Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Chonnam Medical Journal ; : 8-19, 2019.
Article in English | WPRIM | ID: wpr-719481

ABSTRACT

The Endoplasmic reticulum (ER), an indispensable sub-cellular component of the eukaryotic cell carries out essential functions, is critical to the survival of the organism. The chaperone proteins and the folding enzymes which are multi-domain ER effectors carry out 3-dimensional conformation of nascent polypeptides and check misfolded protein aggregation, easing the exit of functional proteins from the ER. Diverse conditions, for instance redox imbalance, alterations in ionic calcium levels, and inflammatory signaling can perturb the functioning of the ER, leading to a build-up of unfolded or misfolded proteins in the lumen. This results in ER stress, and aiming to reinstate protein homeostasis, a well conserved reaction called the unfolded protein response (UPR) is elicited. Equally, in protracted cellular stress or inadequate compensatory reaction, UPR pathway leads to cell loss. Dysfunctional ER mechanisms are responsible for neuronal degeneration in numerous human diseases, for instance Alzheimer's, Parkinson's and Huntington's diseases. In addition, mounting proof indicates that ER stress is incriminated in psychiatric diseases like major depressive disorder, bipolar disorder, and schizophrenia. Accumulating evidence suggests that pharmacological agents regulating the working of ER may have a role in diminishing advancing neuronal dysfunction in neuropsychiatric disorders. Here, new findings are examined which link the foremost mechanisms connecting ER stress and cell homeostasis. Furthermore, a supposed new pathogenic model of major neuropsychiatry disorders is provided, with ER stress proposed as the pivotal step in disease development.


Subject(s)
Humans , Apoptosis , Biological Psychiatry , Bipolar Disorder , Calcium , Depressive Disorder, Major , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Eukaryotic Cells , Homeostasis , Neurons , Neuropsychiatry , Oxidation-Reduction , Peptides , Proteostasis Deficiencies , Schizophrenia , Unfolded Protein Response
2.
Arq. neuropsiquiatr ; 76(10): 705-712, Oct. 2018. tab, graf
Article in English | LILACS | ID: biblio-973920

ABSTRACT

ABSTRACT Protein misfolding diseases are usually associated with deposits of single "key" proteins that somehow drive the pathology; β-amyloid and hyperphosphorylated tau accumulate in Alzheimer's disease, α-synuclein in Parkinson's disease, or abnormal prion protein (PrPTSE) in transmissible spongiform encephalopathies (TSEs or prion diseases). However, in some diseases more than two proteins accumulate in the same brain. These diseases might be considered "complex" proteinopathies. We have studied models of TSEs (to explore deposits of PrPTSE and of "secondary proteins") infecting different strains and doses of TSE agent, factors that control incubation period, duration of illness and histopathology. Model TSEs allowed us to investigate whether different features of histopathology are independent of PrPTSE or appear as a secondary result of PrPTSE. Better understanding the complex proteinopathies may help to explain the wide spectrum of degenerative diseases and why some overlap clinically and histopathologically. These studies might also improve diagnosis and eventually even suggest new treatments for human neurodegenerative diseases.


RESUMEN La acumulación de proteínas con conformación anormal es observada en numerosas enfermedades degenerativas del sistema nervioso. Tales enfermedades están generalmente asociadas con el depósito de una proteína que es importante para la patogenia de la enfermedad; amiloide-β e hiperfosforilación de tau en la Enfermedad de Alzheimer, α-sinucleína en la Enfermedad de Parkinson, y acúmulo de proteína prion anormal (PrPTSE) en las encefalopatías espongiformes transmisibles (EET). Sin embargo, en algunas enfermedades más de dos proteínas se acumulan en el sistema nervioso central. Estas enfermedades pueden considerarse "proteinopatías complejas". Hemos estudiado varios modelos de EET para analizar los depósitos de PrPTSE y la posible acumulación de otras proteínas (que podríamos llamar "proteínas secundarias"). La relación entre proteínas mal plegadas y neurodegeneración no es claro. La mayor parte de las enfermedades neurodegenerativas evolucionan por décadas; por lo tanto los acúmulos proteicos podrían generar diferentes efectos patogénicos en los diferentes estadios de la enfermedad. Alternativamente los acúmulos proteicos podrían ser el resultado de alteraciones del sistema nervioso y no su causa. Dado que la etiología de las ETT es relativamente bien conocido y es atribuido a infección por agentes autoreplicantes que generan malformacion de la proteína prion normal (la isoforma patologica, PrPTSE, propuesta como el agente infeccioso) hemos estudiado varios modelos animales, cepas de agente infectante y dosis del agente causal de ETT. Estos factores controlan el período de incubación, duración de la enfermedad e histopatología. Los modelos animales estudiados nos han permitido investigar si las diferentes características histopatológicas son independientes de PrPTSE o podrían ser secundarias a la acumulación de la misma. Un mejor conocimiento de las proteinopatías complejas podría ayudar a analizar el espectro de enfermedades degenerativas y a su vez, investigar el motivo de la superposición clínico-patológico en algunas de ellas. Estos estudios podrían ayudar en el diagnóstico y eventualmente sugerir nuevas posibles terapéuticas para las enfermedades neurodegenerativas humanas.


Subject(s)
Humans , Animals , Prion Diseases/physiopathology , Neurodegenerative Diseases/physiopathology , Prion Diseases/metabolism , Neurodegenerative Diseases/metabolism , Disease Models, Animal , Proteostasis Deficiencies/physiopathology , Proteostasis Deficiencies/metabolism
4.
Experimental & Molecular Medicine ; : e147-2015.
Article in English | WPRIM | ID: wpr-57308

ABSTRACT

Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into beta-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons.


Subject(s)
Animals , Humans , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Autophagy/drug effects , DNA-Binding Proteins/metabolism , Huntington Disease/drug therapy , Lysosomes/metabolism , Molecular Targeted Therapy , Mutation , Nerve Tissue Proteins/genetics , Neurodegenerative Diseases/drug therapy , Parkinson Disease/drug therapy , PrPSc Proteins/metabolism , Prion Diseases/drug therapy , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Proteostasis Deficiencies/metabolism , Superoxide Dismutase/metabolism , Ubiquitin/metabolism , alpha-Synuclein/metabolism , tau Proteins/metabolism
5.
Rev. méd. Chile ; 141(4): 495-505, abr. 2013. ilus
Article in Spanish | LILACS | ID: lil-680473

ABSTRACT

Misfolding and aggregation of proteins are the main features of a group of diseases termed Protein Misfolding Disorders (PMDs). PMDs include Alzheimer's disease and Transmissible Spongiform Encephalopathies, among many others. The deposition of protein aggregates is the main responsible for tissue damage and the consequent clinical signs generated in such disorders. In this review, we will focus in the role of protein aggregates in these diseases and in the putative mechanisms by which they exert their toxicity.


Subject(s)
Humans , Neurodegenerative Diseases , Proteostasis Deficiencies , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/physiopathology , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/physiopathology
6.
Dementia and Neurocognitive Disorders ; : 38-52, 2012.
Article in English | WPRIM | ID: wpr-76907

ABSTRACT

During recent years, there has been remarkable progress with respect to the identification of molecular mechanisms and underlying pathology of neurodegenerative dementias. The latest evidence indicates that a common cause and pathological mechanism of diverse neurodegenerative dementias can be found in the increased production, misfolding, aggregation, and accumulation of specific proteins such as beta-amyloid, tau protein, alpha-synuclein, prion protein, polyglutamine, transactive response DNA-binding protein (TARDBP or TDP-43), or fused in sarcoma (FUS). The conformational variants of these proteins range from small oligomers to the characteristic pathologic inclusions. However, it is noteworthy that a certain pathology can be a hallmark of a certain dementia, but there is a substantial overlap between different pathologies and different types of dementias. In this review, molecular mechanisms and pathologies of different neurodegenerative dementias will be summarized from the perspective of proteins rather than from the viewpoint of individual dementias. We will also review recent evidence surrounding these protein misfolding disorders, the role of toxic oligomers, cell-to-cell transmission, and the links between the misfolded proteins, along with the general therapeutic strategies for the protein misfolding disorders.


Subject(s)
alpha-Synuclein , Dementia , Neurodegenerative Diseases , Peptides , Proteins , Proteostasis Deficiencies , Sarcoma , tau Proteins
SELECTION OF CITATIONS
SEARCH DETAIL