Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 557
Filter
1.
Braz. j. biol ; 83: e243332, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1345537

ABSTRACT

Abstract The present study was aimed to manifest the antibacterial and antifungal activity of methanolic extracts of Salix alba L. against seven Gram-positive and Gram-negative bacterial pathogens e.g. Streptococcus pyogenes, Staphylococcus aureus (1), S. aureus (2), Shigella sonnei, Escherichia coli (1), E. coli (2) and Neisseria gonorrhoeae and three fungal isolates from the air such as Aspergillus terreus, A. ornatus, and Rhizopus stolonifer. Two different serotypes of S. aureus and E. coli were used. The agar well-diffusion method results showed the dose-dependent response of plant extracts against bacterial and fungal strains while some organisms were found resistant e.g. E. coli (1), S. sonnei, A. terreus and R. stolonifer. The highest antibacterial activity was recorded at 17.000±1.732 mm from 100 mg/mL of leaves methanolic extracts against S. pyogenes while the activity of most of the pathogens decreased after 24 h of incubation. The highest antifungal activity was reported at 11.833±1.0 mm against A. ornatus at 50 mg/mL after 48 h of the incubation period. These experimental findings endorse the use of S. alba in ethnopharmacological formulations and suggest the use of methanolic extracts of the said plant to develop drugs to control the proliferation of resistant disease causing pathogenic microbes.


Resumo O presente estudo teve como objetivo manifestar a atividade antibacteriana e antifúngica de extratos metanólicos de Salix alba L. contra sete patógenos bacterianos Gram-positivos e Gram-negativos. Streptococcus pyogenes, Staphylococcus aureus (1), S. aureus (2), Shigella sonnei, Escherichia coli (1), E. coli (2) e Neisseria gonorrhoeae e três isolados de fungos do ar, como Aspergillus terreus, A. ornatus, e Rhizopus stolonifer. Dois sorotipos diferentes de S. aureus e E. coli foram usados. Os resultados do método de difusão em ágar mostraram a resposta dependente da dose de extratos de plantas contra cepas de bactérias e fungos, enquanto alguns organismos foram considerados resistentes, e.g. E. coli (1), S. sonnei, A. terreus e R. stolonifer. A maior atividade antibacteriana foi registrada em 17.000 ± 1.732 de 100 mg/mL de extratos metanólicos de folhas contra S. pyogenes, enquanto a atividade da maioria dos patógenos diminuiu após 24 h de incubação. A maior atividade antifúngica foi relatada em 11,833 ± 1,0 contra A. ornatus a 50 mg/mL após 48 h do período de incubação. Esses achados experimentais endossam o uso de S. alba em formulações etnofarmacológicas e sugerem o uso de extratos metanólicos da referida planta para o desenvolvimento de fármacos que controlem a proliferação de doenças resistentes que causam micróbios patogênicos.


Subject(s)
Salix , Antifungal Agents/pharmacology , Aspergillus , Rhizopus , Staphylococcus aureus , Plant Extracts/pharmacology , Microbial Sensitivity Tests , Methanol , Escherichia coli , Anti-Bacterial Agents/pharmacology
2.
Bol. latinoam. Caribe plantas med. aromát ; 21(1): 123-130, ene. 2022. tab
Article in Spanish | LILACS | ID: biblio-1372547

ABSTRACT

The genus Fuchsia is generally used in herbal preparations to treat conditions caused by microorganisms. Based on the popular use of this type of plants, the objective of this study was to obtain sequential extracts of increasing polarity from the branches of Fuchsia lycioides by maceration at room temperature and by the Soxhlet method at 60ºC, to later evaluate the antifungal capacity of the extracts against different clinical isolates of the Candida genus. The ethyl acetate extract exhibited strong anti-fungal activity, selectively inhibiting C. albicans strains with MIC and CMF values of 10 and 15 µg/mL, respectively; comparable with the drug itraconazole®. The analysis of the extract by GC-MS showed a high concentration of terpenoids (mainly phytol) and phenylpropanoids (mainly cinnamic acid), possibly responsible for the antifungal activity of the ethyl acetate extract of F. lycioides.


El género Fuchsia se usa generalmente en preparaciones de hierbas para tratar afecciones provocadas por microorganismos. En base al uso popular de este tipo de plantas, el objetivo de este estudio fue obtener los extractos secuenciales de polaridad creciente de las ramas de Fuchsia lycioides por maceración a temperatura ambiente y por el método Soxhlet a 60ºC, para luego evaluar la capacidad antifúngica de los extractos frente a diferentes aislados clínicos del genero Candida. El extracto de acetato de etilo exhibió una fuerte actividad antifúngica inhibiendo en forma selectiva las cepas de C. albicans con valores de CMI y de CMF de 10 y 15 µg/mL, respectivamente; comparables con el fármaco itraconazol®. El análisis del extracto por CG-EM mostró una alta concentración de terpenoides (principalmente fitol) y fenilpropanoides (principalmente ácido cinámico), posibles responsables de la actividad antifúngica del extracto de acetato de etilo de F. lycioides.


Subject(s)
Candida albicans/drug effects , Plant Extracts/pharmacology , Onagraceae/chemistry , Antifungal Agents/pharmacology , Phenylpropionates/analysis , Temperature , Terpenes/analysis , Plant Extracts/chemistry , Microbial Sensitivity Tests , Gas Chromatography-Mass Spectrometry , Antifungal Agents/chemistry
3.
Braz. j. biol ; 81(4): 1007-1022, Oct.-Dec. 2021. tab, graf
Article in English | LILACS | ID: biblio-1153429

ABSTRACT

Abstract Drawbacks associated with the use of chemical fungicides to control plant pathogenic fungi such as Botrytis cinerea stimulate the need for alternatives. Therefore, the present study was carried out to determine the antifungal potentials of Moringa oleifera extracts against B. cinerea. Phytochemical analysis using qualitative chemical tests revealed the presence of huge amount of crucial phytochemicals compounds like phenolic compounds, alkaloids and saponins in the M. oleifera leaf extract. Antifungal bioassay of the crude extracts indicated better mycelial growth inhibition by methanol leaf extract (99%). The minimum inhibitory concentration (MIC) was 5 mg/ml with 100% spore germination inhibition and minimum fungicidal concentration (MFC) was 10 mg/ml with 98.10% mycelial growth inhibition using broth micro dilution and poisoned food techniques. Gas chromatography-mass spectrometry (GC-MS) analysis led to the identification of 67 volatile chemical compounds in the leaf extract with 6-decenoic acid (Z)- (19.87%) was the predominant compound. Further chemical elucidation of the crude extracts performed by liquid chromatography with tandem mass spectrometry (LC-MS/MS) showed the presence of non-volatile chemical compounds, mostly flavones, flavonoids and phenolic acids (i.e. quercetin and kaempferol). Scanning electron microscopy and transmission electron microscopy analysis showed positive effect of M. oleifera leaf extract on the treated conidia and mycelium of B. cinerea. Findings revealed that irreversible surface and ultra-structural changes with severe detrimental effects on conidia and mycelium morphology compared to control treatment. Overall findings suggested that M. oleifera leaf extract is a promising candidate for biological control of fungal pathogens, thus limiting overdependence on chemical fungicides.


Resumo As desvantagens associadas ao uso de fungicidas químicos para controlar fungos fitopatogênicos, como Botrytis cinerea, estimulam a necessidade de alternativas. Portanto, o presente estudo foi realizado para determinar o potencial antifúngico de extratos de Moringa oleifera contra B. cinerea. A análise fitoquímica usando testes químicos qualitativos revelou a presença de uma grande quantidade de compostos fitoquímicos cruciais, como compostos fenólicos, alcaloides e saponinas no extrato da folha de M. oleifera. O bioensaio antifúngico dos extratos brutos indicou melhor inibição do crescimento micelial pelo extrato de folhas de metanol (99%). A concentração inibitória mínima (MIC) foi de 5 mg/mL com 100% de inibição da germinação de esporos e a concentração fungicida mínima (MFC) foi de 10 mg/mL com 98,10% de inibição do crescimento micelial usando microdiluição em caldo e técnicas de alimentos envenenados. A análise por cromatografia gasosa-espectrometria de massa (GC-MS) levou à identificação de 67 compostos químicos voláteis no extrato da folha, sendo o ácido 6-decenoico (Z) (19,87%) o composto predominante. Elucidação química adicional dos extratos brutos realizada por cromatografia líquida com espectrometria de massa em tandem (LC-MS/MS) mostrou a presença de compostos químicos não voláteis, principalmente flavonas, flavonoides e ácidos fenólicos (ou seja, quercetina e kaempferol). As análises de microscopia eletrônica de varredura e microscopia eletrônica de transmissão mostraram efeito positivo do extrato de folhas de M. oleifera sobre os conídios e micélios tratados de B. cinerea. Os resultados revelaram a superfície irreversível e alterações ultraestruturais com graves efeitos prejudiciais sobre os conídios e a morfologia micelial, em comparação com o tratamento de controle. Os resultados gerais sugeriram que o extrato da folha de M. oleifera é um candidato promissor para o controle biológico de patógenos fúngicos, limitando assim a dependência excessiva de fungicidas químicos.


Subject(s)
Lycopersicon esculentum , Moringa oleifera , Plant Extracts/pharmacology , Chromatography, Liquid , Botrytis , Tandem Mass Spectrometry , Antifungal Agents/pharmacology
4.
Bol. latinoam. Caribe plantas med. aromát ; 20(5): 536-557, sept. 2021. tab, ilus
Article in English | LILACS | ID: biblio-1369226

ABSTRACT

This study determined phytochemical composition, antifungal activity and toxicity in vitro and in vivo of Syzygium cumini leaves extract (Sc). Thus, was characterized by gas chromatography coupled to mass spectrometry and submitted to determination of Minimum Inhibitory (MIC) and Fungicidal concentrations (MFC) on reference and clinical strains of Candida spp. and by growth kinetics assays. Toxicity was verified using in vitro assays of hemolysis, osmotic fragility, oxidant and antioxidant activity in human erythrocytes and by in vivo acute systemic toxicity in Galleria mellonella larvae. Fourteen different compounds were identified in Sc, which showed antifungal activity (MIC between 31.25-125µg/mL) with fungistatic effect on Candida. At antifungal concentrations, it demonstrated low cytotoxicity, antioxidant activity and neglible in vivotoxicity. Thus, Sc demonstrated a promising antifungal potential, with low toxicity, indicating that this extract can be a safe and effective alternative antifungal agent.


Este estudio determinó la composición fitoquímica, la actividad antifúngica y la toxicidad in vitro e in vivo del extracto de hojas de Syzygium cumini (Sc). Así, se caracterizó mediante cromatografía de gases acoplada a espectrometría de masas y se sometió a determinación de Concentraciones Mínimas Inhibitorias (CMI) y Fungicidas (MFC) sobre cepas de referencia y clínicas de Candida spp. y mediante ensayos de cinética de crecimiento. La toxicidad se verificó mediante ensayos in vitro de hemólisis, fragilidad osmótica, actividad oxidante y antioxidante en eritrocitos humanos y por toxicidad sistémica aguda in vivo en larvas de Galleria mellonella. Se identificaron catorce compuestos diferentes en Sc, que mostraron actividad antifúngica (CMI entre 31.25-125 µg/mL) con efecto fungistático sobre Candida. En concentraciones antifúngicas, demostró baja citotoxicidad, actividad antioxidante y toxicidad in vivo insignificante. Por lo tanto, Sc demostró un potencial antifúngico prometedor, con baja toxicidad, lo que indica que este extracto puede ser un agente antifúngico alternativo seguro y eficaz.


Subject(s)
Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Syzygium/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Candida/drug effects , Plant Extracts/toxicity , Microbial Sensitivity Tests , Toxicity Tests , Plant Leaves/chemistry , Phenolic Compounds/analysis , Gas Chromatography-Mass Spectrometry , Antifungal Agents/toxicity , Antioxidants
5.
ABCS health sci ; 46: e021203, 09 fev. 2021. tab
Article in English | LILACS | ID: biblio-1147180

ABSTRACT

INTRODUCTION: The resistance of fungal species to drugs usually used in clinics is of great interest in the medical field. OBJECTIVE: To evaluate susceptibility and in vitro response of species of Trichophyton spp. to antifungal drugs of interest in clinical medicine. METHODS: 12 samples of clinical isolates from humans were used, nine of T. mentagrophytes and three of T. tonsurans. Susceptibility tests were performed according to the agar diffusion (AD) and broth microdilution (BM) methods. RESULTS: In the AD method, the species T. tonsurans presented a percentage of sensitivity of 33% in relation to amphotericin B and 66% to itraconazole, with 100% resistance to ketoconazole and fluconazole. T. mentagrophytes also showed 100% resistance to ketoconazole in this technique, with 11% sensitivity to ketoconazole, 22% to itraconazole and 22% of samples classified as sensitive dose dependent. In the MC method, the species T. tonsurans presented a sensitivity percentage of 66%, 55% and 33% in relation to ketoconazole, fluconazole and itraconazole, respectively. The T. mentagrophytes species presented sensitivity percentages of 11%, 11%, 33% and 55% for amphotericin B, itraconazole, ketoconazole and fluconazole, respectively. CONCLUSION: There was resistance in vitro of the species of T. mentagrophytes and T. tonsurans against the antifungal fluconazole and relative resistance against ketoconazole in the AD method. In BM, however, important percentages of sensitivity were observed for the two species analyzed in relation to the antifungals fluconazole and ketoconazole when compared to itraconazole and amphotericin B.


INTRODUÇÃO: A resistência de espécies fúngicas às drogas usualmente empregadas no meio clínico é motivo de grande interesse na área médica. OBJETIVO: Avaliar susceptibilidade e resposta in vitro de espécies de Trichophyton spp. a drogas antifúngicas de interesse em clínica médica. MÉTODOS: Foram utilizadas 12 amostras de isolados clínicos de humanos, sendo nove de T. mentagrophytes e três de T. tonsurans. Foram realizados testes de susceptibilidade segundo os métodos de difusão em ágar (DA) e microdiluição em caldo (MC). RESULTADOS: No método de DA, a espécie T. tonsurans apresentou percentual de sensibilidade de 33% em relação à anfotericina B e de 66% ao itraconazol, com 100% de resistência frente ao cetoconazol e ao fluconazol. A espécie T. mentagrophytes também apresentou 100% de resistência frente ao cetoconazol nesta técnica, com 11% de sensibilidade ao cetoconazol, 22% ao itraconazol e 22% das amostras classificadas como sensível dose dependente. No método de MC, a espécie T. tonsurans apresentou percentual de sensibilidade de 66%, 55% e 33% em relação ao cetoconazol, fluconazol e itraconazol, respectivamente. A espécie T. mentagrophytes apresentou percentuais de sensibilidade de 11%, 11%, 33% e 55% para anfotericina B, itraconazol, cetoconazol e fluconazol, respectivamente. CONCLUSÃO: Houve resistência in vitro das espécies do T. mentagrophytes e T. tonsurans frente ao antifúngico fluconazol e resistência relativa frente ao cetoconazol no método de DA. Na MC, no entanto, foram observados importantes percentuais de sensibilidade das duas espécies analisadas frente aos antifúngicos fluconazol e cetoconazol quando comparadas ao itraconazol e à anfotericina B.


Subject(s)
Trichophyton/drug effects , Microbial Sensitivity Tests , Drug Resistance, Fungal , Disease Susceptibility/microbiology , Antifungal Agents/pharmacology , Tinea/microbiology , Tinea/drug therapy , Colony Count, Microbial , Fluconazole/pharmacology , Amphotericin B/pharmacology , Itraconazole/pharmacology , Ketoconazole/pharmacology
6.
Article in English | WPRIM | ID: wpr-921330

ABSTRACT

Objective@#This study aimed to evaluate the epidemiological, clinical and mycological characteristics of invasive candidiasis (IC) in China.@*Methods@#A ten-year retrospective study including 183 IC episodes was conducted in a tertiary hospital in Beijing, China.@*Results@#The overall incidence of IC from 2010-2019 was 0.261 episodes per 1,000 discharges. Candidemia (71.0%) was the major infective pattern; 70.3% of the patients tested positive for @*Conclusion@#The incidence of IC has declined in the recent five years.


Subject(s)
Adolescent , Adult , Aged , Aged, 80 and over , Antifungal Agents/pharmacology , Candidiasis, Invasive/microbiology , Child , Child, Preschool , China/epidemiology , Drug Resistance, Fungal , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Retrospective Studies , Tertiary Care Centers/statistics & numerical data , Young Adult
7.
Article in English | WPRIM | ID: wpr-888786

ABSTRACT

Candida is an intractable life-threatening pathogen. Candida infection is extremely difficult to eradicate, and thus is the major cause of morbidity and mortality in immunocompromised individuals. Morevover, the rapid spread of drug-resistant fungi has led to significant decreases in the therapeutic effects of clinical drugs. New anti-Candida agents are urgently needed to solve the complicated medical problem. Natural products with intricate structures have attracted great attention of researchers who make every endeavor to discover leading compounds for antifungal agents. Their novel mechanisms and diverse modes of action expand the variety of fungistatic agents and reduce the emergence of drug resistance. In recent decades, considerable effort has been devoted to finding unique antifungal agents from nature and revealing their unusual mechanisms, which results in important progress on the development of new antifungals, such as the novel cell wall inhibitors YW3548 and SCY-078 which are being tested in clinical trials. This review will present a brief summary on the landscape of anti-Candida natural products within the last decade. We will also discuss in-depth the research progress on diverse natural fungistatic agents along with their novel mechanisms.


Subject(s)
Antifungal Agents/pharmacology , Biological Products/pharmacology , Candida/drug effects , Candidiasis/drug therapy , Humans , Microbial Sensitivity Tests
8.
Article in Chinese | WPRIM | ID: wpr-888112

ABSTRACT

Twenty-six compounds, including sixteen meroterpenoids(1-16), a triterpenoid(17), four terpenoid derivatives(18-21), and five aromatic compounds(22-26), were isolated from the leaves of Psidium guajava. Their structures were identified by spectroscopic analyses including NMR and MS. Compounds 21-26 were obtained from plants of Psidium for the first time. Based on the structure,(R)-2-ethylhexyl 2H-1,2,3-triazole-4-carboxylate(24 a), an α-glucosidase inhibitor recently isolated from Paramignya trimera, should be revised as compound 24. Meroterpenoids 1-16 were evaluated for their antitumor and antifungal activities. Meroterpenoids psiguajadial D(4), guapsidial A(5), 4,5-diepipsidial A(7), guadial A(14), and guadial B(15) showed cytotoxicities against five human tumor cell lines(HL-60, A-549, SMMC-7721, MCF-7, and SW-480), among which 5 was the most effective with an IC_(50) of 3.21-9.94 μmol·L~(-1).


Subject(s)
Antifungal Agents/pharmacology , Humans , Magnetic Resonance Spectroscopy , Plant Extracts , Plant Leaves , Psidium , Terpenes
9.
Article in Chinese | WPRIM | ID: wpr-878924

ABSTRACT

The aim of this paper was to investigate the effect of berberine hydrochloride on the cell wall integrity of Candida albicans hypha. The minimal inhibitory concentration(MIC) of berberine hydrochloride against clinical and standard C. albicans strains was detected by micro liquid-based dilution method; the effect of berberine hydrochloride on the colony formation of C. albicans SC5314 was investigated by spot assay; the effect of berberine hydrochloride on the metabolism of C. albicans SC5314 hypha was checked by XTT reduction assay, and the viability of C. albicans SC5314 hypha was tested by fluorescent staining assay. The effect of berberine hydrochloride on the morphology of C. albicans SC5314 hypha was examined by scanning electron microscope. The changes in the cell wall of C. albicans SC5314 hypha after berberine hydrochloride treatment were detected by transmission electron microscopy. The effect of berberine hydrochloride on β-glucan from C. albicans SC5314 was detected by flow cytometry. The effect of berberine hydrochloride on hypha-specific gene ECE1 and β-glucan synthase genes FKS1 and FKS2 in C. albicans was examined by qRT-PCR. The results showed that berberine hydrochloride showed a strong inhibitory effect on both clinical and standard strains of C. albicans, and the MIC was 64-128 μg·mL~(-1). Spot assay, XTT redunction assay and fluorescent staining assay showed that with the increase of berberine hydrochloride concentration, the viability of C. albicans SC5314 gradually decreased. The transmission electron microscopy scanning assay showed that this compound could cause cell wall damage of C. albicans. The flow cytometry analysis showed the exposure degree of C. albicans β-glucan. The qRT-PCR further showed that berberine hydrochloride could significantly down-regulate hypha-specific gene ECE1 and β-glucan synthase-related gene FKS1 and FKS2. In conclusion, this compound can down-regulate C. albicans and β-glucan synthase-related gene expressions, so as to destroy the cell wall structure of C. albicans, expose β-glucan and damage the integrity of the wall.


Subject(s)
Antifungal Agents/pharmacology , Berberine/pharmacology , Candida albicans/genetics , Cell Wall , Hyphae , Microbial Sensitivity Tests
10.
Chinese Journal of Biotechnology ; (12): 1107-1119, 2021.
Article in Chinese | WPRIM | ID: wpr-878617

ABSTRACT

Natamycin is a polyene macrolide antibiotics with strong and broad spectrum antifungal activity. It not only effectively inhibits the growth and reproduction of fungi, but also prevents the formation of some mycotoxins. Consequently, it has been approved for use as an antifungal food preservative in most countries, and is also widely used in agriculture and healthcare. Streptomyces natalensis and Streptomyces chatanoogensis are the main producers of natamycin. This review summarizes the biosynthesis and regulatory mechanism of natamycin, as well as the strategies for improving natamycin production. Moreover, the future perspectives on natamycin research are discussed.


Subject(s)
Antifungal Agents/pharmacology , Fungi , Natamycin , Streptomyces
11.
Braz. j. med. biol. res ; 54(9): e10928, 2021. graf
Article in English | LILACS | ID: biblio-1278587

ABSTRACT

This study aimed to evaluate the frequency of cryptic Candida species from candidemia cases in 22 public hospitals in São Paulo State, Brazil, and their antifungal susceptibility profiles. During 2017 and 2018, 144 isolates were molecularly identified as 14 species; C. parapsilosis (32.6%), C. albicans (27.7%), C. tropicalis (14.6%), C. glabrata (9.7%), C. krusei (2.8%), C. orthopsilosis (2.8%), C. haemulonii var. vulnera (2.1%), C. haemulonii (1.4%), C. metapsilosis (1.4%), C. dubliniensis (1.4%), C. guilliermondii (1.4%), C. duobushaemulonii (0.7%), C. kefyr (0.7%), and C. pelliculosa (0.7%). Poor susceptibility to fluconazole was identified in 6.4% of C. parapsilosis isolates (0.12 to >64 µg/mL), 50% of C. guilliermondii (64 µg/mL), 66.6% of C. haemulonii var. vulnera (16-32 µg/mL), and C. duobushaemulonii strain (MIC 64 µg/mL). Our results corroborated the emergence of C. glabrata in Brazilian cases of candidemia as previously reported. Importantly, we observed a large proportion of non-wild type C. glabrata isolates to voriconazole (28.6%; <0.015 to 4 µg/mL) all of which were also resistant to fluconazole (28.6%). Of note, C. haemulonii, a multidrug resistant species, has emerged in the Southeast region of Brazil. Our findings suggested a possible epidemiologic change in the region with an increase in fluconazole-resistant species causing candidemia. We stress the relevance of routine accurate identification to properly manage therapy and monitor epidemiologic trends.


Subject(s)
Candida , Antifungal Agents/pharmacology , Brazil , Microbial Sensitivity Tests , Drug Resistance, Fungal , Hospitals
12.
Mem. Inst. Oswaldo Cruz ; 116: e210207, 2021. tab, graf
Article in English | LILACS | ID: biblio-1346578

ABSTRACT

BACKGROUND Treatment of mycoses is often ineffective, usually prolonged, and has some side effects. These facts highlight the importance of discovering new molecules to treat fungal infections. OBJECTIVES To search the Medicines for Malaria Venture COVID Box for drugs with antifungal activity. METHODS Fourteen human pathogenic fungi were tested against the 160 drugs of this collection at 1.0 µM concentration. We evaluated the ability of the drugs to impair fungal growth, their fungicidal nature, and morphological changes caused to cells. FINDINGS Thirty-four molecules (21.25%) presented antifungal activity. Seven are antifungal drugs and one is the agricultural fungicide cycloheximide. The other drugs with antifungal activity included antibiotics (n = 3), antimalarials (n = 4), antivirals (n = 2), antiparasitcs (n = 3), antitumor agents (n = 5), nervous system agents (n = 3), immunosuppressants (n = 3), antivomiting (n = 1), antiasthmatic (n = 1), and a genetic disorder agent (n = 1). Several of these drugs inhibited Histoplasma capsulatum and Paracoccidioides brasiliensis growth (15 and 20, respectively), while Fusarium solani was not affected by the drugs tested. Most drugs were fungistatic, but niclosamide presented fungicidal activity against the three dimorphic fungi tested. Cyclosporine affected morphology of Cryptococcus neoformans. MAIN CONCLUSIONS These drugs represent new alternatives to the development of more accessible and effective therapies to treat human fungal infections.


Subject(s)
Humans , Pharmaceutical Preparations , Cryptococcus neoformans , COVID-19 , Malaria/drug therapy , Microbial Sensitivity Tests , Drug Repositioning , SARS-CoV-2 , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology
13.
Arq. odontol ; 57: 236-243, jan.-dez. 2021. ilus, tab
Article in Portuguese | LILACS, BBO | ID: biblio-1348373

ABSTRACT

Objetivo:Avaliar in vitro a atividade de Staphylococcus aureus e Candida albicans em bases de próteses convencionais à base de polimetilmetacrilato de metila com nanopartículas de prata incorporadas a sua composição. Métodos: Foi realizado um estudo experimental laboratorial com resinas acrílicas autopolimerizáveis comercialmente disponíveis, Vipi Flash/VIPI e JET/Clássico. Foram confeccionados 80 corpos de prova, divididos em 16 grupos (n = 5), referentes ao tipo de resina, tratamento (incorporação e imersão na solução de nanopartículas de prata) e microrganismo inoculado. As nanopartículas foram sintetizadas com ácido polimetacrílico, nitrato de prata e irradiadas com luz ultravioleta de baixa potência (~8W) por 6 horas, e as suas concentrações idealizadas pelo método de microdiluição em placas para determinação da concentração mínima inibitória frente aos microrganismos selecionados. Verificou-se ação bactericida e fungicida com concentração inicial de 25% e após fator de diluição 12,5%. Resultados: Houve dificuldade de incorporação das nanopartículas na resina acrílica, que pode decorrer da alteração da proporção 3:1 recomendada pelo fabricante ou pela redução ou inativação da ação da nanopartícula de prata pela interação com o polimetilmetacrilato. VIPI com inclusão de nanopartícula obteve menor aderência de biofilme de Candida albicans. Conclusão:A nanopartícula de prata mostrou-se eficaz na sua ação de controle de Candida albicans e Staphylococcus aureus no método de imersão, entretanto, a sua ação antimicrobiana foi comprometida após inclusão nas resinas acrílicas.


Aim:To perform an in vitro evaluation of the activity of Staphylococcus aureus and Candida albicansin conventional prosthesis bases, based on methyl polymethylmethacrylate with silver nanoparticles incorporated into the composition. Methods: An experimental laboratory study was carried out using commercially available self-curing acrylic resins, Vipi Flash/VIPI and JET/Clássico. Eighty specimens were manufactured and divided into 16 groups (n = 5), referent to the resin brand, treatment (incorporation and immersion in the silver nanoparticle solution), and inoculated microorganism. The nanoparticles were synthesized with polymethacrylic acid and silver nitrate, and were irradiated with a low power (~ 8W) ultraviolet light for 6 hours. Their concentrations were idealized by the method of microplate dilution to determine the minimum inhibitory concentration when compared to the selected microorganisms. Bactericidal and fungicidal activities were identified with an initial concentration of 25% and a subsequent dilution factor of 12.5%. Results:It was difficult to incorporate the AgNPs into the acrylic resin, which may well have resulted from the change from the 3:1 proportion recommended by the manufacturer or by reducing or inactivating the action of the silver nanoparticle by interaction with polymethylmethacrylate. VIPI with the inclusion of nanoparticles obtained a lesser Candida albicans biofilm adherence. Conclusion: Silver nanoparticles were effective in controlling Candida albicans and Staphylococcus aureus in the immersion method; however, the antimicrobial activity was compromised after inclusion in acrylic resins.


Subject(s)
Silver Nitrate/pharmacology , Dental Prosthesis/microbiology , Polymethyl Methacrylate/pharmacology , Nanotechnology/methods , Nanoparticles/chemistry , Biological Control Agents/pharmacology , Staphylococcus aureus/drug effects , Candida albicans/drug effects , Anti-Infective Agents/pharmacology , Antifungal Agents/pharmacology
15.
Säo Paulo med. j ; 138(1): 40-46, Jan.-Feb. 2020. tab, graf
Article in English | LILACS | ID: biblio-1099387

ABSTRACT

BACKGROUND: Statins are used as cholesterol-lowering drugs and may also have direct antimicrobial effects. OBJECTIVE: To evaluate synergic interactions between simvastatin and both amphotericin B and fluconazole, against environmental strains of Cryptococcus neoformans isolated from captive birds' droppings. DESIGNAND SETTING: Experimental study conducted at Federal University of Piauí, Parnaíba, in collaboration with Federal University of Triângulo Mineiro, Uberaba, Brazil. METHODS: Statin susceptibility tests of Cryptococcus neoformans samples were performed as prescribed in standards. Interactions of simvastatin with amphotericin and fluconazole were evaluated using the checkerboard microdilution method. Presence of these interactions was quantitatively detected through determining the fractional inhibitory concentration index (FICI). RESULTS: Isolates of Cryptococcus neoformans were obtained from 30 of the 206 samples of dry bird excreta (14.5%) that were collected from pet shops and houses. Ten isolates were selected for susceptibility tests. All of them were susceptible to amphotericin and fluconazole. All presented minimum inhibitory concentration (MIC) > 128 µg/ml and, thus, were resistant in vitro to simvastatin. An in vitro synergic effect was shown through combined testing of amphotericin B and simvastatin, such that six isolates (60%) presented FICI < 0.500. Two isolates showed considerable reductions in MIC, from 1 µg/ml to 0.250 µg/ml. No synergic effect was observed through combining fluconazole and simvastatin. CONCLUSION: These results demonstrate that simvastatin should be considered to be a therapeutic alternative, capable of potentiating the action of amphotericin B. However, further studies are necessary to clarify the real effect of simvastatin as an antifungal agent.


Subject(s)
Humans , Amphotericin B/pharmacology , Simvastatin/pharmacology , Cryptococcus neoformans , Brazil , Microbial Sensitivity Tests , Fluconazole , Prospective Studies , Drug Synergism , Antifungal Agents/pharmacology
16.
J. appl. oral sci ; 28: e20190039, 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1090769

ABSTRACT

Abstract This study aimed to evaluate the physical properties and antifungal activities of polymethyl methacrylate (PMMA) acrylic resins after the incorporation of chlorhexidine diacetate salt (CDA). Methodology: First, acrylic resin specimens were fabricated with Vipi Cor® and DuraLay® resins with and without the incorporation of 0.5%, 1.0% or 2.0% CDA. The residual monomer and CDA release were measured at intervals ranging from 2 hours to 28 days using ultraviolet spectrometry combined with high-performance liquid chromatography. The antifungal activity against C. albicans was evaluated with the agar diffusion method. Fourier transform infrared spectroscopy was used to analyze the degree of resin conversion. Finally, the water sorption values of the resins were also measured. Results: The incorporated CDA concentration significantly changed the rate of CDA release (p<0.0001); however, the brand of the material appeared to have no significant influence on drug release. Subsequently, the inhibition zones were compared between the tested groups and within the same brand, and only the comparisons between the CDA 2% and CDA 1% groups and between the CDA 1% and CDA 0.5% groups failed to yield significant differences. Regarding the degrees of conversion, the differences were not significant and were lower only in the CDA 2% groups. Water sorption was significantly increased at the 1.0% and 2.0% concentrations. Conclusions: We concluded that the incorporation of CDA into PMMA-based resins enabled the inhibition of C. albicans growth rate, did not alter the degrees of conversion of the tested resins and did not change the release of residual monomers.


Subject(s)
Chlorhexidine/analogs & derivatives , Polymethyl Methacrylate/chemistry , Antifungal Agents/chemistry , Reference Values , Time Factors , Acrylic Resins/chemistry , Materials Testing , Candida albicans/drug effects , Water/chemistry , Chlorhexidine/pharmacology , Reproducibility of Results , Chromatography, High Pressure Liquid , Spectroscopy, Fourier Transform Infrared , Polymethyl Methacrylate/pharmacology , Antifungal Agents/pharmacology
18.
Braz. oral res. (Online) ; 34: e050, 2020. graf
Article in English | LILACS, BBO | ID: biblio-1132693

ABSTRACT

Abstract Candida infection is an important cause of morbidity and mortality in immunocompromised patients. The increase in its incidence has been associated with resistance to antimicrobial therapy and biofilm formation. The aim of this study was to evaluate the efficacy of tea tree oil (TTO) and its main component - terpinen-4-ol - against resistant Candida albicans strains (genotypes A and B) identified by molecular typing and against C. albicans ATCC 90028 and SC 5314 reference strains in planktonic and biofilm cultures. The minimum inhibitory concentration, minimum fungicidal concentration, and rate of biofilm development were used to evaluate antifungal activity. Results were obtained from analysis of the biofilm using the cell proliferation assay 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and confocal laser scanning microscopy (CLSM). Terpinen-4-ol and TTO inhibited C. albicans growth. CLSM confirmed that 17.92 mg/mL of TTO and 8.86 mg/mL of terpinen-4-ol applied for 60 s (rinse simulation) interfered with biofilm formation. Hence, this in vitro study revealed that natural substances such as TTO and terpinen-4-ol present promising results for the treatment of oral candidiasis.


Subject(s)
Terpenes/pharmacology , Candida albicans/drug effects , Biofilms/drug effects , Tea Tree Oil/pharmacology , Reference Values , Terpenes/chemistry , Acrylic Resins , Candida albicans/growth & development , Microbial Sensitivity Tests , Reproducibility of Results , Analysis of Variance , Statistics, Nonparametric , Microscopy, Confocal , Biofilms/growth & development , Tea Tree Oil/chemistry , Denture Bases/microbiology , Antifungal Agents/pharmacology
19.
Braz. arch. biol. technol ; 63: e20190177, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132206

ABSTRACT

Abstract: This article describes the chemical composition of Vernonia chalybaea essential oil, and investigates its antimicrobial, antioxidant and hemolytic activities. The evaluation of the antifungal activity was performed by the broth microdilution method using strains of yeasts and dermatophytic fungi. The checkerboard technique to find antimicrobial modulatory effects was performed using ketoconazole as standard drug. The antioxidant activity was evaluated by DPPH scavenging assay and β-carotene/linoleic-acid system. The toxicity was characterized by the brine shrimp lethality test and hemolysis bioassays. The essential oil was obtained by hydrodistillation and analyzed by GC-MS method, showing to be rich in the sesquiterpenes β-caryophyllene (39.06%) and bicyclogermacrene (19.69%), and also demonstrated a relevant antifungal activity against strains of Trichophyton rubrum. In the modulatory activity assay, the essential oil of V. chalybaea and β-caryophyllene demonstrated a synergistic interaction with ketoconazole, with increasing of its antifungal action. The antioxidant activity was evidenced mainly by β-carotene/linoleic acid system, with IC50 value of 35.87 ± 0.32 µg/mL. The results suggest that V. chalybaea essential oil and β-caryophyllene are valuable natural medicinal agents with antioxidant and antimicrobial activities.


Subject(s)
Humans , Animals , Oils, Volatile/pharmacology , Vernonia/chemistry , Ketoconazole/pharmacology , Antifungal Agents/pharmacology , Artemia , Bacteria/drug effects , Oils, Volatile/chemistry , Linoleic Acid/pharmacology , beta Karyopherins/pharmacology , Fungi/classification , Fungi/drug effects , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antioxidants/pharmacology
20.
Braz. arch. biol. technol ; 63: e20200087, 2020. tab, graf
Article in English | LILACS | ID: biblio-1132188

ABSTRACT

Abstract In the current study, nanocapsules (NC) formulations containing a co-load of clotrimazole (C), a highly prescribed antifungal drug, and diphenyl diselenide [(PhSe)2], an organoselenium compound with a promising scope of pharmacological actions, were prepared. Formulations were characterized as well as the potential toxicity, antioxidant action, and antifungal effect were assessed using in vitro techniques. The NCs were prepared employing Eudragit® RS 100 as polymeric wall and medium chain triglycerides or virgin coconut oil (CO) as core. All NC suspensions had pH around acid range, compound content close to theoretical value (1 mg/mL/drug), average diameter in nanometric range, positive values of zeta potential as well as high encapsulation efficacy and mucoadhesive property. Physicochemical stability was performed over a 30-day period and showed no modification in the aforementioned parameters to all samples. Preliminary screening of toxicological potential performed by the hen's egg test chorioallantoic membrane technique classified the formulations as non-irritant. The DPPH radical assay revealed that nanoencapsulated compounds had superior antioxidant action in comparison to their free forms (concentration range tested 1.0-25.0 µg/mL). Importantly, the formulation composed of CO and containing C and (PhSe)2 showed the highest antioxidant potential and was selected for further investigation regarding antifungal effect against some Candida spp strains. Results of in vitro antifungal assay demonstrated that the C and (PhSe)2 co-encapsulation had a minimum inhibitory concentration (MIC) values around 60. Thus, our study supplies additional data about advantages achieved by encapsulating active compounds.


Subject(s)
Benzene Derivatives/pharmacology , Candida/drug effects , Organoselenium Compounds/pharmacology , Clotrimazole/pharmacology , Nanocapsules , Antifungal Agents/pharmacology , Antioxidants/pharmacology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL