Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Braz. j. otorhinolaryngol. (Impr.) ; 83(2): 155-161, Mar.-Apr. 2017. graf
Article in English | LILACS | ID: biblio-839425

ABSTRACT

Abstract Introduction: Salicylate at high doses induces tinnitus in humans and experimental animals. However, the mechanisms and loci of action of salicylate in inducing tinnitus are still not well known. The expression of Immediate Early Genes (IEG) is traditionally associated with long-term neuronal modifications but it is still not clear how and where IEGs are activated in animal models of tinnitus. Objectives: Here we investigated the expression of c-fos and Egr-1, two IEGs, in the Dorsal Cochlear Nucleus (DCN), the Inferior Colliculus (IC), and the Posterior Ventral Cochlear Nucleus (pVCN) of rats. Methods: Rats were treated with doses known to induce tinnitus in rats (300 mg/kg i.p. daily, for 3 days), and c-fos and Egr-1 protein expressions were analyzed using western blot and immunocytochemistry. Results: After administration of salicylate, c-fos protein expression increased significantly in the DCN, pVCN and IC when assayed by western blot. Immunohistochemistry staining showed a more intense labeling of c-fos in the DCN, pVCN and IC and a significant increase in c-fos positive nuclei in the pVCN and IC. We did not detect increased Egr-1 expression in any of these areas. Conclusion: Our data show that a high dose of salicylate activates neurons in the DCN, pVCN and IC. The expression of these genes by high doses of salicylate strongly suggests that plastic changes in these areas are involved in the genesis of tinnitus.


Resumo Introdução: Salicilato em doses elevadas induz zumbido nos seres humanos e em animais experimentais. No entanto, os mecanismos e loci de ação do salicilato na indução de zumbido ainda não são bem conhecidos. A expressão dos genes precoces imediatos (GPIs) está tradicionalmente associada a alterações neuronais em longo prazo, mas ainda não está claro como e onde os GPIs são ativados em modelos animais de zumbido. Objetivos: No presente estudo investigamos a expressão de c-fos e Egr-1, dois GPIs, no núcleo coclear dorsal (NCD), colículo inferior (CI) e núcleo coclear ventral posterior (NCVp) de ratos. Métodos: Os ratos foram tratados com doses que, conhecidamente, induzem zumbido em ratos (300 mg/kg IP/dia, por três dias) e as expressões das proteínas c-fos e Egr-1 foram analisadas por meio de Western blot e imunoistoquímica. Resultados: Após a administração de salicilato, a expressão da proteína c-fos aumentou significativamente no NCD, NCVp e CI, quando analisados por Western blot. A coloração imunoistoquímica mostrou uma marcação mais intensa de c-fos no NCD, NCVp e CI e um aumento significativo de núcleos positivos de c-fos no NCVp e CI. Não detectamos aumento da expressão de Egr-1 em qualquer dessas áreas. Conclusão: Nossos dados mostram que uma dose alta de salicilato ativa neurônios no NCD, NCVp e CI. A expressão desses genes por doses altas de salicilato sugere que as alterações plásticas nessas áreas estão envolvidas na gênese do zumbido.


Subject(s)
Animals , Male , Rats , Inferior Colliculi/drug effects , Salicylates/pharmacology , Gene Expression Regulation/drug effects , Genes, Immediate-Early/drug effects , Cochlear Nucleus/drug effects , Salicylates/administration & dosage , Blotting, Western , Genes, fos/drug effects , Rats, Wistar , Dose-Response Relationship, Drug , Early Growth Response Protein 1/drug effects
2.
Braz. j. med. biol. res ; 45(4): 349-356, Apr. 2012. ilus
Article in English | LILACS | ID: lil-622750

ABSTRACT

Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by γ-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 μL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.


Subject(s)
Animals , Male , Rats , Anxiety/physiopathology , Escape Reaction/physiology , Fear/physiology , Inferior Colliculi/drug effects , Neurokinin A/pharmacology , Periaqueductal Gray/drug effects , Receptors, Neurokinin-1/antagonists & inhibitors , Substance P/analogs & derivatives , Avoidance Learning , Electric Stimulation , Inferior Colliculi/physiology , Periaqueductal Gray/physiology , Rats, Wistar , Substance P/pharmacology , Vocalization, Animal
3.
Article in English | IMSEAR | ID: sea-17476

ABSTRACT

The central auditory toxicity of sisomicin was studied in guineapigs administered sisomicin (135 mg/kg body weight) sc for 10 days. Total lipids, phospholipids and cholesterol were estimated in the pons, inferior colliculus, medial geniculate body and auditory cortex. While the total lipids were increased in a non-preferential manner in all the regions studied, phospholipids and cholesterol levels registered no change. This study suggests the possible central auditory toxicity following sisomicin administration.


Subject(s)
Animals , Auditory Cortex/drug effects , Auditory Pathways/drug effects , Cholesterol/analysis , Drug Evaluation, Preclinical , Geniculate Bodies/drug effects , Guinea Pigs , Inferior Colliculi/drug effects , Lipids/analysis , Male , Phospholipids/analysis , Pons/drug effects , Sisomicin/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL