Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Arq. bras. med. vet. zootec ; 65(1): 301-307, fev. 2013. tab
Article in English | LILACS | ID: lil-667570

ABSTRACT

Diflubenzuron (DFB) is used to control ectoparasitic infestation by inhibiting larvae development in the manure and feces of treated animals. It is also currently been used to control tick infestations. In this study, milk and tissues from cattle treated orally with DFB for a 77-120 day period with a commercial product containing the compound were analyzed for the presence of residues. DFB residues were determined by using extraction with acetonitrile, cleanup with C18 SPE and chromatographic analysis by HPLC with UV detection (254nm). DFB was not detected in any of the analysed samples (<0.006mg kg-1 for fat, <0.014mg kg-1 for muscle, <0.015mg kg-1 for kidney, <0.016mg kg-1 for liver and <0.0006mg kg-1 for milk). In this manner, the use of this compound, according to the manufacturer's suggested doses may result in cattle milk, liver, kidneys, fat and muscles being considered safe regarding the presence of DFB residues.


O diflubenzuron (DFB) é um inibidor de desenvolvimento de insetos que inibe a síntese de quitina com atividade ovicida e larvicida e está sendo utilizado na pecuária para o controle do carrapato. Leite e tecidos provenientes de bovinos tratados por um período de 77 a 120 dias com um produto comercial contendo DFB foram analisados quanto à presença de resíduos. Os resíduos de DFB foram determinados utilizando-se extração com acetonitrila, limpeza por SPE C18 e cromatografia líquida de alta eficiência com detecção por UV (254nm). DFB não foi detectado em nenhuma das amostras analisadas (<0.006mg kg-1 para gordura, <0,014mg kg-1 para músculo, <0,015mg kg-1 para rim, <0,016mg kg-1 para fígado e <0.0006mg kg-1 para leite). Dessa forma, a utilização do princípio ativo conforme recomendado pelo fabricante e em níveis suficientes para se obter o efeito larvicida desejado deve resultar em leite, fígado, rins, gordura e músculos que podem ser considerados seguros para o consumo em termos da presença DFB.


Subject(s)
Animals , Cattle , Diflubenzuron/administration & dosage , Diflubenzuron/chemistry , Diflubenzuron/chemical synthesis , Epidermis/abnormalities , Epidermis , Insecta/cytology , Insecta/chemistry
2.
Braz. j. morphol. sci ; 23(1): 15-26, jan.-mar. 2006. ilus, tab
Article in English | LILACS | ID: lil-467605

ABSTRACT

Its serial architecture makes the insect ovary an interesting playground to study the regulation of cell death and identify critical check points along the apical-basal axis of the ovarioles. In Drosophila melanogaster, cell death is observed at two points: (1) in the germarium, where entire germ cell clusters may die in response to environmental conditions, and (2) as an obligatory event at the end of oogenesis, when nurse cells dump their cytoplasm into the oocyte and, subsequently, when the follicle epithelial cells form a chorion. The social organization of bees, wasps and ants depends on the monopolization of reproduction by a queen. This has marked consequences on the ovary phenotype of queens and workers. The role of programmed cell death in larval ovary development and in adult ovary function is best studied in honey bees. During larval development, workers loose over 90% of the ovariole primordia. This cell death is induced by a low juvenile hormone titer causing breakdown of the actin cytoskeleton in germ cell clusters. The actin cytoskeleton also plays a major role in the control of cell death in the ovary of adult bees, where many TUNEL-labeled and pycnotic nuclei are detected in a germarial region rich in actin agglomerates. This suggests that common mechanisms may regulate cell death in the ovaries of bees, both during the shaping of the caste-specific ovary phenotypes during larval development, and during the tuning of reproductive activity in adult bees.


Subject(s)
Animals , Female , Adult , Apoptosis , Bees/cytology , Insect Hormones , Insecta/cytology , Oogenesis , Bees/ultrastructure , Cell Death , Insecta/anatomy & histology , Ovary
3.
Rev. invest. clín ; 58(1): 47-55, ene.-feb. 2006. ilus
Article in English | LILACS | ID: lil-632336

ABSTRACT

Every day, new proteins are discovered and the need to understand its function arises. Human proteins have a special interest, because to know its role in the cell may lead to the design of a cure for a disease. In order to obtain such information, we need enough protein with a high degree of purity, and in the case of the human proteins, it is almost impossible to achieve this by working on human tissues. For that reason, the use of expression systems is needed. Bacteria, yeast, animals and plants have been genetically modified to produce proteins from different species. Even "cell-free" systems have been developed for that purpose. Here, we briefly review the options with their advantages and drawback, and the purification systems and analysis that can be done to gain understanding on the function and structure of the protein of interest.


Cada día, nuevas proteínas son descubiertas y surge la necesidad de caracterizarlas, siendo las de origen humano las que presentan un mayor interés. Conocer su función nos ayudará a entender padecimientos y diseñar una posible cura. Sin embargo, obtener suficiente cantidad de proteínas humanas en cantidad para llevar a cabo los análisis pertinentes, presenta una gran dificultad. Por tal razón, es necesario el uso de sistemas de expresión de proteínas heterólogas. Bacterias, levaduras, animales y plantas han sido modificados genéticamente para expresar proteínas de otras especies, e incluso sistemas in vitro han sido desarrollados para producir proteínas. En este artículo se revisan brevemente las opciones con sus ventajas y desventajas, así como las estrategias de purificación y los análisis que se pueden llevar a cabo para avanzar en el conocimiento de la función y estructura de la proteína de interés.


Subject(s)
Animals , Cattle , Humans , Recombinant Fusion Proteins/biosynthesis , Amino Acid Sequence , Animals, Genetically Modified , Bioreactors , Bacteria/metabolism , Cell-Free System , Chickens , Cells, Cultured/metabolism , Drug Design , Gene Expression , Genetic Techniques , Insecta/cytology , Mammals , Molecular Sequence Data , Plants, Genetically Modified , Proteomics , Plants/metabolism , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/physiology , Structure-Activity Relationship , Yeasts/metabolism
4.
Article in English | IMSEAR | ID: sea-16731

ABSTRACT

Insect cell cultures are widely used in viral diagnosis and biotechnology, for the production of recombinant proteins, viral pesticides and vaccines as well as in basic research in genetics, molecular biology, biochemistry, endocrinology and virology. Following KRP Singh's pioneering research in 1967, a large number of cell lines from diptera, hemiptera, and lepidopteran insects were established and characterized in India. With the availability of the modern tools in molecular biology and the advancements made in biotechnology, the indigenous cell lines may prove useful in creating a future without biohazardous chemical pesticides as well as producing life saving pharmaceuticals and vaccines for many diseases. This review summarizes information gathered regarding the insect cell lines established so far in India. It also covers the familiarization of the well characterized continuous cell lines and their potential applications. Special attention is given to virus susceptibility of the cell lines, the yield of virus with a comparative analysis with other conventional systems. The potential applications of dipteran and lepidopteran cell lines in agriculture and biotechnology are also briefly discussed for prospective studies.


Subject(s)
Animals , Cell Culture Techniques , India , Insecta/cytology , Research
5.
Genet. mol. biol ; 22(1): 77-80, Mar. 1999. ilus
Article in English | LILACS | ID: lil-243519

ABSTRACT

A staining mixture of hematoxylin-iron alum combined with a strong hydrochloric hydrolysis was successfully applied for chromosome observation of several kinds of plants and some animals. Slightly different procedures were developed for different materials and objectives. For plant cells, the most important technical aspect was the use of 5 N HCl hydrolysis, which resulted in a very transparent cytoplasm, combined with an intense, specific hematoxylin stain. This technique is recommended for cytogenetical analysis in general, and it is especially indicated for practical classes, due to its simplicity and high reproducibility of results. Moreover, the deep contrast observed makes this technique very useful for sequential staining of cells previously analyzed with other stains, as well as for materials with fixation problems.


Subject(s)
Animals , Chiroptera , Chromosomes/chemistry , Coloring Agents , Hematoxylin , Insecta/cytology , Plants/cytology , Hydrolysis , Insecta/genetics , Meiosis , Mitosis , Plants/genetics , Chiroptera/genetics
6.
Experimental & Molecular Medicine ; : 65-71, 1998.
Article in English | WPRIM | ID: wpr-70157

ABSTRACT

Preparation of a pure autoantigen by way of recombinant DNA technology has an important value in an accurate diagnosis or prognosis of an autoimmune disease. BCOADC-E2 subunit, a mitochondrial protein, has been known to be the autoantigen of primary biliary cirrhosis (PBC), a chronic autoimmune liver disease, as well as idiopathic dilated cardiomypathy (IDCM), a chronic autoimmune heart disease. Recombinant form of this molecule had been expressed in E. coli but with low yield and severe degradation. Furthermore, sera from IDCM patients failed to recognized BCOADC-E2 molecule produced in prokaryotic expression system. In this study, a recombinant bovine BCOADC-E2 fusion protein has been expressed in insect cells using baculovirus expression system and analyzed anti-BCOADC-E2 reactivity in sera from patients with PBC or with IDCM. Optimal production of the recombinant fusion protein has been achieved at 20 multiplicity of infection (MOI), and the protein was affinity-purified using metal-binding resins. The affinity-purified BCOADC-E2 protein was successfully recognized by sera from PBC patients, but not by sera from IDCM patients suggesting that the different auto-immune response against BCOADC-E2 is needed to be elucidated in terms of epitope recognition.


Subject(s)
Cattle , Humans , Acetyltransferases/metabolism , Acetyltransferases/immunology , Acetyltransferases/genetics , Animals , Baculoviridae/genetics , Cardiomyopathy, Dilated/immunology , Immune Sera , Insecta/cytology , Ketone Oxidoreductases/metabolism , Ketone Oxidoreductases/immunology , Ketone Oxidoreductases/genetics , Liver Cirrhosis, Biliary/immunology , Multienzyme Complexes/metabolism , Multienzyme Complexes/immunology , Multienzyme Complexes/genetics , Protein Engineering/methods , Recombinant Proteins/isolation & purification , Recombinant Proteins/immunology , Recombinant Proteins/genetics
7.
Braz. j. med. biol. res ; 30(8): 923-8, Aug. 1997. ilus
Article in English | LILACS | ID: lil-197246

ABSTRACT

A simple and inexpensive shaker/Erlenmeyer flask system for largescale cultivation of insect cells is described and compared to a commercial spinner system. On the basis of maximum cell density, average population doubling time and overproduction of recombinant protein, a better result was obtained with a simpler and less expensive biorector consisting of Erlenmeyer flasks and an ordinary shaker waterbath. Routinely, about 90 mg of pure poly(ADP-ribose) polymerase catalytic domain was obtained for a total of 3 x 10(9) infected cells in three liters of culture.


Subject(s)
Animals , ADP Ribose Transferases , Baculoviridae , In Vitro Techniques , Insecta/cytology , Poly Adenosine Diphosphate Ribose , Polynucleotide Adenylyltransferase/isolation & purification , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL