Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 294
Filter
1.
Article in Chinese | WPRIM | ID: wpr-921779

ABSTRACT

This study aims to explore the effect of extract of Ginseng Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Chuanxiong Rhizoma(hereinafter referred to as GNS) on the SIRT1-autophagy pathway of endothelial cell senescence induced by hydrogen peroxide(H_2O_2). To be specific, vascular endothelial cells were classified into the blank control group(control), model group(model), model + DMSO group(DMSO), resveratrol group(RESV), and GNS low-dose(GNS-L), medium-dose(GNS-M), and high-dose(GNS-H) groups. They were treated with H_2O_2 for senescence induction except the control. After intervention of cells in each group with corresponding drugs for 24 h, cell growth status was observed under an inverted microscope, and the formation of autophagosome under the transmission electron microscope. In addition, the changes of microtubule-associated protein 1 light chain 3β(LC3 B) were detected by immunofluorescence staining. The autophagy flux was tracked with the autophagy double-labeled adenovirus(mRFP-GFP-LC3) fusion protein. Dansylcadaverine(MDC) staining was employed to determine the autophagic vesicles, and Western blot the expression of sirtuin 1(SIRT1), ubiquitin-binding protein p62, and LC3Ⅱ. After H_2O_2 induction, cells demonstrated slow growth, decreased adhesion ability, raised number of SA-β-gal-stained blue ones, a certain number of autophagosomes with bilayer membrane and secondary lysosomes in the cytoplasm, and slight rise of autophagy flux level. Compared with the model group, GNS groups showed improved morphology, moderate adhesion ability, complete and smooth membrane, decreased SA-β-gal-stained blue cells, many autophagosomes, autophagic vesicles, and secondary lysosomes in the cytoplasm, increased autophagolysosomes, autophagy flux level, and fluorescence intensity of LC3 B and MDC, up-regulated expression of SIRT1 and LC3Ⅱ, and down-regulated expression of p62, suggesting the improvement of autophagy level. GNS can delay the senescence of vascular endothelial cells. After the intervention, the autophagy flux and related proteins SIRT1, LC3Ⅱand p62 changed significantly, and the autophagy level increased significantly. However, EX527 weakened the effect of Chinese medicine in delaying vascular senescence. GNS may delay the senescence of vascular endothelial cells through the SIRT1 autophagy pathway.


Subject(s)
Autophagy , Cells, Cultured , Cellular Senescence , Drugs, Chinese Herbal/pharmacology , Endothelial Cells/drug effects , Hydrogen Peroxide , Panax/chemistry , Sirtuin 1/genetics
2.
Acta Physiologica Sinica ; (6): 828-834, 2021.
Article in Chinese | WPRIM | ID: wpr-921286

ABSTRACT

As a kind of mental illness, depression produces great difficulties in clinical diagnosis and treatment, and has a high disability rate. It is urgent to clarify the mechanism of depression to find potential therapeutic targets and effective clinical treatment methods. As a deacetylase, silent mating type information regulator 2 homolog 1 (SIRT1) is involved in many biological processes such as cell aging, cancer, and cardiovascular disease. In recent years, more and more studies have found that SIRT1 gene plays an important role in the pathogenesis of depression, but the mechanism is still unclear. Therefore, this review mainly summarizes the relevant research progress on the role and mechanism of SIRT1 gene in the hippocampus, prefrontal cortex, amygdala, hypothalamic suprachiasmatic nucleus, and nucleus accumbens in depression, in order to provide new ideas for exploring the mechanism and prevention of depression.


Subject(s)
Cellular Senescence , Depression/genetics , Hippocampus/metabolism , Humans , Nucleus Accumbens , Sirtuin 1/metabolism
3.
Article in English | WPRIM | ID: wpr-880865

ABSTRACT

Hyperglycemia induces chronic low-grade inflammation (inflammaging), which is a newly identified contributor to diabetes-related tissue lesions, including the inflammatory bone loss in periodontitis. It is also a secondary senescent pattern mediated by an increased burden of senescent cells and senescence-associated secretory phenotype (SASP). Macrophage is a key SASP-spreading cell and may contribute to the maintenance of SASP response in the periodontal microenvironment. Using a transgenic diabetic model (BLKS/J-Lepr


Subject(s)
Animals , Cellular Senescence , Diabetes Mellitus, Experimental , Glucose Transporter Type 1 , Inflammation , Macrophages , Mice
4.
Journal of Experimental Hematology ; (6): 1002-1006, 2021.
Article in Chinese | WPRIM | ID: wpr-880183

ABSTRACT

Emerging data have demonstrated that bone marrow mesenchymal stem cells (MSCs) play important roles in the progression of myelodysplastic syndrome (MDS). Experiments in vitro have showed that MSCs derived from MDS patients (MDS-MSC) exhibit the biological characteristics of cell senescence. Although the underlying mechanisms that regulate cell senescence need to be further elucidated, existing researches indicate that the mechanisms of MDS-MSC senescence have significant heterogeneity. Depth understanding of the underlying mechanisms involved in cell senescence of MDS-MSC are crucial to explore the potential therapeutic target of MDS. Therefore, this review summarizes research advances related with MSC senescence, such as MDS-MSC intrinsic changes in telomere shortening, DNA methylation status, oxidative stress and signal pathways regulating cell senescence in recent years.


Subject(s)
Bone Marrow , Bone Marrow Cells , Cellular Senescence , Humans , Mesenchymal Stem Cells , Myelodysplastic Syndromes
5.
Arch. med ; 20(1): 188-202, 2020-01-18.
Article in Spanish | LILACS | ID: biblio-1053281

ABSTRACT

El ejercicio ha demostrado efectividad para promover la plasticidad cerebral en los procesos de envejecimiento neural. Esta revisión narrativa de literatura tiene como objetivo analizar el efecto neural del ejercicio para promover la plasticidad cerebral en el envejecimiento. Los resultados incluyeron publicaciones que mencionan los efectos de la plasticidad cerebral mediada por el ejercicio empleando protocolos de ejercicio con duración, intensidad y frecuencia clínicamente significativa. La revisión documental se organizó en tres apartados: a) envejecimiento neural y procesos fisiológicos interrelacionados, b) plasticidad cerebral mediada por el ejercicio, c) ejercicio para promover el envejecimiento neural saludable. Se pudo concluir que el fisioterapeuta, aplicando protocolos de ejercicio, puede promover cambios positivos en la función cerebral lo cual se traducen en la mejoría del desempeño físico y funcional de los adultos mayores..(AU)


Exercise has shown effectiveness in promoting brain plasticity in neural aging processes.This narrative review of literature aims to analyze the neural effect of exercise to promote brain plasticity in aging. The results included publications that mention the effects of brain plasticity mediated by exercise, using exercise protocols with clinically significant duration, intensity and frequency. Through the documentary review three sections were determined: Neural Aging: Interrelated physiological processes; Exercisemediated brain plasticity; Exercise to promote healthy neural aging. It was concluded that the physiotherapist, applying exercise protocols, can promote positive changes in brain function, which translates into an improvement in the physical and functional performance of older adults..(AU)


Subject(s)
Cellular Senescence , Physical Therapists
6.
Article in English | WPRIM | ID: wpr-787137

ABSTRACT

Aging is one of the risk factors for the development of cardiovascular diseases. During the progression of cellular senescence, cells enter a state of irreversible growth arrest and display resistance to apoptosis. As a flavonoid, quercetin induces apoptosis in various cells. Accordingly, we investigated the relationship between quercetin-induced apoptosis and the inhibition of cellular senescence, and determined the mechanism of oxidative stress-induced vascular smooth muscle cell (VSMC) senescence. In cultured VSMCs, hydrogen peroxide (H₂O₂) dose-dependently induced senescence, which was associated with increased numbers of senescence-associated β-galactosidase-positive cells, decreased expression of SMP30, and activation of p53-p21 and p16 pathways. Along with senescence, expression of the anti-apoptotic protein Bcl-2 was observed to increase and the levels of proteins related to the apoptosis pathway were observed to decrease. Quercetin induced apoptosis through the activation of AMP-activated protein kinase. This action led to the alleviation of oxidative stress-induced VSMC senescence. Furthermore, the inhibition of AMPK activation with compound C and siRNA inhibited apoptosis and aggravated VSMC senescence by reversing p53-p21 and p16 pathways. These results suggest that senescent VSMCs are resistant to apoptosis and quercetin-induced apoptosis attenuated the oxidative stress-induced senescence through activation of AMPK. Therefore, induction of apoptosis by polyphenols such as quercetin may be worthy of attention for its anti-aging effects.


Subject(s)
Aging , AMP-Activated Protein Kinases , Apoptosis , Cardiovascular Diseases , Cellular Senescence , Hydrogen Peroxide , Muscle, Smooth, Vascular , Polyphenols , Quercetin , Risk Factors , RNA, Small Interfering
7.
Article in English | WPRIM | ID: wpr-786080

ABSTRACT

Cell-proliferation potency is limited, as cells cannot proceed through the cell cycle continually. Instead, they eventually show an irreversible arrest of proliferation, commonly referred to as cellular senescence. Following the initial discovery of this phenomenon by Hayflick et al., studies have indicated that cells are also destined to undergo aging. In addition to the irreversible termination of proliferation, senescent cells are characterized by a flattened and enlarged morphology. Senescent cells become pro-inflammatory and contribute to the initiation and maintenance of sustained chronic sterile inflammation. Aging is associated with the accumulation of senescent cells in the cardiovascular system, and in general these cells are considered to be pathogenic because they mediate vascular remodeling. Recently, genetic and pharmacological approaches have enabled researchers to eliminate senescent cells both in vitro and in vivo. The term “senolysis” is now used to refer to the depletion of senescent cells, and evidence indicates that senolysis contributes to the reversal of age-related pathogenic phenotypes without the risk of tumorigenesis. The concept of senolysis has opened new avenues in research on aging, and senolysis may be a promising therapeutic approach for combating age-related disorders, including arterial diseases.


Subject(s)
Aging , Carcinogenesis , Cardiovascular System , Cellular Senescence , Cell Cycle , In Vitro Techniques , Inflammation , Phenotype , Vascular Remodeling
8.
Acta Physiologica Sinica ; (6): 426-432, 2020.
Article in Chinese | WPRIM | ID: wpr-827045

ABSTRACT

The purpose of the present study was to investigate the effects of forkhead box O4 (FOXO4) on the senescence of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs). The hUC-MSCs were induced to senescence by natural passage, and FOXO4 expression was inhibited by lentiviral shRNA transfection. The hallmark of cell senescence was analyzed by β-galactosidase staining, and the cell viability was assayed by CCK-8 method. Flow cytometry was used to investigate the apoptosis of hUC-MSCs. The expression levels of Bcl-2, Bax, FOXO4, interleukin 6 (IL-6) and cleaved Caspase-3 were detected by qPCR and Western blot. Immunofluorescence staining was used to detect FOXO4 expression. The amount of IL-6 secreted by hUC-MSCs was detected by ELISA. The results showed that, compared with the passage 1, senescent hUC-MSCs showed up-regulated expression levels of Bax and FOXO4, down-regulated expression levels of Bcl-2 and cleaved Caspase-3, and increased IL-6 mRNA expression and secretion. FOXO4 inhibition in senescent hUC-MSCs promoted cell apoptosis, reduced cell viability, and inhibited the mRNA expression and secretion of IL-6. These results suggest that FOXO4 maintains viability and function of senescent hUC-MSCs by repressing their apoptosis response, thus accelerating senescence of the whole cell colony.


Subject(s)
Apoptosis , Cell Cycle Proteins , Cell Survival , Cellular Senescence , Forkhead Transcription Factors , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Transcription Factors , Umbilical Cord
9.
Article in Chinese | WPRIM | ID: wpr-880803

ABSTRACT

OBJECTIVE@#To investigate the effect of palbociclib on cell cycle progression and proliferation of human renal tubular epithelial cells.@*METHODS@#Human renal tubular epithelial cell line HK-2 was treated with 1, 5, 10, and 20 μmol/L of palbociclib, and the changes in cell proliferation and viability were examined by cell counting and CCK8 assay. EDU staining was used to assess the proliferation of HK-2 cells following palbiciclib treatment at different concentrations for 5 days. The effect of palbociclib on cell cycle distribution of HK-2 cells was evaluated using flow cytometry. SA-β-Gal staining and C12FDG senescence staining were used to detect senescence phenotypes of HK-2 cells after palbociclib treatment at different concentrations for 5 days. The relative mRNA expression levels of P16, P21, and P53 and the genes associated with senescence-related secretion phenotypes were detected by RT-PCR, and the protein expressions of P16, P21 and P53 were detected by Western blotting.@*RESULTS@#Palbociclib inhibited HK-2 cell proliferation and induced cell cycle arrest in G1 phase. Compared with the control cells, HK-2 cells treated with high-dose (10 μmol/L) palbociclib exhibited significantly suppressed cell proliferation activity, and the inhibitory effect was the most obvious on day 5 (@*CONCLUSIONS@#Palbociclib induces HK-2 cell senescence by causing cell growth arrest and delaying cell cycle progression.


Subject(s)
Cell Cycle , Cell Cycle Checkpoints , Cellular Senescence , Epithelial Cells , Humans , Piperazines/pharmacology , Pyridines/pharmacology , Tumor Suppressor Protein p53/genetics
10.
Einstein (Säo Paulo) ; 18: eAO5236, 2020. graf
Article in English | LILACS | ID: biblio-1133772

ABSTRACT

ABSTRACT Objective To follow the expansion of mesenchymal stem cells from umbilical cords by two classic senescence markers, p16 (INK4A) and p21 (CDKN1A), using practical, fast, and less expensive methods than the gold standard Western blotting technique, to evaluate its applicability in the laboratory. Methods Mesenchymal stem cells from umbilical cords were isolated from Wharton's jelly and, after quality control, morphological and immunophenotypic characterization by flow cytometry, were expanded in culture until coming close to cell cycle arrest (replicative senescence). Results A comparison was made between young cells, at passage 5, and pre-senescent cells, at passage 10, evaluating the protein expression of the classic cell senescence markers p16 and p21, comparing the results obtained by Western blotting with those obtained by flow cytometry and indirect immunofluorescence. Conclusion Follow-up of cell cultures, through indirect p16 immunofluorescence, allows the identification of mesenchymal stem cells from umbilical cord cultures at risk of reaching replicative senescence.


RESUMO Objetivo Acompanhar a expansão de células-tronco mesenquimais de cordão umbilical por dois marcadores clássicos de senescência, p16 (INK4A) e p21 (CDKN1A), usando métodos práticos, rápidos e com custo menor do que a técnica padrão-ouro de Western blotting, para avaliar sua aplicabilidade em laboratório. Métodos Células-tronco mesenquimais de cordão umbilical foram isoladas da geleia de Wharton e, após controle de qualidade e caracterização morfológica e imunofenotípica por citometria de fluxo, foram expandidas em cultura, até chegarem próximas à parada do ciclo celular (senescência replicativa). Resultados Foi feita a comparação entre células jovens, na passagem 5, e células pré-senescentes, na passagem 10, avaliando a expressão proteica dos marcadores clássicos de senescência celular p16 e p21, comparando os resultados obtidos por Western blotting com os obtidos por citometria de fluxo e imunofluorescência indireta. Conclusão O seguimento de culturas celulares, por meio da imunofluorescência indireta de p16, permite identificar as culturas de células-tronco mesenquimais de cordão umbilical em risco de atingirem a senescência replicativa.


Subject(s)
Humans , Umbilical Cord/physiology , Fluorescent Antibody Technique/methods , Cellular Senescence , Mesenchymal Stem Cells/physiology , Flow Cytometry/methods , Biomarkers/blood , Cells, Cultured , Blotting, Western , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p21
11.
Korean Circulation Journal ; : 615-626, 2019.
Article in English | WPRIM | ID: wpr-759447

ABSTRACT

BACKGROUND AND OBJECTIVES: Angiotensin II (Ang II) has been suggested to accelerate vascular senescence, however the molecular mechanism(s) remain unknown. METHODS: We cultured human coronary artery smooth muscle cells (hCSMCs) and treated Ang II and/or fimasartan. Or we transfected adenoviral vectors expressing CYR61 (Ad-CYR61) or antisense CYR61 (Ad-As-CYR61). Cellular senescence was evaluated senescence-associated β-galactosidase (SA-β-gal) assay. The molecular mechanisms were investigated real-time PCR and western blots. RESULTS: SA-β-gal-positive cells significantly increased in Ang II-treated hCSMCs (5.77±1.43-fold compared with the control). The effect of Ang II was significantly attenuated by pretreatment with the Ang II type 1 receptor blocker, fimasartan (2.00±0.92-fold). The expression of both p53 and p16 senescence regulators was significantly increased by Ang II (p53: 1.39±0.17, p16: 1.19±0.10-fold vs. the control), and inhibited by fimasartan. Cysteine-rich angiogenic protein 61 (CYR61) was rapidly induced by Ang II. Compared with the control, Ad-CYR61-transfected hCSMCs showed significantly increased SA-β-gal-positive cells (3.47±0.65-fold). Upon transfecting Ad-AS-CYR61, Ang II-induced senescence (3.74±0.23-fold) was significantly decreased (1.77±0.60-fold). p53 expression by Ang II was significantly attenuated by Ad-AS-CYR61, whereas p16 expression was not regulated. Ang II activated ERK1/2 and p38 MAPK, which was significantly blocked by fimasartan. ERK and p38 inhibition both regulated Ang II-induced CYR61 expression. However, p53 expression was only regulated by ERK1/2, whereas p16 expression was only attenuated by p38 MAPK. CONCLUSIONS: Ang II induced vascular senescence by the ERK/p38 MAPK–CYR61 pathway and ARB, fimasartan, protected against Ang II-induced vascular senescence.


Subject(s)
Aging , Angiotensin II Type 1 Receptor Blockers , Angiotensin II , Angiotensins , Blotting, Western , Cellular Senescence , Coronary Vessels , Humans , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , p38 Mitogen-Activated Protein Kinases , Real-Time Polymerase Chain Reaction , Receptor, Angiotensin, Type 1
12.
Article | WPRIM | ID: wpr-763558

ABSTRACT

Major psychiatric disorders are linked to early mortality and patients afflicted with these ailments demonstrate an increased risk of developing physical diseases that are characteristically seen in the elderly. Psychiatric conditions like major depressive disorder, bipolar disorder and schizophrenia may be associated with accelerated cellular aging, indicated by shortened leukocyte telomere length (LTL), which could underlie this connection. Telomere shortening occurs with repeated cell division and is reflective of a cell’s mitotic history. It is also influenced by cumulative exposure to inflammation and oxidative stress as well as the availability of telomerase, the telomere-lengthening enzyme. Precariously short telomeres can cause cells to undergo senescence, apoptosis or genomic instability; shorter LTL correlates with compromised general health and foretells mortality. Important data specify that LTL may be reduced in principal psychiatric illnesses, possibly in proportion to exposure to the ailment. Telomerase, as measured in peripheral blood monocytes, has been less well characterized in psychiatric illnesses, but a role in mood disorder has been suggested by preclinical and clinical studies. In this manuscript, the most recent studies on LTL and telomerase activity in mood disorders are comprehensively reviewed, potential mediators are discussed, and future directions are suggested. An enhanced comprehension of cellular aging in psychiatric illnesses could lead to their re-conceptualizing as systemic ailments with manifestations both inside and outside the brain. At the same time this paradigm shift could identify new treatment targets, helpful in bringing about lasting cures to innumerable sufferers across the globe.


Subject(s)
Aged , Aging , Apoptosis , Biology , Bipolar Disorder , Brain , Cellular Senescence , Cell Division , Comprehension , Depressive Disorder, Major , Genomic Instability , Humans , Inflammation , Leukocytes , Monocytes , Mood Disorders , Mortality , Oxidative Stress , Schizophrenia , Telomerase , Telomere Shortening , Telomere
13.
Cancer Research and Treatment ; : 1128-1134, 2019.
Article in English | WPRIM | ID: wpr-763167

ABSTRACT

PURPOSE: Simvastatin has demonstrated anti-tumor activity in preclinical studies via tumor cell senescence, apoptosis, and anti-angiogenesis. This phase II trial evaluated the efficacy and toxicity profile of conventional XELOX and bevacizumab chemotherapy plus simvastatin in metastatic colorectal cancer patients (MCRC). MATERIALS AND METHODS: Patients with MCRC received first-line XELOX in 3-week treatment cycles of intravenous oxaliplatin 130 mg/m² plus bevacizumab 7.5 mg/kg (day 1), followed by oral capecitabine 1,000 mg/m² twice daily (day 1-14). Simvastatin 80 mg tablets were taken orally once daily every day during the period of chemotherapy. The primary endpoint was progression-free survival (PFS). Secondary endpoints were response rate, duration of response, overall survival (OS), time to progression, and toxicity. RESULTS: From January 2014 to April 2015, 60 patients were enrolled and 55 patients were evaluable for tumor response. The median follow-up duration was 30.1 months (range, 28.5 to 31.7 months). The median PFS was 10.4 months (95% confidence interval [CI], 9.6 to 11.1). The median OS of all patients was 19.0 months (95% CI, 11.9 to 26.0). The disease-control rate and overall response rate were 88.3% (95% CI, 74 to 96) and 58.3% (95% CI, 44 to 77), respectively, by intent-to-treat protocol analysis. There was one complete response and 34 partial responses. One patient experienced grade 3 creatine kinase elevation and liver enzyme elevation. CONCLUSION: Based on the current study, the addition of 80 mg simvastatin to XELOX and bevacizumab showed comparable clinical efficacy in patients with MCRC as first-line chemotherapy and did not increase toxicity.


Subject(s)
Apoptosis , Arm , Bevacizumab , Capecitabine , Cellular Senescence , Colorectal Neoplasms , Creatine Kinase , Disease-Free Survival , Drug Therapy , Follow-Up Studies , Humans , Liver , Simvastatin , Tablets , Treatment Outcome
14.
Article in English | WPRIM | ID: wpr-763048

ABSTRACT

Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated β-galactosidase (SA-β-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-β-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including Phospho-Histone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.


Subject(s)
Aging , Animals , Astrocytes , Brain , Cellular Senescence , Cell Cycle , Cell Line , DNA , Etoposide , Extracellular Matrix Proteins , Homeostasis , Interleukin-6 , Membrane Potential, Mitochondrial , Mitochondria , Mitophagy , Mitochondrial Dynamics , Neurodegenerative Diseases , Neurons , Neuroprotection , Oxygen Consumption , Phagocytosis , Phenotype , Rats , Risk Factors , Wound Healing
15.
Article in English | WPRIM | ID: wpr-763016

ABSTRACT

Brain aging induces neuropsychological changes, such as decreased memory capacity, language ability, and attention; and is also associated with neurodegenerative diseases. However, most of the studies on brain aging are focused on neurons, while senescence in astrocytes has received less attention. Astrocytes constitute the majority of cell types in the brain and perform various functions in the brain such as supporting brain structures, regulating blood-brain barrier permeability, transmitter uptake and regulation, and immunity modulation. Recent studies have shown that SIRT1 and SIRT2 play certain roles in cellular senescence in peripheral systems. Both SIRT1 and SIRT2 inhibitors delay tumor growth in vivo without significant general toxicity. In this study, we investigated the role of tenovin-1, an inhibitor of SIRT1 and SIRT2, on rat primary astrocytes where we observed senescence and other functional changes. Cellular senescence usually is characterized by irreversible cell cycle arrest and induces senescence-associated β-galactosidase (SA-β-gal) activity. Tenovin-1-treated astrocytes showed increased SA-β-gal-positive cell number, senescence-associated secretory phenotypes, including IL-6 and IL-1β, and cell cycle-related proteins like phospho-histone H3 and CDK2. Along with the molecular changes, tenovin-1 impaired the wound-healing activity of cultured primary astrocytes. These data suggest that tenovin-1 can induce cellular senescence in astrocytes possibly by inhibiting SIRT1 and SIRT2, which may play particular roles in brain aging and neurodegenerative conditions.


Subject(s)
Aging , Animals , Astrocytes , Blood-Brain Barrier , Brain , Cellular Senescence , Cell Count , Cell Cycle Checkpoints , Interleukin-6 , Language , Memory , Neurodegenerative Diseases , Neurons , Permeability , Phenotype , Rats , Wound Healing
16.
Article in English | WPRIM | ID: wpr-764050

ABSTRACT

OBJECTIVE: The aim of our study was to investigate the effect of Transforming growth factor beta-1 (TGF-β1) gene therapy on the surface markers, multilineage differentiation, viability, apoptosis, cell cycle, DNA damage and senescence of human Dental Pulp-derived Mesenchymal Stromal Cells (hDPSC). METHODS: hDPSCs were isolated from human teeth, and were cultured with 20% Fetal Bovine Serum (FBS) in minimum essential media-alpha (α-MEM). TGF-β1 gene transfer into hDPSCs was performed by electroporation method after the plasmid was prepared. The transfection efficiency was achieved by using western blot and flow cytometry analyses and GFP transfection. Mesenchymal stem cell (MSC) markers, multilineage differentiation, cell proliferation, apoptosis, cell cycle, DNA damage and cellular senescence assays were performed by comparing the transfected and non-transfected cells. Statistical analyses were performed using GraphPad Prism. RESULTS: Strong expression of TGF-β1 in pCMV-TGF-β1-transfected hDPSCs was detected in flow cytometry analysis. TGF-β1 transfection efficiency was measured as 95%. Western blot analysis showed that TGF-β1 protein levels increased at third and sixth days in pCMV-TGF-β1-transfected hDPSCs. The continuous TGF-β1 overexpression in hDPSCs did not influence the immunophenotype and surface marker expression of MSCs. Our results showed that TGF-β1 increased osteogenic and chondrogenic differentiation, but decreased adipogenic differentiation. Overexpression of TGF-β1 increased the proliferation rate and decreased total apoptosis in hDPSCs (p<0.05). The number of cells at “S” phase was higher with TGF-β1 transfection (p<0.05). Cellular senescence decreased in TGF-β1 transfected group (p<0.05). CONCLUSIONS: These results reflect that TGF-β1 has major impact on MSC differentiation. TGF-β1 transfection has positive effect on proliferation, cell cycle, and prevents cellular senescence and apoptosis.


Subject(s)
Aging , Apoptosis , Blotting, Western , Cellular Senescence , Cell Cycle , Cell Differentiation , Cell Proliferation , DNA Damage , Electroporation , Flow Cytometry , Genetic Therapy , Humans , Mesenchymal Stem Cells , Methods , Plasmids , Population Characteristics , Tooth , Transfection , Transforming Growth Factors
17.
Neuroscience Bulletin ; (6): 216-224, 2019.
Article in English | WPRIM | ID: wpr-775435

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) is the main cause of brain tumor-related death among children. Until now, there is still a lack of effective therapy with prolonged overall survival for this disease. A typical strategy for preclinical cancer research is to find out the molecular differences between tumor tissue and para-tumor normal tissue, in order to identify potential therapeutic targets. Unfortunately, it is impossible to obtain normal tissue for DIPG because of the vital functions of the pons. Here we report the human fetal hindbrain-derived neural progenitor cells (pontine progenitor cells, PPCs) as normal control cells for DIPG. The PPCs not only harbored similar cell biological and molecular signatures as DIPG glioma stem cells, but also had the potential to be immortalized by the DIPG-specific mutation H3K27M in vitro. These findings provide researchers with a candidate normal control and a potential medicine carrier for preclinical research on DIPG.


Subject(s)
Animals , Brain Stem Neoplasms , Genetics , Metabolism , Pathology , Cell Line, Tumor , Cellular Senescence , Female , Glioma , Genetics , Metabolism , Pathology , Histones , Genetics , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Neoplastic Stem Cells , Metabolism , Pathology , Neural Stem Cells , Metabolism , Pathology , Pons , Embryology , Metabolism , Pathology , Primary Cell Culture
18.
Article in Chinese | WPRIM | ID: wpr-775247

ABSTRACT

Cellular senescence is a key factor driving age-related diseases. Recent studies have revealed that senescence-associated secretory phenotype, telomere attrition, epigenetic changes, and mitochondrial autophagy damage may mediate the pathogenesis of senescence-related idiopathic pulmonary fibrosis (IPF). Reducing the level of cellular senescence or clearing senescent cells can down-regulate the expression of fibrosis factors and alleviate the symptoms of IPF. In this review, we outlined the role and mechanism of cellular senescence in IPF.


Subject(s)
Autophagy , Cellular Senescence , Epigenesis, Genetic , Gene Expression , Humans , Idiopathic Pulmonary Fibrosis
19.
Frontiers of Medicine ; (4): 267-276, 2019.
Article in English | WPRIM | ID: wpr-771316

ABSTRACT

Shenkang injection (SKI) is a classic prescription composed of Radix Astragali, rhubarb, Astragalus, Safflower, and Salvia. This treatment was approved by the State Food and Drug Administration of China in 1999 for treatment of chronic kidney diseases based on good efficacy and safety. This study aimed to investigate the protective effect of SKI against high glucose (HG)-induced renal tubular cell senescence and its underlying mechanism. Primary renal proximal tubule epithelial cells were cultured in (1) control medium (control group), medium containing 5 mmol/L glucose; (2) mannitol medium (mannitol group), medium containing 5 mmol/L glucose, and 25 mmol/L mannitol; (3) HG medium (HG group) containing 30 mmol/L glucose; (4) SKI treatment at high (200 mg/L), medium (100 mg/L), or low (50 mg/L) concentration in HG medium (HG + SKI group); or (5) 200 mg/L SKI treatment in control medium (control + SKI group) for 72 h. HG-induced senescent cells showed the emergence of senescence associated heterochromatin foci, up-regulation of P16 and cyclin D1, increased senescence-associated β-galactosidase activity, and elevated expression of membrane decoy receptor 2. SKI treatment potently prevented these changes in a dose-independent manner. SKI treatment prevented HG-induced up-regulation of pro-senescence molecule mammalian target of rapamycin and p66Shc and down-regulation of anti-senescence molecules klotho, sirt1, and peroxisome proliferator-activated receptor-g in renal tubular epithelial cells. SKI may be a novel strategy for protecting against HG-induced renal tubular cell senescence in treatment of diabetic nephropathy.


Subject(s)
Animals , Cells, Cultured , Cellular Senescence , Cyclin D1 , Metabolism , Cyclin-Dependent Kinase Inhibitor p16 , Metabolism , Diabetic Nephropathies , Drug Therapy , Drugs, Chinese Herbal , Pharmacology , Epithelial Cells , Metabolism , Glucose , Kidney Tubules, Proximal , Male , Mice , Mice, Inbred C57BL
20.
Article in Chinese | WPRIM | ID: wpr-773088

ABSTRACT

The aim of this paper was to investigate the effect of SIRT1/TSC_2 signal axis on leukemia stem cell senescence induced by ginsenoside Rg_1. CD34~+CD38~- leukemia stem cells(CD34~+CD38~-LSCs) was isolated by magnetic cell sorting(MACS) and divided into two groups. The control group cells were routinely cultured, 40 μmol·L~(-1) ginsenoside Rg_1 was added to the control group for co-culture in Rg_1 group. The effect of Rg_l to induce CD34~+CD38~-LSCs senescence were evaluated by senescence-associated β-Galactosidase(SA-β-Gal) staining, cell cycle assay, CCK-8 and Colony-Assay. The expression of senescence associated SIRT1, TSC_2 mRNA and protein was examined by Real-time fluorescence quantitative PCR(FQ-PCR) and Western blot. The results showed that the CD34~+CD38~-LSCs could effectively be isolated by MACS, and the purity of CD34~+CD38~-LSCs is up to(95.86±3.04)%. Compared with the control group, the percentage of positive cells expressed SA-β-Gal in the Rg_1 group is increased, the senescence morphological changes were observed in the CD34~+CD38~-LSCs in the Rg_1 group. The proliferation inhibition rate and the number of cells entered G_0/G_1 phase in the Rg_1 group were increased, but the colony-formed ability was decreased, Rg_1 could significantly inhibit the proliferation and self-renewal ability of CD34~+CD38~-LSCs. The expression of SIRT1 and TSC_2 mRNA and protein were down regulated in the Rg_1 group compared with the control group. Our research implied that Rg_1 may induce the senescence of CD34~+CD38~-LSCs and SIRT1/TSC_2 signal axis plays a significant role in this process.


Subject(s)
Cellular Senescence , Ginsenosides , Pharmacology , Humans , Leukemia, Myeloid, Acute , Neoplastic Stem Cells , Signal Transduction , Sirtuin 1 , Metabolism , Tuberous Sclerosis Complex 2 Protein , Metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL