Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Indian J Exp Biol ; 2015 Apr; 53(4): 195-201
Article in English | IMSEAR | ID: sea-158416

ABSTRACT

Erythropoietin is a glycohormone involved in the regulation of the blood cell levels. It is a 166 amino acid protein having 3 N-glycosylation and one O-linked glycosylation sites, and is used to treat anaemia related illness. Though human recombinant erythropoietin (rEPO) is produced in CHO cells, the loss in quality control is 80% due to incomplete glycosylation of the rEPO with low levels of fully glycosylated active rEPO. Here, we describe the expression from CHO cells of fully glycosylated human rEPO when expressed as a GPI anchored molecule (rEPO-g). The results demonstrated the production of a homogenous completely glycosylated human rEPO-g as a 42 kD band without any low molecular weight glycoform variants as shown by affinity chromatography followed by SDS-PAGE and anti-human EPO specific western blot. The western blot using specific monoclonal antibody is the available biochemical technique to prove the presence of homogeneity in the expressed recombinant protein. The GPI anchor can be removed during the purification process to yield a therapeutically relevant recombinant erythropoietin molecule cells with a higher in vivo biological activity due to its high molecular weight of 40 kD. This is possibly the first report on the production of a homogenous and completely glycosylated human rEPO from CHO cells for efficient therapy.


Subject(s)
Animals , Base Sequence , CHO Cells , Cricetinae , Cricetulus , Erythropoietin/metabolism , Glycosylation , Glycosylphosphatidylinositols/metabolism , Humans , Polymerase Chain Reaction , Recombinant Proteins/metabolism
2.
Rev. Soc. Bras. Med. Trop ; 38(supl.2): 87-91, 2005. graf, ilus
Article in Spanish | LILACS | ID: lil-444167

ABSTRACT

Trypanosoma cruzi induces changes in the protein pattern of human placenta syncytiotrophoblast. Placental alkaline phosphatase (PLAP) is a glycoenzyme anchored to the membrane by a glycosyl-phosphatidylinositol molecule. PLAP activity and its presence was altered by the parasite in cultures of human placental villi and HEp2 cells with T.cruzi. The cells treated before the cultures with agents which affect PILAP or glycosyl-phosphatidylinositol (antibodies, PL-C, genistein, lithium) presented less parasitic invasion than the control ones. It was also observed a modification in the pattern of actine filaments of the host cells infected. We concluded that PLAP would participate in the process of T. cruzi invasion into placental syncitiotrophoblast cells, by a mechanism that involves hydrolysis of the glycosyl-phosphatidylinositol molecules, the activation of tyrosine kinase proteins, the increase of cytosolic calcium and the rearrangement of actine filaments of the host cells.


Subject(s)
Animals , Female , Humans , Pregnancy , Chagas Disease/enzymology , Alkaline Phosphatase/metabolism , Placenta/enzymology , Trypanosoma cruzi/physiology , Analysis of Variance , Cell Culture Techniques , Chagas Disease/immunology , Chagas Disease/parasitology , Alkaline Phosphatase/analysis , Glycosylphosphatidylinositols/metabolism , Immunohistochemistry , Biomarkers , Placenta/parasitology , Trophoblasts/enzymology , Trophoblasts/parasitology , Chorionic Villi/enzymology , Chorionic Villi/parasitology
3.
Braz. j. med. biol. res ; 34(6): 763-6, Jun. 2001. tab, ilus
Article in English | LILACS | ID: lil-285850

ABSTRACT

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal syndrome characterized by intravascular hemolysis mediated by complement, thrombotic events and alterations in hematopoiesis. Basically, the molecular events which underlie the complexity of the syndrome consist of the absence of the glycosylphosphatidylinositol (GPI) anchor as a consequence of somatic mutations in the PIG-A gene, located on the X chromosome. The GPI group is responsible for the attachment of many proteins to the cytoplasmic membrane. Two of them, CD55 and CD59, have a major role in the inhibition of the action of complement on the cellular membrane of blood cells. The absence of GPI biosynthesis can lead to PNH. Since mutations in the PIG-A gene are always present in patients with PNH, the aim of this study was to characterize the mutations in the PIG-A gene in Brazilian patients. The analysis of the PIG-A gene was performed using DNA samples derived from bone marrow and peripheral blood. Conformation-sensitive gel electrophoresis was used for screening the mutation and sequencing methods were used to identify the mutations. Molecular analysis permitted the identification of three point mutations in three patients: one G->A transition in the 5' portion of the second intron, one T->A substitution in the second base of codon 430 (Leu430->stop), and one deletion deltaA in the third base of codon 63. This study represents the first description of mutations in the PIG-A gene in a Brazilian population.


Subject(s)
Humans , Male , Female , Adolescent , Adult , Aged , Hemoglobinuria, Paroxysmal/genetics , Mutation , X Chromosome/genetics , Base Sequence , Brazil , Glycosylphosphatidylinositols/metabolism
5.
Southeast Asian J Trop Med Public Health ; 1995 ; 26 Suppl 1(): 322-4
Article in English | IMSEAR | ID: sea-33342

ABSTRACT

Deficient biosynthesis of the glycosyl phosphatidyl inositol (GPI)-anchor in blood cells is implicated in the pathogenesis of paroxysmal nocturnal hemoglobinuria (PNH). Abnormal clonal cells appear in various hematopoietic cell lineages, suggesting that PNH arises as a result of somatic mutation occurred at the multipotential hematopoietic stem cell stage. We previously cloned a gene which is responsible for PNH. The gene termed PIG-A (for Phosphatidyl Inositol Glycan-class A) participates in the early step of GPI-anchor biosynthesis. Studies with cell lines and granulocytes from patients with PNH revealed that in all cases so far characterized, PIG-A is the target for the somatic mutation. In the present study, we analyzed PIG-A abnormality in granulocytes from 14 Thai-patients with PNH. PIG-A RNA was reversed transcribed and the coding region was amplified by polymerase chain reaction and cloned into plasmids. The cDNA thus obtained and genomic DNA were analyzed by mutation detection enhancement gel electrophoresis and sequencing. The assessment of function of PIG-A cDNA was based on the ability to correct the phenotype of a PIG-A deficient cell line after transfection. The result showed that all patients had PIG-A abnormality. Three patients had size abnormality of PIG-A transcripts caused by mutations at the splicing sites in the genomic DNA level. Eleven patients had PIG-A transcripts of normal sizes but had mutations in the coding region which included small deletions and insertions. Taken together with the result from Japanese and British patients, the PIG-A somatic mutations in patients with PNH are small mutations widely distributed throughout coding region and the splicing sites.


Subject(s)
DNA Transposable Elements , DNA, Complementary , Glycosylphosphatidylinositols/metabolism , Granulocytes/metabolism , Hemoglobinuria, Paroxysmal/blood , Humans , Membrane Proteins/biosynthesis , Mutation , Neutrophils/metabolism , Phenotype , Polymerase Chain Reaction , RNA, Messenger/blood , Sequence Deletion , Thailand
6.
Biol. Res ; 26(1/2): 285-312, 1993. ilus, tab
Article in English | LILACS | ID: lil-228612

ABSTRACT

The presence of GPI anchors and phospholipases capable of solubilizing them in Trypanosoma cruzi has been investigated in epimastigotes, metacyclic trypomastigotes from axenic cultures and tissue culture trypomastigotes. The GPI anchored proteins in epimastigote forms are scarce when compared to their abundance in the parasite forms which can infect mammals, and GPI-solubilizing phospholipases C have been found in all life cycles stages. In epimastigote and metacyclic forms, the activity is found in the soluble fraction upon cell lysis, whereas in tissue cultured trypomastigotes it is membrane bound and, being mostly sensitive to p-chloromercuriphenylsulfonate, resembles closely the GPI specific phospholipase of Trypanosoma brucei. Sequential immunoprecipitations with monoclonal antibodies and anti-CRD indicated the presence of several sub-populations among the surface proteins of metacyclic trypomastigotes, five of these belonging to the GPI-anchored 90 kD family. Among this family, the epitopes recognized by MAb-1G7 are present in three members, one of them also expressing the 3F6 epitope. There are 2 members recognized only by MAb-3F6 but not by MAb-1G7, one of them being probably galactosylated on the GPI since it can be immunoprecipitated by anti-CRD. Very strangely, the epitope recognized by the MAb-WIC29.26 was always present on the gp72, as originally described, but under certain circumstances appeared cryptic on one of the 90 kD species. During epimastigote transformation into metacyclic trypomastigotes in vitro, the ability of the GPI of the 1G7-antigen to be solubilized by phospholipase C and D varies depending on the age of the culture and presence or absence of fetal calf serum. Different patterns of solubilization were also obtained for 1G7-Ag, depending on whether the test is performed with parasite lysates or with antigen affinity purified from them. Our data indicate that the phospholipase C resistance observed does not arise from acylation on the inositol, as previously described for acetylcholinesterase from human erythrocytes, being rather due to factors which either modify the GPI or affect the action of the phospholipases...


Subject(s)
Animals , Humans , Glycosylphosphatidylinositols/metabolism , Phospholipases/metabolism , Protozoan Proteins/metabolism , Trypanosoma cruzi/metabolism , Antibodies, Monoclonal , Antigens, Protozoan/immunology , Antigens, Protozoan/metabolism , Hydrolysis , Precipitin Tests/methods , Solubility , Trypanosoma brucei brucei/metabolism , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/growth & development , Trypanosoma cruzi/immunology , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL