creating molecules with improved biological activities.

2.
Chinese Herbal Medicines ; (4): 13-26, 2024.
Article in English | WPRIM | ID: wpr-1010744

ABSTRACT

Medicinal plants are a valuable source of essential medicines and herbal products for healthcare and disease therapy. Compared with chemical synthesis and extraction, the biosynthesis of natural products is a very promising alternative for the successful conservation of medicinal plants, and its rapid development will greatly facilitate the conservation and sustainable utilization of medicinal plants. Here, we summarize the advances in strategies and methods concerning the biosynthesis and production of natural products of medicinal plants. The strategies and methods mainly include genetic engineering, plant cell culture engineering, metabolic engineering, and synthetic biology based on multiple "OMICS" technologies, with paradigms for the biosynthesis of terpenoids and alkaloids. We also highlight the biosynthetic approaches and discuss progress in the production of some valuable natural products, exemplifying compounds such as vindoline (alkaloid), artemisinin and paclitaxel (terpenoids), to illustrate the power of biotechnology in medicinal plants.

3.
China Journal of Chinese Materia Medica ; (24): 2284-2297, 2023.
Article in Chinese | WPRIM | ID: wpr-981304

ABSTRACT

Heterologous biomimetic synthesis of the active ingredients of traditional Chinese medicine(TCM) is a new mode of resource acquisition and has shown great potential in the protection and development of TCM resources. According to synthetic biology and by constructing biomimetic microbial cells and imitating the synthesis of active ingredients in medicinal plants and animals, the key enzymes obtained from medicinal plants and animals are scientifically designed and systematically reconstructed and optimized to realize the heterologous synthesis of the active ingredients in microorganisms. This method ensures an efficient and green acquisition of target products, and also achieves large-scale industrial production, which is conducive to the production of scarce TCM resources. Additiona-lly, the method playes a role in agricultural industrialization, and provides a new option for promoting the green and sustainable deve-lopment of TCM resources. This review systematically summarized the important progress in the heterologous biomimetic synthesis of TCM active ingredients from three research areas: biosynthesis of terpenoids, flavonoids, phenylpropanoids, alkaloids and other active ingredients, key points and difficulties in heterologous biomimetic synthesis, and biomimetic cells with complex TCM ingredients. This study facilitated the application of new generation of biotechnology and theory to the development of TCM.


Subject(s)
Animals , Medicine, Chinese Traditional , Drugs, Chinese Herbal , Biomimetics , Plants, Medicinal , Alkaloids
4.
Chinese Journal of Biotechnology ; (12): 2517-2545, 2023.
Article in Chinese | WPRIM | ID: wpr-981215

ABSTRACT

There are a large number of natural microbial communities in nature. Different populations inside the consortia expand the performance boundary of a single microbial population through communication and division of labor, reducing the overall metabolic burden and increasing the environmental adaptability. Based on engineering principles, synthetic biology designs or modifies basic functional components, gene circuits, and chassis cells to purposefully reprogram the operational processes of the living cells, achieving rich and controllable biological functions. Introducing this engineering design principle to obtain structurally well-defined synthetic microbial communities can provide ideas for theoretical studies and shed light on versatile applications. This review discussed recent progresses on synthetic microbial consortia with regard to design principles, construction methods and applications, and prospected future perspectives.


Subject(s)
Microbial Consortia/genetics , Synthetic Biology , Microbiota , Models, Theoretical
5.
Chinese Journal of Biotechnology ; (12): 2465-2484, 2023.
Article in Chinese | WPRIM | ID: wpr-981212

ABSTRACT

Large-scale genetic manipulation of the genome refers to the genetic modification of large fragments of DNA using knockout, integration and translocation. Compared to small-scale gene editing, large-scale genetic manipulation of the genome allows for the simultaneous modification of more genetic information, which is important for understanding the complex mechanisms such as multigene interactions. At the same time, large-scale genetic manipulation of the genome allows for larger-scale design and reconstruction of the genome, and even the creation of entirely new genomes, with great potential in reconstructing complex functions. Yeast is an important eukaryotic model organism that is widely used because of its safety and easiness of manipulation. This paper systematically summarizes the toolkit for large-scale genetic manipulation of the yeast genome, including recombinase-mediated large-scale manipulation, nuclease-mediated large-scale manipulation, de novo synthesis of large DNA fragments and other large-scale manipulation tools, and introduces their basic working principles and typical application cases. Finally, the challenges and developments in large-scale genetic manipulation are presented.


Subject(s)
DNA , Gene Editing , Genetic Engineering , Saccharomyces cerevisiae/genetics , Translocation, Genetic
6.
Chinese Journal of Biotechnology ; (12): 2265-2283, 2023.
Article in Chinese | WPRIM | ID: wpr-981202

ABSTRACT

Natural plant-derived diterpenoids are a class of compounds with diverse structures and functions. These compounds are widely used in pharmaceuticals, cosmetics and food additives industries because of their pharmacological properties such as anticancer, anti-inflammatory and antibacterial activities. In recent years, with the gradual discovery of functional genes in the biosynthetic pathway of plant-derived diterpenoids and the development of synthetic biotechnology, great efforts have been made to construct a variety of diterpenoid microbial cell factories through metabolic engineering and synthetic biology, resulting in gram-level production of many compounds. This article summarizes the construction of plant-derived diterpenoid microbial cell factories through synthetic biotechnology, followed by introducing the metabolic engineering strategies applied to improve plant-derived diterpenoids production, with the aim to provide a reference for the construction of high-yield plant-derived diterpenoid microbial cell factories and the industrial production of diterpenoids.


Subject(s)
Diterpenes/metabolism , Biotechnology , Metabolic Engineering , Biosynthetic Pathways/genetics , Plants/genetics , Synthetic Biology
7.
Chinese Journal of Biotechnology ; (12): 2204-2214, 2023.
Article in Chinese | WPRIM | ID: wpr-981198

ABSTRACT

Tetraacetyl phytosphingosine (TAPS) is an excellent raw material for natural skin care products. Its deacetylation leads to the production of phytosphingosine, which can be further used for synthesizing the moisturizing skin care product ceramide. For this reason, TAPS is widely used in the skin care oriented cosmetics industry. The unconventional yeast Wickerhamomyces ciferrii is the only known microorganism that can naturally secrete TAPS, and it has become the host for the industrial production of TAPS. This review firstly introduces the discovery, functions of TAPS, and the metabolic pathway for TAPS biosynthesis is further introduced. Subsequently, the strategies for increasing the TAPS yield of W. ciferrii, including haploid screening, mutagenesis breeding and metabolic engineering, are summarized. In addition, the prospects of TAPS biomanufacturing by W. ciferrii are discussed in light of the current progresses, challenges, and trends in this field. Finally, guidelines for engineering W. ciferrii cell factory using synthetic biology tools for TAPS production are also presented.


Subject(s)
Sphingosine , Ceramides , Metabolic Engineering , Synthetic Biology
8.
Chinese Journal of Biotechnology ; (12): 2101-2107, 2023.
Article in Chinese | WPRIM | ID: wpr-981192

ABSTRACT

Engineering efficient enzymes or microbial cell factories should help to establish green bio-manufacturing process for chemical overproduction. The rapid advances and development in synthetic biology, systems biology and enzymatic engineering accerleate the establishing feasbile bioprocess for chemical biosynthesis, including expanding the chemical kingdom and improving the productivity. To consolidate the latest advances in chemical biosynthesis and promote green bio-manufaturing, we organized a special issue on chemical bioproduction that including review or original research papers about enzymatic biosynthesis, cell factory, one-carbon based biorefinery and feasible strategies. These papers comprehensively discussed the latest advaces, the challenges as well as the possible solutions in chemical biomanufacturing.


Subject(s)
Synthetic Biology , Carbon , Metabolic Engineering
9.
Chinese Journal of Biotechnology ; (12): 2053-2069, 2023.
Article in Chinese | WPRIM | ID: wpr-981189

ABSTRACT

In recent years, the petroleum-based plastic pollution problem has been causing global attention. The idea of "degradation and up-cycling of plastics" was proposed for solving the environmental pollution caused by non-degradable plastics. Following this idea, plastics would be firstly degraded and then reconstructed. Polyhydroxyalkanoates (PHA) can be produced from the degraded plastic monomers as a choice to recycle among various plastics. PHA, a family of biopolyesters synthesized by many microbes, have attracted great interest in industrial, agricultural and medical sectors due to its biodegradability, biocompatibility, thermoplasticity and carbon neutrality. Moreover, the regulations on PHA monomer compositions, processing technology, and modification methods may further improve the material properties, making PHA a promising alternative to traditional plastics. Furthermore, the application of the "next-generation industrial biotechnology (NGIB)" utilizing extremophiles for PHA production is expected to enhance the PHA market competitiveness, promoting this environmentally friendly bio-based material to partially replace petroleum-based products, and achieve sustainable development with carbon-neutrality. This review summarizes the basic material properties, plastic upcycling via PHA biosynthesis, processing and modification methods of PHA, and biosynthesis of novel PHA.


Subject(s)
Polyhydroxyalkanoates , Plastics , Biotechnology , Petroleum , Carbon
10.
Chinese Journal of Biotechnology ; (12): 1290-1303, 2023.
Article in Chinese | WPRIM | ID: wpr-981138

ABSTRACT

Live biotherapeutic products (LBPs) refer to the living bacteria derived from human body intestinal gut or in nature that can be used to treat the human disease. However, the naturally screened living bacteria have some disadvantages, such as deficient therapeutic effect and great divergence, which fall short of the personalized diagnosis and treatment needs. In recent years, with the development of synthetic biology, researchers have designed and constructed several engineered strains that can respond to external complex environmental signals, which speeded up the process of development and application of LBPs. Recombinant LBPs modified by gene editing can have therapeutic effect on specific diseases. Inherited metabolic disease is a type of disease that causes a series of clinical symptoms due to the genetic defect of some enzymes in the body, which may cause abnormal metabolism the corresponding metabolites. Therefore, the use of synthetic biology to design LBPs targeting specific defective enzymes will be promising for the treatment of inherited metabolic defects in the future. This review summarizes the clinic applications of LBPs and its potential for the treatment of inherited metabolic defects.


Subject(s)
Humans , Bacteria/genetics , Gene Editing , Metabolic Diseases/therapy
11.
Acta Pharmaceutica Sinica ; (12): 1619-1628, 2023.
Article in Chinese | WPRIM | ID: wpr-978728

ABSTRACT

Valencene, a kind of sesquiterpenoid with a citrus flavor, is mainly found in Valencia orange and is commonly used in cosmetics and food additives, as well as industrial synthetic nootkatone. In this study, synthetic biology was used to create a Saccharomyces cerevisiae cell factory to produce valencene. Fistly, valencene synthase gene (CnVS) from Callitropsis nootkatensis was inserted into the chromosome of the chassis strain YTT-T5. The resulting strain VAL-01 could produce 1.1 mg·L-1 valencene. Protein fusion technique was used, different valencene synthases were compared and the copy number of key genes was adjusted, yielding valencene to 436.4 mg·L-1. Then, knocking-out the transcription factor ROX1 resulted in valencene improvement by 17.4%. Moreover, the induction system of galactose was regulated, transcription factor PDR3 and INO2 were overexpressed. The engineered strain VAL-10 could produce 2 798.6 mg·L-1 valencene by high cell density fermentation method (nearly 2 500 times higher than VAL-01). This study provides a basis for green production of valencene.

12.
Acta Pharmaceutica Sinica B ; (6): 1014-1027, 2023.
Article in English | WPRIM | ID: wpr-971747

ABSTRACT

Intelligent drug delivery is a promising strategy for cancer therapies. In recent years, with the rapid development of synthetic biology, some properties of bacteria, such as gene operability, excellent tumor colonization ability, and host-independent structure, make them ideal intelligent drug carriers and have attracted extensive attention. By implanting condition-responsive elements or gene circuits into bacteria, they can synthesize or release drugs by sensing stimuli. Therefore, compared with traditional drug delivery, the usage of bacteria for drug loading has better targeting ability and controllability, and can cope with the complex delivery environment of the body to achieve the intelligent delivery of drugs. This review mainly introduces the development of bacterial-based drug delivery carriers, including mechanisms of bacterial targeting to tumor colonization, gene deletions or mutations, environment-responsive elements, and gene circuits. Meanwhile, we summarize the challenges and prospects faced by bacteria in clinical research, and hope to provide ideas for clinical translation.

13.
Chinese Journal of Biotechnology ; (12): 1142-1162, 2023.
Article in Chinese | WPRIM | ID: wpr-970429

ABSTRACT

Lysis is a common functional module in synthetic biology and is widely used in genetic circuit design. Lysis could be achieved by inducing expression of lysis cassettes originated from phages. However, detailed characterization of lysis cassettes hasn't been reported yet. Here, we first adopted arabinose- and rhamnose-inducible systems to develop inducible expression of five lysis cassettes (S105, A52G, C51S S76C, LKD, LUZ) in Escherichia coli Top10. By measuring OD600, we characterized the lysis behavior of strains harboring different lysis cassettes. These strains were harvested at different growth stages, induced with different concentrations of chemical inducers, or contained plasmids with different copy numbers. We found that although all five lysis cassettes could induce bacterial lysis in Top10, lysis behaviors differed a lot at various conditions. We further found that due to the difference in background expression levels between strain Top10 and Pseudomonas aeruginosa PAO1, it was hard to construct inducible lysis systems in strain PAO1. The lysis cassette controlled by rhamnose-inducible system was finally inserted into the chromosome of strain PAO1 to construct lysis strains after careful screen. The results indicated that LUZ and LKD were more effective in strain PAO1 than S105, A52G and C51S S76C. At last, we constructed an engineered bacteria Q16 using an optogenetic module BphS and the lysis cassette LUZ. The engineered strain was capable of adhering to target surface and achieving light-induced lysis by tuning the strength of ribosome binding sites (RBSs), showing great potential in surface modification.


Subject(s)
Rhamnose/pharmacology , Plasmids/genetics , Pseudomonas aeruginosa , Escherichia coli/metabolism
14.
Chinese Journal of Biotechnology ; (12): 807-841, 2023.
Article in Chinese | WPRIM | ID: wpr-970408

ABSTRACT

This article summarizes the reviews and original research papers published in Chinese Journaol of Biotechnology in the area of biomanufacturing driven by engineered organisms in the year of 2022. The enabling technologies including DNA sequencing, DNA synthesis, and DNA editing as well as regulation of gene expression and in silico cell modeling were highlighted. This was followed by discussing the biomanufacturing of biocatalytics products, amino acids and its derivatives, organic acids, natural products, antibiotics and active peptides, functional polysaccharides, and functional proteins. Lastly, the technologies for utilizing C1 compounds and biomass as well as synthetic microbial consortia were discussed. The aim of this article was to help the readers to gain insights into this rapidly developing field from the journal point of view.


Subject(s)
Biotechnology , Microbial Consortia , DNA , Biological Products , Publications , Synthetic Biology
15.
Chinese Journal of Biotechnology ; (12): 4647-4662, 2023.
Article in Chinese | WPRIM | ID: wpr-1008048

ABSTRACT

Limonene and its derivative perillic acid are widely used in food, cosmetics, health products, medicine and other industries as important bioactive natural products. However, inefficient plant extraction and high energy-consuming chemical synthesis hamper the industrial production of limonene and perillic acid. In this study, limonene synthase from Mentha spicata was expressed in Saccharomyces cerevisiae by peroxisome compartmentalization, and the yield of limonene was 0.038 mg/L. The genes involved in limonene synthesis, ERG10, ERG13, tHMGR, ERG12, ERG8, IDI1, MVD1, ERG20ww and tLS, were step-wise expressed via modular engineering to study their effects on limonene yield. The yield of limonene increased to 1.14 mg/L by increasing the precursor module. Using the plasmid with high copy number to express the above key genes, the yield of limonene significantly increased up to 86.74 mg/L, which was 4 337 times higher than that of the original strain. Using the limonene-producing strain as the starting strain, the production of perillic acid was successfully achieved by expressing cytochrome P450 enzyme gene from Salvia miltiorrhiza, and the yield reached 4.42 mg/L. The results may facilitate the construction of cell factory with high yield of monoterpene products by S. cerevisiae.


Subject(s)
Saccharomyces cerevisiae/metabolism , Limonene/metabolism , Metabolic Engineering , Monoterpenes/metabolism
16.
Chinese Journal of Biotechnology ; (12): 4376-4396, 2023.
Article in Chinese | WPRIM | ID: wpr-1008031

ABSTRACT

Nowadays, engineered Komagataella phaffii plays an important role in the biosynthesis of small molecule metabolites and protein products, showing great potential and value in industrial productions. With the development and application of new editing tools such as CRISPR/Cas9, it has become possible to engineer K. phaffii into a cell factory with high polygenic efficiency. Here, the genetic manipulation techniques and objectives for engineering K. phaffii are first summarized. Secondly, the applications of engineered K. phaffii as a cell factory are introduced. Meanwhile, the advantages as well as disadvantages of using engineered K. phaffii as a cell factory are discussed and future engineering directions are prospected. This review aims to provide a reference for further engineering K. phaffii cell factory, which is supposed to facilitate its application in bioindustry.


Subject(s)
Saccharomycetales/genetics , Genetic Techniques
17.
Chinese Journal of Biotechnology ; (12): 4335-4357, 2023.
Article in Chinese | WPRIM | ID: wpr-1008029

ABSTRACT

Biomanufacturing uses biological systems, including cells, microorganisms, and enzymes, to produce natural or synthetic molecules with biological activities for use in various industries, such as pharmaceuticals, cosmetics, and agriculture. These bioactive compounds are expected to play important roles in improving the quality of life and prolonging its length. Fortunately, recent advances in synthetic biology and automation technologies have accelerated the development of biomanufacturing, enabling us to create new products and replace conventional methods in a more sustainable manner. As of now, the role of biomanufacturing in the growth and innovation of bioeconomy is steadily increasing, and this techbology becomes a prevalent technology in global markets. To gain a comprehensive understanding of this field, this article presents a retrospective review of Bloomage Biotechnology's Research and Development and briefly reviews the developments of biomanufacturing and offers insights into the futre prospects. In conclusion, biomanufacturing will continue to be an important, environmentally friendly, and sustainable production mode in the ongoing development of bioeconomy.


Subject(s)
Quality of Life , Biotechnology , Agriculture , Synthetic Biology , Industry
18.
Chinese Journal of Biotechnology ; (12): 3204-3218, 2023.
Article in Chinese | WPRIM | ID: wpr-1007953

ABSTRACT

Sterols are a class of cyclopentano-perhydrophenanthrene derivatives widely present in living organisms. Sterols are important components of cell membranes. In addition, they also have important physiological and pharmacological activities. With the development of synthetic biology and metabolic engineering technology, yeast cells are increasingly used for the heterologous synthesis of sterols in recent years. Nevertheless, since sterols are hydrophobic macromolecules, they tend to accumulate in the membrane fraction of yeast cells and consequently trigger cytotoxicity, which hampers the further improvement of sterols yield. Therefore, revealing the mechanism of sterol transport in yeast, especially understanding the working principle of sterol transporters, is vital for designing strategies to relieve the toxicity of sterol accumulation and increasing sterol yield in yeast cell factories. In yeast, sterols are mainly transported through protein-mediated non-vesicular transport mechanisms. This review summarizes five types of sterol transport-related proteins that have been reported in yeast, namely OSBP/ORPs family proteins, LAM family proteins, ABC transport family proteins, CAP superfamily proteins, and NPC-like sterol transport proteins. These transporters play important roles in intracellular sterol gradient distribution and homeostasis maintenance. In addition, we also review the current status of practical applications of sterol transport proteins in yeast cell factories.


Subject(s)
Saccharomyces cerevisiae/genetics , Sterols , Phytosterols , Biological Transport , ATP-Binding Cassette Transporters/genetics
19.
Chinese Journal of Biotechnology ; (12): 3075-3094, 2023.
Article in Chinese | WPRIM | ID: wpr-1007946

ABSTRACT

Cyanobacteria are the only prokaryotes capable of oxygenic photosynthesis, which have potential to serve as "autotrophic cell factories". However, the synthesis of biofuels and chemicals using cyanobacteria as chassis are suffered from poor stress tolerance and low yield, resulting in low economic feasibility for industrial production. Thus, it's urgent to construct new cyanobacterial chassis by means of synthetic biology. In recent years, adaptive laboratory evolution (ALE) has made great achievements in chassis engineering, including optimizing growth rate, increasing tolerance, enhancing substrate utilization and increasing product yield. ALE has also made some progress in improving the tolerance of cyanobacteria to high light intensity, heavy metal ions, high concentrations of salt and organic solvents. However, the engineering efficiency of ALE strategy in cyanobacteria is generally low, and the molecular mechanisms underpinning the tolerance to various stresses have not been fully elucidated. To this end, this review summarizes the ALE-associated technical strategies and their applications in cyanobacteria chassis engineering, following by discussing how to construct larger ALE mutation library, increase mutation frequency of strains and shorten evolution time. Moreover, exploration of the construction principles and strategies for constructing multi-stress tolerant cyanobacteria, and efficient analysis the mutant libraries of evolved strains as well as construction of strains with high yield and strong robustness are discussed, with the aim to facilitate the engineering of cyanobacteria chassis and the application of engineered cyanobacteria in the future.


Subject(s)
Technology , Photosynthesis/genetics , Cyanobacteria/genetics , Light , Biofuels
20.
Acta Pharmaceutica Sinica ; (12): 1322-1335, 2022.
Article in Chinese | WPRIM | ID: wpr-924763

ABSTRACT

Flavonoids is one of the biggest families of the plant-derived secondary metabolites with structural diversity. Until now, over 10 000 kinds of flavonoids with distinct structures have been purified and identified from plants, and some of them possess a range of important pharmacological effects, such as anticancer, anti-inflammatory and so on. So far, a number of genes and enzymes responsible for the biosynthesis of flavonoids have been reported, especially, a great of progress has been achieved in the synthetic biology of flavonoids in the recent years. Herein, based upon a brief introduction on the biosynthesis of flavonoids, this review summarizes the research advances in synthetic biology of flavonoids in the past two decades (2001-2021), highlighting the cell factories construction of the representative flavonoids. And, a brief discussion and prospects of the relevant metabolic bottlenecks and optimizing strategies are proposed.

SELECTION OF CITATIONS
SEARCH DETAIL