Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Acta Physiologica Sinica ; (6): 505-512, 2013.
Article in Chinese | WPRIM | ID: wpr-297544

ABSTRACT

The aim of the present study was to investigate the effects of prenatal alcohol exposure (PAE) on the development and cell differentiation of retina in offspring. The mouse model of PAE was made. HE staining and immunofluorescent labeling were carried out to visualize the structure, development and cell differentiation of the retina from postnatal day 0 (P0)-P30 offspring. The results showed that PAE can lead to the retardation of retinal development, the reduction of number of bipolar cells and horizontal cells, the disorder of horizontal cells' polarity, as well as the retinal thickening in a dose-dependent manner. The data suggest that alcohol exposure during pregnancy can lead to the developmental retardation of retina and decreased number of bipolar cells and horizontal cells in the retina of offspring.


Subject(s)
Animals , Female , Male , Mice , Pregnancy , Cell Differentiation , Disease Models, Animal , Ethanol , Prenatal Exposure Delayed Effects , Retina , Cell Biology , Retinal Bipolar Cells , Retinal Horizontal Cells
2.
The Korean Journal of Physiology and Pharmacology ; : 127-132, 2013.
Article in English | WPRIM | ID: wpr-727480

ABSTRACT

Ginsenosides, one of the active ingredients of Panax ginseng, show various pharmacological and physiological effects, and they are converted into compound K (CK) or protopanaxatriol (M4) by intestinal microorganisms. CK is a metabolite derived from protopanaxadiol (PD) ginsenosides, whereas M4 is a metabolite derived from protopanaxatriol (PT) ginsenosides. The gamma-aminobutyric acid receptorC (GABAC) is primarily expressed in retinal bipolar cells and several regions of the brain. However, little is known of the effects of ginsenoside metabolites on GABAC receptor channel activity. In the present study, we examined the effects of CK and M4 on the activity of human recombinant GABAC receptor (rho1) channels expressed in Xenopus oocytes by using a 2-electrode voltage clamp technique. In oocytes expressing GABAC receptor cRNA, we found that CK or M4 alone had no effect in oocytes. However, co-application of either CK or M4 with GABA inhibited the GABA-induced inward peak current (IGABA). Interestingly, pre-application of M4 inhibited IGABA more potently than CK in a dose-dependent and reversible manner. The half-inhibitory concentration (IC50) values of CK and M4 were 52.1+/-2.3 and 45.7+/-3.9 microM, respectively. Inhibition of IGABA by CK and M4 was voltage-independent and non-competitive. This study implies that ginsenoside metabolites may regulate GABAC receptor channel activity in the brain, including in the eyes.


Subject(s)
Humans , Brain , Eye , gamma-Aminobutyric Acid , Ginsenosides , Oocytes , Panax , Retinal Bipolar Cells , RNA, Complementary , Sapogenins , Xenopus
3.
The Korean Journal of Physiology and Pharmacology ; : 175-180, 2013.
Article in English | WPRIM | ID: wpr-727473

ABSTRACT

Resveratrol is a phytoalexin found in grapes, red wine, and berries. Resveratrol has been known to have many beneficial health effects, such as anti-cancer, neuroprotective, anti-inflammatory, and life-prolonging effects. However, relatively little is known about the effects of resveratrol on the regulation of ligand-gated ion channels. We have previously reported that resveratrol regulates subsets of homomeric ligand-gated ion channels such as those of 5-HT3A receptors. The gamma-aminobutyric acidC (GABAC) receptor is mainly expressed in retinal bipolar cells and plays an important role in visual processing. In the present study, we examined the effects of resveratrol on the channel activity of homomeric GABAC receptor expressed in Xenopus oocytes injected with cRNA encoding human GABAC rho subunits. Our data show that the application of GABA elicits an inward peak current (IGABA) in oocytes that express the GABAC receptor. Resveratrol treatment had no effect on oocytes injected with H2O or with GABAC receptor cRNA. Co-treatment with resveratrol and GABA inhibited IGABA in oocytes with GABAC receptors. The inhibition of IGABA by resveratrol was in a reversible and concentration-dependent manner. The IC50 of resveratrol was 28.9+/-2.8 microM in oocytes expressing GABAC receptor. The inhibition of IGABA by resveratrol was in voltage-independent and non-competitive manner. These results indicate that resveratrol might regulate GABAC receptor expression and that this regulation might be one of the pharmacological actions of resveratrol on the nervous system.


Subject(s)
Humans , Fruit , gamma-Aminobutyric Acid , Inhibitory Concentration 50 , Ligand-Gated Ion Channels , Nervous System , Oocytes , Receptors, GABA , Retinal Bipolar Cells , RNA, Complementary , Sesquiterpenes , Stilbenes , Vitis , Wine , Xenopus
4.
Braz. j. pharm. sci ; 48(1): 155-161, Jan.-Mar. 2012. ilus, graf
Article in English | LILACS | ID: lil-622899

ABSTRACT

The purpose of the present work was to investigate synaptic vesicle trafficking when vesicles exhibit alterations in filling and acidification in two different synapses: a cholinergic frog neuromuscular junction and a glutamatergic ribbon-type nerve terminal in the retina. These synapses display remarkable structural and functional differences, and the mechanisms regulating synaptic vesicle cycling might also differ between them. The lipophilic styryl dye FM1-43 was used to monitor vesicle trafficking. Both preparations were exposed to pharmacological agents that collapse ΔpH (NH4Cl and methylamine) or the whole ΔµH+ (bafilomycin), a necessary situation to provide the driving force for neurotransmitter accumulation into synaptic vesicles. The results showed that FM1-43 loading and unloading in neuromuscular junctions did not differ statistically between control and experimental conditions (P > 0.05). Also, FM1-43 labeling in bipolar cell terminals proved highly similar under all conditions tested. Despite remarkable differences in both experimental models, the present findings show that acidification and filling are not required for normal vesicle trafficking in either synapse.


O objetivo do presente trabalho foi investigar o tráfego de vesículas sinápticas quando estas apresentam alterações no armazenamento de neurotransmissores e acidificação em duas distintas sinapses: a junção neuromuscular colinérgica de rãs versus o terminal nervoso glutamatérgico do tipo ribbon em céulas bipolares da retina. Essas sinapses exibem notáveis diferenças estruturais e funcionais e os mecanismos de regulação de ciclo das vesículas sinápticas podem ser diferentes entre eles. Para monitorar o tráfego de vesícula, foi utilizado o marcador lipofílico FM1-43. Ambas as preparações foram expostas a agentes farmacológicos que provocam o colapso de ΔpH (NH4Cl e metilamina) ou de todo ΔµH+ (bafilomicina), gradientes necessários para o acúmulo de neurotransmissores em vesículas sinápticas. Nossos resultados demonstram que a marcação e desmarcação de FM1-43 nas junções neuromusculares não foi estatisticamente diferente entre as diversas condições experimentais (P > 0,05). Além disso, a marcação de FM1-43 em terminais sinápticos de células bipolares foram bastante semelhantes em todas as condições testadas. Apesar das diferenças marcantes em ambos os modelos experimentais, nossos achados demonstram que a acidificação e o preenchimento de vesículas sinápticas não são necessários para o tráfico normal da vesícula nas sinapses estudadas.


Subject(s)
Synapses/metabolism , Synaptic Vesicles/classification , Acidification/analysis , Retinal Bipolar Cells/classification
5.
J Biosci ; 2007 Mar; 32(2): 293-8
Article in English | IMSEAR | ID: sea-110878

ABSTRACT

During normal ageing, the rods (and other neurones) undergo a significant decrease in density in the human retina from the fourth decade of life onward.Since the rods synapse with the rod bipolar cells in the outer plexiform layer, a decline in rod density (mainly due to death)may ultimately cause an associated decline of the neurones which,like the rod bipolar cells,are connected to them.The rod bipolar cells are selectively stained with antibodies to protein kinase C-alpha.This study examined if rod bipolar cell density changes with ageing of the retina, utilizing donor human eyes (age: 6-91 years).The retinas were fixed and their temporal parts from the macula to the mid-periphery sectioned and processed for protein kinase C-alpha immunohistochemistry.The density of the immunopositive rod bipolar cells was estimated in the mid-peripheral retina (eccentricity: 3-5 mm)along the horizontal temporal axis.The results show that while there is little change in the density of the rod bipolar cells from 6 to 35 years (2.2%), the decline during the period from 35 to 62 years is about 21% and between seventh and tenth decades,it is approximately 27%.


Subject(s)
Adult , Age Factors , Aged, 80 and over , Aging/pathology , Cell Count , Child , Female , Humans , Immunohistochemistry/methods , Male , Middle Aged , Protein Kinase C-alpha/immunology , Retinal Bipolar Cells/cytology , Retinal Rod Photoreceptor Cells/cytology
6.
Braz. j. med. biol. res ; 39(3): 405-410, Mar. 2006. ilus
Article in English | LILACS | ID: lil-421368

ABSTRACT

To quantify the effects of methylmercury (MeHg) on amacrine and on ON-bipolar cells in the retina, experiments were performed in MeHg-exposed groups of adult trahiras (Hoplias malabaricus) at two dose levels (2 and 6 µg/g, ip). The retinas of test and control groups were processed by mouse anti-parvalbumin and rabbit anti-alphaprotein kinase C (alphaPKC) immunocytochemistry. Morphology and soma location in the inner nuclear layer were used to identify immunoreactive parvalbumin (PV-IR) and alphaPKC (alphaPKC-IR) in wholemount preparations. Cell density, topography and isodensity maps were estimated using confocal images. PV-IR was detected in amacrine cells in the inner nuclear layer and in displaced amacrine cells from the ganglion cell layer, and alphaPKC-IR was detected in ON-bipolar cells. The MeHg-treated group (6 µg/g) showed significant reduction of the ON-bipolar alphaPKC-IR cell density (mean density = 1306 ± 393 cells/mm²) compared to control (1886 ± 892 cells/mm²; P < 0.001). The mean densities found for amacrine PV-IR cells in MeHg-treated retinas were 1040 ± 56 cells/mm² (2 µg/g) and 845 ± 82 cells/mm² (6 µg/g), also lower than control (1312 ± 31 cells/mm²; P < 0.05), differently from the data observed in displaced PV-IR amacrine cells. These results show that MeHg changed the PV-IR amacrine cell density in a dose-dependent way, and reduced the density of alphaKC-IR bipolar cells at the dose of 6 µg/g. Further studies are needed to identify the physiological impact of these findings on visual function.


Subject(s)
Animals , Amacrine Cells/drug effects , Fishes/metabolism , Methylmercury Compounds/toxicity , Parvalbumins/drug effects , Protein Kinase C-alpha/drug effects , Retinal Bipolar Cells/drug effects , Amacrine Cells/metabolism , Parvalbumins/metabolism , Protein Kinase C-alpha/metabolism , Retinal Bipolar Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL