Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
China Journal of Chinese Materia Medica ; (24): 1483-1490, 2023.
Article in Chinese | WPRIM | ID: wpr-970619

ABSTRACT

In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.


Subject(s)
Cadmium/metabolism , Antioxidants/pharmacology , Panax notoginseng , Brassinosteroids/pharmacology , Chlorophyll/metabolism , Plant Roots/metabolism , Stress, Physiological
2.
Chinese Journal of Biotechnology ; (12): 34-49, 2022.
Article in Chinese | WPRIM | ID: wpr-927691

ABSTRACT

Plant adaptation to adverse environment depends on transmitting the external stress signals into internal signaling pathways, and thus forming a variety of stress response mechanisms during evolution. Brassinosteroids (BRs) is a steroid hormone and widely involved in plant growth, development and stress response. BR is perceived by cell surface receptors, including the receptor brassinosteroid-insensitive 1 (BRI1) and the co-receptor BRI1-associated-kinase 1 (BAK1), which in turn trigger a signaling cascade that leads to the inhibition of BIN2 and activation of BES1/BZR1 transcription factors. BES1/BZR1 can directly regulate the expression of thousands of downstream responsive genes. Studies in the model plant Arabidopsis thaliana have shown that members of BR biosynthesis and signal transduction pathways, particularly protein kinase BIN2 and its downstream transcription factors BES1/BZR1, can be extensively regulated by a variety of environmental factors. In this paper, we summarize recent progresses on how BR biosynthesis and signal transduction are regulated by complex environmental factors, as well as how BR and environmental factors co-regulate crop agronomic traits, cold and salt stress responses.


Subject(s)
Arabidopsis/metabolism , Brassinosteroids/pharmacology , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Stress, Physiological
3.
Biol. Res ; 46(2): 201-206, 2013. ilus, tab
Article in English | LILACS | ID: lil-683998

ABSTRACT

The fresh-water green unicellular alga Haematococcus pluvialis is known to accumulate astaxanthin under stress conditions. In the present study, transcriptional expression of eight genes involved in astaxanthin biosynthesis exposed to EBR (25 and 50 mg/L) was analyzed using qRT-PCR. The results demonstrated that both 25 and 50 mg/L EBR could increase astaxanthin productivity and the eight carotenogenic genes were up-regulated by EBR with different expression profiles. Moreover, EBR25 induction had a greater influence on the transcriptional expression of ipi-1, ipi-2, crtR-B, lyc and crtO (> 5- fold up-regulation) than on psy, pds, bkt; EBR50 treatment had a greater effect on the transcriptional expression of ipi-2, pds, lyc, crtR-B, bkt and crtO than on ipi-1 and psy. Furthermore, astaxanthin biosynthesis under EBR was up-regulated mainly by ipi1־ and psy at the post-transcriptional level, pds, lyc, crtR-B, bkt and crtO at the transcriptional level and ipi-2 at both levels.


Subject(s)
Brassinosteroids/pharmacology , Carotenoids/biosynthesis , Chlorophyta/genetics , Plant Growth Regulators/pharmacology , RNA, Messenger/metabolism , Steroids, Heterocyclic/pharmacology , Analysis of Variance , Carotenoids/genetics , Chlorophyta/cytology , Real-Time Polymerase Chain Reaction , RNA, Messenger/genetics , Transcription, Genetic , Xanthophylls/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL