Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Braz. j. med. biol. res ; 54(2): e9944, 2021. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1142581

ABSTRACT

The aim of this study was to inhibit adipogenic differentiation by transfecting two growth factors, platelet-derived growth factor (PDGF-BB) and bone morphogenic protein 2 (BMP-2), into modified rat bone marrow mesenchymal stem cells (rBMSCs) and then compounded with platelet-rich plasma (PRP). To achieve rBMSCs, the osteoporosis model of rats was established, and then the rBMSCs from the rats were isolated and identified. Co-transfection of rBMSCs with PDGF-BB-GFP and BMP-2 and detection of PDGF-BB/BMP-2 expression in transfected BMSCs was assessed by qRT-PCR and western blot, respectively. Moreover, the effect of the two growth factors transfection of rBMSCs on adipogenic differentiation was evaluated by oil red O staining and western blot, respectively. Finally, construction of the two growth factors transfection of rBMSCs compounded with PRP and detection of adipogenic differentiation were assessed by oil red O staining, CCK-8, and western blot, respectively. In vitro studies revealed that the two growth factors transfection of rBMSCs compounded with PRP promoted cell viability and inhibited adipogenic differentiation and could be promising for inhibiting adipogenic differentiation.


Subject(s)
Animals , Rats , Cell Differentiation , Adipose Tissue/cytology , Platelet-Rich Plasma , Bone Morphogenetic Protein 2/genetics , Mesenchymal Stem Cells/cytology , Becaplermin/genetics , Transfection , Cells, Cultured
2.
Journal of Peking University(Health Sciences) ; (6): 9-15, 2019.
Article in Chinese | WPRIM | ID: wpr-941762

ABSTRACT

OBJECTIVE@#To screen for BMP2 mutation with functional impact in patients with congenital tooth agenesis and to make oral and skeletal phenotype record and functional analysis with in vitro experiments.@*METHODS@#We enrolled eighteen patients with congenital tooth agenesis. The medical and dental history was collected,and clinical and dental examinations including the X-ray examination of oral-facial and skeletal bone were performed for the phenotypic analysis. Blood samples were collected to extract DNA and whole exome sequencing was conducted. The genes involved in oral-facial development and congenital skeletal diseases were investigated for mutation screening. The mutations with functional impact were then investigated. In one patient, the BMP2 mutation with putative functional impact was selected for functional analysis. Wild type and mutant BMP2 plasmids with green fluorescent protein (GFP) tag were constructed and transfected into HEK293T cells. Subcellular protein distribution was observed under laser scanning confocal microscope. The activation of downstream SMAD1/5/9 phosphorylation by BMP2 was detected by Western blotting to investigate the functional impact and genetic pathogenicity.@*RESULTS@#BMP2 mutation NM_001200.3:c.393A>T (p.Arg131Ser), rs140417301 was detected in one patient with congenital tooth agenesis, while for other genes involved in oral-facial development and congenital skeletal diseases, no functionally significant mutation was found. The proband's parents didn't carry this mutation. The father had normal dentition, while the mother lacked one premolar, and both the parents showed normal palate and maxilla. The patient also had maxillary hypoplasia in both sagittal and coronal planes, palatal dysmorphology, and malocclusion, and was diagonsed with osteopenia after the X-ray examnination of his skeletal bone. Functional analysis showed this mutation had normal subcelluar localization but reduced phosphorylation of SMAD1/5/9 (reduction by 32%, 22%, and 27% in three independent replicates). Taken together with family co-segregation, this mutaion was considered as "likely pathogenic".@*CONCLUSION@#BMP2 mutation c.393A>T (p. Arg131Ser) affects bone morphogenetic protein signaling activity, and may affect the number of teeth, growth of maxilla and palate, and bone mineral density.


Subject(s)
Humans , Bone Morphogenetic Protein 2/genetics , HEK293 Cells , Mutation , Phenotype , Plasmids , Tooth
3.
Yonsei Medical Journal ; : 1006-1015, 2016.
Article in English | WPRIM | ID: wpr-194124

ABSTRACT

PURPOSE: To explore the value of transplanting peripheral blood-derived mesenchymal stem cells from allogenic rabbits (rPBMSCs) to treat osteonecrosis of the femoral head (ONFH). MATERIALS AND METHODS: rPBMSCs were separated/cultured from peripheral blood after granulocyte colony-stimulating factor mobilization. Afterwards, mobilized rPBMSCs from a second passage labeled with PKH26 were transplanted into rabbit ONFH models, which were established by liquid nitrogen freezing, to observe the effect of rPBMSCs on ONFH repair. Then, the mRNA expressions of BMP-2 and PPAR-γ in the femoral head were assessed by RT-PCR. RESULTS: After mobilization, the cultured rPBMSCs expressed mesenchymal markers of CD90, CD44, CD29, and CD105, but failed to express CD45, CD14, and CD34. The colony forming efficiency of mobilized rPBMSCs ranged from 2.8 to 10.8 per million peripheral mononuclear cells. After local transplantation, survival of the engrafted cells reached at least 8 weeks. Therein, BMP-2 was up-regulated, while PPAR-γ mRNA was down-regulated. Additionally, bone density and bone trabeculae tended to increase gradually. CONCLUSION: We confirmed that local transplantation of rPBMSCs benefits ONFH treatment and that the beneficial effects are related to the up-regulation of BMP-2 expression and the down-regulation of PPAR-γ expression.


Subject(s)
Animals , Rabbits , Blood Cells/cytology , Bone Morphogenetic Protein 2/genetics , Cell- and Tissue-Based Therapy , Femur Head Necrosis/metabolism , Gene Expression Regulation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Osteonecrosis/pathology , PPAR gamma/genetics , Transplantation, Homologous
4.
Experimental & Molecular Medicine ; : e128-2015.
Article in English | WPRIM | ID: wpr-220401

ABSTRACT

Fucoidan has attracted attention as a potential drug because of its biological activities, which include osteogenesis. However, the molecular mechanisms involved in the osteogenic activity of fucoidan in human alveolar bone marrow-derived mesenchymal stem cells (hABM-MSCs) remain largely unknown. We investigated the action of fucoidan on osteoblast differentiation in hABM-MSCs and its impact on signaling pathways. Its effect on proliferation was determined using the crystal violet staining assay. Osteoblast differentiation was evaluated based on alkaline phosphatase (ALP) activity and the mRNA expression of multiple osteoblast markers. Calcium accumulation was determined by Alizarin red S staining. We found that fucoidan induced hABM-MSC proliferation. It also significantly increased ALP activity, calcium accumulation and the expression of osteoblast-specific genes, such as ALP, runt-related transcription factor 2, type I collagen-alpha 1 and osteocalcin. Moreover, fucoidan induced the expression of bone morphogenetic protein 2 (BMP2) and stimulated the activation of extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase by increasing phosphorylation. However, the effect of fucoidan on osteogenic differentiation was inhibited by specific inhibitors of ERK (PD98059) and JNK (SP600125) but not p38 (SB203580). Fucoidan enhanced BMP2 expression and Smad 1/5/8, ERK and JNK phosphorylation. Moreover, the effect of fucoidan on osteoblast differentiation was diminished by BMP2 knockdown. These results indicate that fucoidan induces osteoblast differentiation through BMP2-Smad 1/5/8 signaling by activating ERK and JNK, elucidating the molecular basis of the osteogenic effects of fucoidan in hABM-MSCs.


Subject(s)
Humans , Bone Morphogenetic Protein 2/genetics , Calcium/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , JNK Mitogen-Activated Protein Kinases/metabolism , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteogenesis/drug effects , Phosphorylation , Polysaccharides/pharmacology , Protein Kinase Inhibitors/pharmacology , RNA, Messenger/genetics , Signal Transduction/drug effects , Smad Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL