Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Braz. j. med. biol. res ; 54(10): e11156, 2021. graf
Article in English | LILACS | ID: biblio-1285646

ABSTRACT

The objective of this study was to investigate the effect of human esophageal fibroblast-derived exosomal miR-21 on cisplatin sensitivity against esophageal squamous EC9706 cells. EC9706 cells were co-cultured indirectly with human esophageal fibroblasts (HEF) or miR-21 mimics transfected-HEF in the transwell system. The exosomes in HEF-culture conditioned medium were extracted by differential ultracentrifugation. EC9706 cells were co-cultured with HEF-derived exosomes directly. The cisplatin sensitivity against EC9706 cells was revealed via half maximal inhibitory concentration (IC50) values using MTT assay. The expressions of miR-21, programmed cell death 4 (PDCD4) mRNA, and gene of phosphate and tension homology deleted on chromosome ten (PTEN) mRNA were determined by qRT-PCR. The changes of the protein level were detected using western blot assay. IC50 values of cisplatin against EC9706 cells were increased after EC9706 cells were co-cultured with either HEF or exosomes derived from miR-21 mimics-transfected HEF. Following the increased level of miR-21, the mRNA expression and protein levels of PTEN and PDCD4 were decreased in EC9706 cells. The cisplatin sensitivity to EC9706 cells was reduced by HEF-derived exosomal miR-21 through targeting PTEN and PDCD4. This study suggested that non-tumor cells in the tumor micro-environment increased the tumor anti-chemotherapy effects through their exosomes.


Subject(s)
Humans , Esophageal Neoplasms/genetics , Esophageal Neoplasms/drug therapy , Carcinoma , MicroRNAs/genetics , Cisplatin/pharmacology , RNA-Binding Proteins , Apoptosis , Cell Line, Tumor , Cell Proliferation , Apoptosis Regulatory Proteins/metabolism , Tumor Microenvironment , Fibroblasts/metabolism
2.
Article in Chinese | WPRIM | ID: wpr-880796

ABSTRACT

OBJECTIVE@#To investigate the effect of interleukin-17A (IL-17A) on chemosensitivity of ovarian cancer cells to cisplatin (DDP) and explore the mechanism in light of autophagy regulation.@*METHODS@#Ovarian cancer SKOV3 cells cultured @*RESULTS@#DDP increased the expression of IL-17RA in ovarian cancer SKOV3 cells. Treatment with IL-17A significantly reduced the susceptibility of SKOV3 cells to cisplatin-induced apoptosis (@*CONCLUSIONS@#IL-17A/IL-17RA can decrease chemosensitivity of SKOV3 cells to DDP by upregulating DDP-induced autophagy.


Subject(s)
Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Female , Humans , Interleukin-17/pharmacology , Ovarian Neoplasms/drug therapy , Receptors, Interleukin-17
3.
Braz. j. med. biol. res ; 53(5): e9330, 2020. tab, graf
Article in English | LILACS | ID: biblio-1098112

ABSTRACT

The development of chemotherapy resistance significantly impairs the efficiency of chemotherapy, but the underlying mechanisms of chemotherapy resistance in gastric cancer (GC) are complicated and still need to be further explored. Here, we aimed to reveal the effects of miR-4290/PDK1 (pyruvate dehydrogenase kinase 1) axis on chemotherapy resistance of GC in vitro. The expression patterns of miR-4290 in GC tissues and cell lines were determined by real-time quantitative PCR. Kaplan-Meier was used to assess the relationship between miR-4290 expression levels and patients' overall survival. CCK-8 and flow cytometry technologies were applied to detect cell proliferation and apoptosis. The luciferase gene reporter assay was used to evaluate the interaction between miR-4290 and PDK1. miR-4290 was lowly expressed in GC tissues and cell lines, which was closely associated with the shorter overall survival of GC patients. miR-4290 mimics significantly inhibited cell proliferation and induced cell apoptosis, as well as induced a significant reduction in the expression of PDK1. Moreover, miR-4290 significantly inhibited glycolysis and decreased the IC50 value to cisplatin in SGC7901 cells, whereas these effects were abolished and cell apoptosis was promoted when PDK1 was overexpressed. In conclusion, this study revealed that miR-4290 suppressed PDK1-mediated glycolysis to enhance the sensitivity of GC cells to cisplatin.


Subject(s)
Humans , Stomach Neoplasms/metabolism , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , MicroRNAs/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Glycolysis/genetics , Transfection , Gene Expression Regulation, Neoplastic , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Real-Time Polymerase Chain Reaction , Flow Cytometry , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
4.
Biol. Res ; 53: 13, 2020. tab, graf
Article in English | LILACS | ID: biblio-1100919

ABSTRACT

BACKGROUND: Gallbladder cancer (GBC) is the most common tumor of the biliary tract. The incidence of GBC shows a large geographic variability, being particularly frequent in Native American populations. In Chile, GBC represents the second cause of cancer-related death among women. We describe here the establishment of three novel cell lines derived from the ascitic fluid of a Chilean GBC patient, who presented 46% European, 36% Mapuche, 12% Aymara and 6% African ancestry. RESULTS: After immunocytochemical staining of the primary cell culture, we isolated and comprehensively characterized three independent clones (PUC-GBC1, PUC-GBC2 and PUC-GBC3) by short tandem repeat DNA profiling and RNA sequencing as well as karyotype, doubling time, chemosensitivity, in vitro migration capability and in vivo tumorigenicity assay. Primary culture cells showed high expression of CK7, CK19, CA 19-9, MUC1 and MUC16, and negative expression of mesothelial markers. The three isolated clones displayed an epithelial phenotype and an abnormal structure and number of chromosomes. RNA sequencing confirmed the increased expression of cytokeratin and mucin genes, and also of TP53 and ERBB2 with some differences among the three cells lines, and revealed a novel exonic mutation in NF1. The PUC-GBC3 clone was the most aggressive according to histopathological features and the tumorigenic capacity in NSG mice. CONCLUSIONS: The first cell lines established from a Chilean GBC patient represent a new model for studying GBC in patients of Native American descent.


Subject(s)
Humans , Animals , Male , Middle Aged , Antigens, Tumor-Associated, Carbohydrate/genetics , Indians, South American/genetics , Gallbladder Neoplasms/genetics , Ascitic Fluid/metabolism , Tumor Cells, Cultured , Carcinogenicity Tests , Chile , DNA Fingerprinting , Tumor Suppressor Protein p53/genetics , Cisplatin/pharmacology , Mice, Inbred NOD , Clone Cells/drug effects , Clone Cells/metabolism , Sequence Analysis, RNA , Receptor, ErbB-2/genetics , Genes, erbB-2/genetics , Gene Expression Profiling , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Epithelial Cells/metabolism , Keratin-19/genetics , Keratin-7/genetics , Carcinogenesis/genetics , Gallbladder Neoplasms/metabolism , Antineoplastic Agents/pharmacology
5.
Biol. Res ; 53: 18, 2020. tab, graf
Article in English | LILACS | ID: biblio-1124204

ABSTRACT

BACKGROUND: Cisplatin resistance (DDP-resistance) remains one of the major causes of poor prognosis in females with ovarian cancer. Long non-coding RNAs (lncRNAs) have been shown to participate in the regulation of cellular processes, including chemoresistance. The aim of this study was to explore the role of HOX transcript antisense RNA (HOTAIR) in DDP-resistant ovarian cancer cells. METHODS: DDP-resistant ovarian cancer cell lines (SKOV3/DDP and A2780/DDP) were established. Real-time PCR, western blot, dual-luciferase reporter assay, and flow cytometry were then used to evaluate the effect of HOTAIR/miR-138-5p axis on chemoresistance of DDP-resistant ovarian cancer cells to DDP. RESULTS: We found that HOTAIR was upregulated in DDP-resistant cells, while miR-138-5p was downregulated. Knockdown of HOTAIR increased the expression of miR-138-5p in DDP-resistant cells and miR-138-5p is directly bound to HOTAIR. Upregulation of miR-138-5p induced by HOTAIR siRNA or by its mimics enhanced the chemosensitivity of DDP-resistant cells and decreased the expression of EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit) and SIRT1 (sirtuin 1). Furthermore, the HOTAIR silencing-induced chemosensitivity of DDP-resistant cells was weakened by miR-138-5p inhibitor. CONCLUSIONS: These data demonstrate that HOTAIR acts as a sponge of miR-138-5p to prevent its binding to EZH2 and SIRT1, thereby promoting DDP-resistance of ovarian cancer cells. Our work will shed light on the development of therapeutic strategies for ovarian cancer treatment.


Subject(s)
Humans , Female , Ovarian Neoplasms/genetics , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic/drug effects , Up-Regulation , Apoptosis/drug effects , MicroRNAs/antagonists & inhibitors , Cell Line, Tumor , Gene Knockout Techniques/methods , Sirtuin 1/antagonists & inhibitors , Real-Time Polymerase Chain Reaction , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
6.
Braz. j. med. biol. res ; 50(5): e6359, 2017. graf
Article in English | LILACS | ID: biblio-839294

ABSTRACT

MicroRNAs (miRNAs) play an important role in drug resistance and modulate the efficiency of chemotherapy. A recent study indicated that miR-340 functions as a tumor suppressor in various types of cancer. However, the role of miR-340 in chemotherapy has not been reported yet. In this study, we found that miR-340 enhanced cisplatin (CDDP)-induced cell death. Induction of miR-340-5p expression decreased the IC50 of CDDP and increased the apoptosis of CDDP-resistant MG-63 and Saos-2 cells. Moreover, miR-340-5p decreased the accumulation of MRP1 and MDR1. We further explored the mechanism underlying the promoting effects of miR-340-5p on CDDP-induced cell death. We identified a potential target of miR-340 in the 3′ untranslated region of lysophosphatidic acid acyltransferase (LPAATβ) using the online program Targetscan (http://www.microrna.org). Luciferase reporter assays showed that miR-340 binds to the 3′UTR of LPAATβ. Enforced expression of miR-340-5p decreased the accumulation of LPAATβ in both MG-63 and Saos-2 cells. Silencing LPAATβ decreased the IC50 of CDDP and increased the apoptosis of CDDP-resistant MG-63 and Saos-2 cells, which is consistent with the effect of miR-340-5p on CDDP-induced cell death. Moreover, induced expression of LPAATβ compromised the effects of miR-340-5p on CDDP-induced cell death and accumulation of MRP1 and MDR1. Taken together, our data indicated that miR-340-5p enhanced the sensitivity to CDDP by targeting LPAATβ.


Subject(s)
Humans , Acyltransferases/physiology , Antineoplastic Agents/pharmacology , Bone Neoplasms/drug therapy , Cisplatin/pharmacology , Drug Resistance, Neoplasm/physiology , MicroRNAs/physiology , Osteosarcoma/drug therapy , Acyltransferases/analysis , Acyltransferases/drug effects , Apoptosis/drug effects , Blotting, Western , Bone Neoplasms/physiopathology , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation , Drug Resistance, Neoplasm/drug effects , Luciferases , MicroRNAs/analysis , MicroRNAs/drug effects , Osteosarcoma/physiopathology , Real-Time Polymerase Chain Reaction
7.
Biol. Res ; 48: 1-9, 2015. ilus, graf, tab
Article in English | LILACS | ID: biblio-950810

ABSTRACT

BACKGROUND: Clinical use of chemotherapeutic drug, cisplatin is limited by its toxicity and drug resistance. Therefore, efforts continue for the discovery of novel combination therapies with cisplatin, to increase efficacy and reduce its toxicity. Here, we screened 16 medicinal plant extracts from Northeast part of India and found that leaf extract of Zanthoxylum armatum DC. (ZALE) induced cytotoxicity as well as an effect on the increasing of the efficiency of chemotherapeutic drugs (cisplatin, mitomycin C and camptothecin). This work shows detail molecular mechanism of anti-cancer activity of ZALE and its potential for combined treatment regimens to enhance the apoptotic response of chemotherapeutic drugs. RESULTS: ZALE induced cytotoxicity, nuclear blebbing and DNA fragmentation in HeLA cells suggesting apoptosis induction in human cervical cell line. However, the apoptosis induced was independent of caspase 3 activation and poly ADP ribose polymerase (PARP) cleavage. Further, ZALE activated Mitogen-activated protein kinases (MAPK) pathway as revealed by increased phosphorylation of extracellular-signal-regulated kinases (ERK), p38 and c-Jun N-ter-minal kinase (JNK). Inhibition of ERK activation but not p38 or JNK completely blocked the ZALE induced apoptosis suggesting an ERK dependent apoptosis. Moreover, ZALE generated DNA double strand breaks as suggested by the induction γH2AX foci formation. Interestingly, pretreatment of certain cancer cell lines with ZALE, sensitized the cancer cells to cisplatin and other chemotherapeutic drugs. Enhanced caspase activation was observed in the synergistic interaction among chemotherapeutic drugs and ZALE. CONCLUSION: Purification and identification of the bio-active molecules from the ZALE or as a complementary treatment for a sequential treatment of ZALE with chemotherapeutic drugs might be a new challenger to open a new therapeutic window for the novel anti-cancer treatment.


Subject(s)
Humans , Plant Extracts/pharmacology , Cisplatin/pharmacology , Zanthoxylum/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , HeLa Cells , Apoptosis/drug effects , Mitogen-Activated Protein Kinases/drug effects , JNK Mitogen-Activated Protein Kinases/drug effects , Enzyme Activation/drug effects
8.
Article in English | WPRIM | ID: wpr-140361

ABSTRACT

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can induce drug transporter genes such as the ATP-binding cassette G member 2 (ABCG2), which contributes to multidrug resistance. We investigated the effect of TCDD pretreatment on drug transporters induction from cancer cells of various origins. Cell viabilities after treatment of cisplatin were measured to evaluate acquiring cisplatin resistance by TCDD. Acquring cisplatin resistance was found only in cisplatin senstivie cancer cells including gastric SNU601, colon LS180, brain CRT-MG and lymphoma Jurkat cells which showed a significant increase in cell viability after combined treatment with TCDD and cisplatin. High increase of ABCG2 gene expression was found in SNU601 and LS180 cells with a mild increase in the expression of the ABCC3, ABCC5,and SLC29A2 genes in SNU601 cells, and of major vault protein (MVP) in LS180 cells. The AhR inhibitor kaempferol suppressed the upregulation of ABCG2 expression and reversed the TCDD-induced increase in cell viability in LS180 cells. However, in CRT-MG cells, other transporter genes including ABCC1, ABCC5, ABCA3, ABCA2, ABCB4, ABCG1, and SLC29A1 were up-regulated. These findings suggested the acquiring cisplatin resistance by TCDD associated with cancer cell-type-specific induction of drug transporters.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Equilibrative-Nucleoside Transporter 2/genetics , Humans , Jurkat Cells , K562 Cells , Kaempferols/pharmacology , Multidrug Resistance-Associated Proteins/genetics , Neoplasm Proteins/genetics , RNA, Messenger/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Polychlorinated Dibenzodioxins/pharmacology , Up-Regulation/drug effects , Vault Ribonucleoprotein Particles/genetics
9.
Article in English | WPRIM | ID: wpr-140360

ABSTRACT

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can induce drug transporter genes such as the ATP-binding cassette G member 2 (ABCG2), which contributes to multidrug resistance. We investigated the effect of TCDD pretreatment on drug transporters induction from cancer cells of various origins. Cell viabilities after treatment of cisplatin were measured to evaluate acquiring cisplatin resistance by TCDD. Acquring cisplatin resistance was found only in cisplatin senstivie cancer cells including gastric SNU601, colon LS180, brain CRT-MG and lymphoma Jurkat cells which showed a significant increase in cell viability after combined treatment with TCDD and cisplatin. High increase of ABCG2 gene expression was found in SNU601 and LS180 cells with a mild increase in the expression of the ABCC3, ABCC5,and SLC29A2 genes in SNU601 cells, and of major vault protein (MVP) in LS180 cells. The AhR inhibitor kaempferol suppressed the upregulation of ABCG2 expression and reversed the TCDD-induced increase in cell viability in LS180 cells. However, in CRT-MG cells, other transporter genes including ABCC1, ABCC5, ABCA3, ABCA2, ABCB4, ABCG1, and SLC29A1 were up-regulated. These findings suggested the acquiring cisplatin resistance by TCDD associated with cancer cell-type-specific induction of drug transporters.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Equilibrative-Nucleoside Transporter 2/genetics , Humans , Jurkat Cells , K562 Cells , Kaempferols/pharmacology , Multidrug Resistance-Associated Proteins/genetics , Neoplasm Proteins/genetics , RNA, Messenger/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Polychlorinated Dibenzodioxins/pharmacology , Up-Regulation/drug effects , Vault Ribonucleoprotein Particles/genetics
10.
J. bras. pneumol ; 39(6): 644-649, Nov-Dec/2013. tab, graf
Article in English | LILACS | ID: lil-697780

ABSTRACT

OBJECTIVE: To test the effectiveness of combining conventional antineoplastic drugs (cisplatin and etoposide) with metformin in the treatment of non-small cell lung cancer in the NCI-H460 cell line, in order to develop new therapeutic options with high efficacy and low toxicity. METHODS: We used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and calculated the combination index for the drugs studied. RESULTS: We found that the use of metformin as monotherapy reduced the metabolic viability of the cell line studied. Combining metformin with cisplatin or etoposide produced a synergistic effect and was more effective than was the use of cisplatin or etoposide as monotherapy. CONCLUSIONS: Metformin, due to its independent effects on liver kinase B1, had antiproliferative effects on the NCI-H460 cell line. When metformin was combined with cisplatin or etoposide, the cell death rate was even higher. .


OBJETIVO: Testar a eficácia da combinação terapêutica de antineoplásicos convencionais (cisplatina e etoposídeo) com metformina em linhagem celular NCI-H460 de câncer de pulmão não pequenas células, a fim de desenvolver novas possibilidades terapêuticas com eficácia superior e reduzida toxicidade. MÉTODOS: Foi utilizado o ensaio de brometo de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazólio (MTT) e calculado o índice de combinação dos fármacos estudados. RESULTADOS: Observamos que o uso de metformina em monoterapia reduziu a viabilidade celular metabólica da linhagem de células estudada. O uso de metformina em combinação com cisplatina ou etoposídeo foi sinérgico e superior à monoterapia com cisplatina ou etoposídeo. CONCLUSÕES: A metformina, devido às suas ações independentes em liver kinase B1, apresentou atividade antiproliferativa na linhagem NCI-H460 e, em combinação com cisplatina ou etoposídeo, ampliou a taxa de morte celular. .


Subject(s)
Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Etoposide/pharmacology , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents/administration & dosage , Cell Survival , Carcinoma, Large Cell/drug therapy , Cell Line, Tumor/metabolism , Cell Proliferation/drug effects , Cisplatin/administration & dosage , Drug Combinations , Drug Synergism , Etoposide/administration & dosage , Hypoglycemic Agents/administration & dosage , Metformin/administration & dosage
11.
Indian J Exp Biol ; 2013 Oct; 51(10): 789-796
Article in English | IMSEAR | ID: sea-149383

ABSTRACT

The aims of this study are the investigation of the effects of fibronectin and type IV collagen extracellular matrix proteins and the role of caspase-3 and -9 on cis-platin induced U2-OS apoptosis were studied. First the cytotoxic effects of cis-platin on cell system were investigated by colorimetric method and than morphological and ELISA analysis were used for determination of cell apoptosis when induced with cis-platin. In addition, after adhering the cells to fibronection or type IV collagen proteins, the apoptotic rate and the effects of caspase-3 and -9 were also investigated by ELISA in presence of specific inhibitors. U2-OS cells showed 20% cytotoxicity after treatment with 2.4 µM of cis-platin for 48 h. Morphological and the numerical data showed that cis-platin was able to induced apoptosis on cells as a dose-dependent manner. Caspase-3 and -9 inhibitors inhibited cis-platin-induced apoptosis in U2-OS cells, respectively. The binding of cells to 10 µg/mL of fibronectin but not type IV collagen enhanced the apoptosis about 2.5 fold that effects inhibited with caspase-3 inhibitor. The caspase-3 and -9 are involved in the apoptotic signals induced by cis-platin in U2-OS. The binding to fibronectin, but not type IV collagen enhanced the apoptotic response of U2-OS and fibronectin-dependent apoptosis was activated by caspase-3. These finding might be useful for patients to fight against osteosarcoma.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bone Neoplasms/pathology , Cell Line, Tumor , Cisplatin/pharmacology , Collagen Type IV/pharmacology , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Fibronectins/pharmacology , Humans , Osteosarcoma/pathology
12.
Braz. j. med. biol. res ; 46(6): 546-554, 02/jul. 2013. tab, graf
Article in English | LILACS | ID: lil-679208

ABSTRACT

Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (∼45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33±1.76 vs 28.75±1.12'h, P<0.05), higher percentage of cells in G0/G1 phase (80.98±0.52 vs 69.14±0.89, P<0.05), increased efflux of rhodamine 123 (95.97±0.56 vs 12.40±0.44%, P<0.01), and up-regulated MDR1 expression. A total of 7 microRNAs and 605 mRNAs were differentially expressed between the two cell types. Of the differentially expressed mRNAs identified, regulator of G-protein signaling 10, high-temperature requirement protein A1, and nuclear protein 1 were found to be the putative targets of the differentially expressed microRNAs identified. These findings may open a new avenue for clarifying the mechanisms responsible for MDR in laryngeal cancer.


Subject(s)
Humans , Drug Resistance, Neoplasm/genetics , Laryngeal Neoplasms/genetics , MicroRNAs/isolation & purification , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , RNA, Messenger/isolation & purification , Antineoplastic Agents/pharmacology , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Flow Cytometry , Fluorouracil/pharmacology , G1 Phase Cell Cycle Checkpoints , Genes, MDR , Laryngeal Neoplasms/drug therapy , Neoplasm Proteins/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , RGS Proteins/genetics , /pharmacokinetics , Serine Endopeptidases/genetics , Tissue Array Analysis , Vincristine/pharmacology
13.
Rev. venez. oncol ; 23(1): 21-25, ene.-mar. 2011. tab
Article in Spanish | LILACS | ID: lil-594516

ABSTRACT

En México el cáncer cérvico uterino al igual que en otros países de América representa un grave problema de salud pública. El tratamiento depende de su extensión; los estadios localmente avanzados son tratados con una combinación de quimioterapia con cisplatino y radioterapia. Ambas terapias utilizadas son consideradas oxidativas y por ello son capaces de influir en las toxicidades del propio tratamiento, el objetivo de este trabajo es determinar la eficacia de la suplementación con antioxidantes y su efecto sobre la prevención de la toxicidad renal por cisplatino. Ensayo clínico aleatorizado que incluyó a pacientes con cáncer cérvico uterino en estadios localmente avanzados cuyo tratamiento antineoplásico consistió en radioterapia y quimioterapia con cisplatino. Se asignó aleatoriamente a las pacientes a recibir un suplemento antioxidante diariamente o bien un placebo. Se determinó la función renal mediante la depuración de creatinina antes de iniciar el tratamiento y al término del mismo. Se realizaron pruebas t-Student inter e intra grupales a fin de determinar el efecto de la suplementación sobre los parámetros evaluados. No se encontraron diferencias estadísticamente significativas entre ambos grupos; en cambio, existió una disminución significativa en ambos grupos al finalizar el tratamiento. La suplementación con antioxidantes no es capaz de prevenir la toxicidad a nivel renal producida por la quimioterapia con cisplatino.


In Mexico, our country, the pathology of cervical cancer is a major public health issue, the same situation is present in other American countries. The treatment for this pathology depends on its extension; for locally advanced stages, a combination of radiotherapy and chemotherapy with cisplatin drug is common used. The both therapies are considered to be pro oxidative and this can be implied in the toxicities of the treatment. The objective of this work was to determine the efficacy of antioxidant supplementation on the prevention of cisplatin drug in the renal toxicity. We conducted a randomized clinical trial in the patients with locally advanced stage cervical cancer whose antineoplastic treatment consisted in radiation therapy and chemotherapy with the cisplatin drug. The patients were randomly assigned to receive either an antioxidant supplement or the placebo. We assessed renal function as creatinine clearance before and after concluding the oncologic treatment. We performed inter and intragroupal t-Student tests in order to determine the effect of the antioxidant supplementation on the evaluated parameters. No statistically significant differences we were found between the groups; however, there was a significant decrease in renal function in the both groups after finalizing the oncologic treatment. The antioxidant supplementation does not prevent the renal toxicity from the cisplatin drug chemotherapy.


Subject(s)
Humans , Female , Renal Agents/toxicity , Antioxidants/therapeutic use , Cisplatin/administration & dosage , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/radiotherapy , Cisplatin/pharmacology , Mexico , Nephrology
14.
Indian J Biochem Biophys ; 2011 Feb; 48(1): 59-62
Article in English | IMSEAR | ID: sea-135302

ABSTRACT

The in vitro study was carried out for detection of the cisplatin in free form and in culture medium, depending on various conditions of sonodynamic human ovarian cancer cells A2780 treatment by differential pulse polarography (DPP). For sonodynamic treatment, we used cisplatin alone and combined cisplatin/ultrasound treatments. The ultrasound exposure intensity of 1.0 and 2.0 W∙cm-2 in far field for incubation periods 1, 24 and 48 h was used. The parameters of DPP measurements were - 1 s drop time, 5 mV.s-1 voltage scan rate, 50 mV modulation amplitude and negative scanning direction; platinum wire served as counter electrode and Ag|AgCl|3 M KCl as reference electrode. The results showed the dependence of free platinum quantities in culture medium on incubation time and treatment protocol. We found difference in concentration of free cisplatin between conventional application of cisplatin and sonodynamic treatment. The sonodynamic combined treatment of cisplatin and ultrasound field showed a higher cisplatin content in the culture medium than cisplatin treatment alone; a difference of 20% was observed for incubation time 48 h. The results also showed the influence of a time sequence of ultrasound and cytostatics in the sonodynamic treatment. The highest amount of free cisplatin in the solution was found for primary application of cisplatin and the subsequent ultrasound exposure. The quantity of free cisplatin increased with time, namely for time intervals 1-24 h. There was no difference between the DPP signal of cisplatin in reaction mixture containing cells in small quantities and micro-filtered mixture without cells. Thus, the DPP method is suitable for the detection and quantification of free cisplatin in the culture medium of cell suspension. Ultrasound field can be important factor during cytostatic therapy.


Subject(s)
Antineoplastic Agents/analysis , Antineoplastic Agents/pharmacology , Cisplatin/analysis , Cisplatin/pharmacology , Combined Modality Therapy/methods , Culture Media/analysis , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/therapy , Polarography/methods , Time Factors , Tumor Cells, Cultured/drug effects , Ultrasonic Therapy
15.
Braz. j. med. biol. res ; 43(10): 1001-1009, Oct. 2010. ilus, tab
Article in English | LILACS | ID: lil-561220

ABSTRACT

Small cell lung cancer (SCLC) is an aggressive disease, representing 15 percent of all cases of lung cancer, has high metastatic potential and low prognosis that urgently demands the development of novel therapeutic approaches. One of the proposed approaches has been the down-regulation of BCL2, with poorly clarified and controversial therapeutic value regarding SCLC. The use of anti-BCL2 small interfering RNA (siRNA) in SCLC has never been reported. The aim of the present study was to select and test the in vitro efficacy of anti-BCL2 siRNA sequences against the protein and mRNA levels of SCLC cells, and their effects on cytotoxicity and chemosensitization. Two anti-BCL2 siRNAs and the anti-BCL2 G3139 oligodeoxynucleotide (ODN) were evaluated in SCLC cells by the simultaneous determination of Bcl-2 and viability using a flow cytometry method recently developed by us in addition to Western blot, real-time reverse-transcription PCR, and cell growth after single and combined treatment with cisplatin. In contrast to previous reports about the use of ODN, a heterogeneous and up to 80 percent sequence-specific Bcl-2 protein knockdown was observed in the SW2, H2171 and H69 SCLC cell lines, although without significant sequence-specific reduction of cell viability, cell growth, or sensitization to cisplatin. Our results question previous data generated with antisense ODN and supporting the present concept of the therapeutic interest in BCL2 silencing per se in SCLC, and support the growing notion of the necessity of a multitargeting molecular approach for the treatment of cancer.


Subject(s)
Humans , Lung Neoplasms/drug therapy , Oligoribonucleotides, Antisense/pharmacology , /metabolism , RNA, Small Interfering/pharmacology , Small Cell Lung Carcinoma/drug therapy , Antineoplastic Agents/pharmacology , Blotting, Western , Cell Survival/drug effects , Cisplatin/pharmacology , Down-Regulation , Flow Cytometry , Gene Silencing , Lung Neoplasms/metabolism , /drug effects , Reverse Transcriptase Polymerase Chain Reaction , Small Cell Lung Carcinoma/metabolism , Tumor Cells, Cultured
16.
Article in English | WPRIM | ID: wpr-122640

ABSTRACT

The abnormality of serine/threonine kinase Aurora-A is seen in many types of cancers. Although in physiological context it has been shown to play a vital role in cellular mitosis, how this oncogene contributes to tumorigenesis remains unclear. Here we demonstrate that Aurora-A overexpression enhances both the expression level and transcriptional activity of c-Myc. The inhibition of c-Myc expression by RNA interference significantly impaired the oncogenic potential of Aurora-A, resulting in attenuated cellular proliferation and transformation rates as well as fewer centrosomal aberrations. Furthermore, downregulation of c-Myc effectively overcame Aurora-A-induced resistance to cisplatin in esophageal cancer cells. Taken together, our results suggest an important role for c-Myc in mediating the oncogenic activity of Aurora-A, which may in turn allow for future targeting of c-Myc as a potential therapeutic strategy for tumors with Aurora-A overexpression.


Subject(s)
Cell Line, Transformed , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cisplatin/pharmacology , Down-Regulation , Gene Expression Regulation, Neoplastic/drug effects , Humans , Protein-Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-myc/genetics , RNA, Small Interfering/genetics , Transcriptional Activation , Transgenes/genetics
17.
Article in English | WPRIM | ID: wpr-193634

ABSTRACT

Expression of zinc-finger protein 143 (ZNF143), a human homolog of the Xenopus transcriptional activator protein Staf, is induced by various DNA-damaging agents including etoposide, doxorubicin, and gamma-irradiation. ZNF143 binds to cisplatin-modified DNA, and its levels are increased in cancer cells that are resistant to anticancer drugs, including cisplatin, suggesting that it plays a role in carcinogenesis and cancer cell survival. However, the mechanism of ZNF143 induction in cancer cells remains unclear. Both insulin-like growth factor-1 (IGF-1) and its receptor (IGF-1R) have been reported to be overexpressed in cancer cells and to be related to anticancer drug resistance, but the identity of the relevant signaling mediators is still being investigated. In the present study, we observed that IGF-1 was able to induce ZNF143 expression in HCT116 human colon cancer cells and that wortmannin, an inhibitor of phosphatidylinositide 3-kinase (PI3-kinase), inhibited this induction, as did diphenyleneiodonium (DPI), an NADPH oxidase inhibitor, and monodansylcardavarine (MDC), a receptor internalization inhibitor. Treatment with MDC decreased the IGF-1-stimulated generation of reactive oxygen species. Taken together, these data suggest that IGF-1 induces ZNF143 expression in cancer cells via PI3-kinase and reactive oxygen species generation during receptor internalization.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , Colonic Neoplasms/enzymology , HCT116 Cells , Humans , Insulin-Like Growth Factor I/pharmacology , Phosphatidylinositol 3-Kinase/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Trans-Activators/biosynthesis
18.
São Paulo; s.n; 2009. [128] p. ilus, tab, graf.
Thesis in Portuguese | LILACS | ID: lil-586856

ABSTRACT

INTRODUÇÃO: Quimiorradioterapia (QRT) concomitante adjuvante aumenta a sobrevida livre de doença (SLD) em pacientes portadores de carcinoma epidermóide de cabeça e pescoço (CECCP) de alto risco operados com intenção curativa, porém está associada a toxicidade não desprezível e seu impacto na sobrevida global (SG) é incerto. ERCC1 (Excision Repair Cross Complementing Group 1) é uma proteína com função crítica no reparo de DNA por excisão de nucleotídeos (NER) e está envolvido na resistência à quimio- e radioterapia. Neste trabalho tivemos como objetivos determinar a expressão da proteína ERCC1, a expressão do RNA mensageiro (mRNA) de ERCC1 e a ocorrência do polimorfismo de nucleotídeo único T19007C de ERCC1 em pacientes portadores de CECCP de alto risco, operados e tratados com QRT adjuvante, bem como o valor prognóstico destes marcadores. MÉTODOS: Trata-se de um estudo retrospectivo em pacientes portadores de CEC de cavidade oral, orofaringe, hipofaringe ou laringe, operados com intenção curativa e portadores de doença de risco alto ou intermediário. Pacientes elegíveis haviam sido tratados com QRT adjuvante: 60-70 Gy e cisplatina concomitante (100 mg/m2, dias 1, 22 e 43), não apresentavam metástases a distância e nem sinais de recidiva após cirurgia. A expressão da proteína ERCC1 foi avaliada por imunohistoquímica, através de um escore H semiquantitativo, obtido pelo produto da intensidade da coloração nuclear (0-3) pelo escore proporcional atribuído à porcentagem estimada de núcleos corados (0;0,1;0,5;1). O método da transcrição reversa e reação em cadeia da polimerase (PCR) em tempo real quantitativo foi utilizado para determinação da expressão do mRNA de ERCC1 em tecido de tumor primário, normalizada em relação à expressão da fração 18S do RNA ribossomal. Genotipagem de ERCC1 (códon 118) foi realizada por PCR - polimorfismo do tamanho do fragmento de restrição a partir de DNA genômico extraído de linfonodos normais destes pacientes, após digestão com...


BACKGROUND: Adjuvant concurrent chemoradiation (CRT) improves diseasefree survival (DFS) in patients diagnosed with head and neck squamous cell carcinoma (HNSCC) presenting with high-risk features treated with surgery with curative intent, but treatment-related toxicity is not negligible and its impact on overall survival (OS) is uncertain. ERCC1 (Excision Repair Cross Complementing Group 1) is a protein with a critical role in the nucleotide excision repair (NER) pathway, associated with resistance to chemo- and radiation therapy. We aimed here to study ERCC1 protein expression, ERCC1 messenger RNA (mRNA) expression and the single nucleotide polymorphism T19007C of ERCC1 as prognostic markers in HNSCC patients presenting with high-risk features treated with surgery and adjuvant CRT. METHODS: It is a retrospective study in patients with oral cavity, oropharynx, hypopharynx or larynx SCC submitted to radical surgery with curative intent and presenting with pathologic features of high- or intermediate-risk. Eligible patients were treated with adjuvant CRT: 60-70 Gy and concurrent cisplatin (100 mg/m2, days 1, 22 and 43), with no distant metastasis and no relapsed disease after surgery. ERCC1 protein expression was evaluated by immunohistochemistry, using a semi-quantitative H-score, calculated by multiplying the nuclear staining intensity (0-3) by the proportion score attributed to the percentage of positive tumor nuclei (0;0,1;0,5;1). Quantitative real-time reverse transcriptase polymerase chain reaction (PCR) assay was performed to determine ERCC1 mRNA expression in primary tumors tissue specimens. The ERCC1 mRNA expression was normalized using 18S fraction of ribosomal RNA expression as internal reference. ERCC1 (codon 118) genotypes were detected using PCR restriction fragment length polymorphism method carried out in genomic DNA extracted from normal lymph nodes. The PCR products were digested with BsrDI. RESULTS: 69 patients...


Subject(s)
Humans , Male , Female , Carcinoma, Squamous Cell/therapy , Cisplatin/pharmacology , Follow-Up Studies , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/radiotherapy , Prognosis , DNA Repair/genetics
19.
Article in English | WPRIM | ID: wpr-97400

ABSTRACT

BACKGROUND: Human telomerase reverse transcriptase (hTERT) is a catalytic enzyme that is required for telomerase activity (TA) and cancer progression. Telomerase inhibition or inactivation increases cellular sensitivity to UV irradiation, DNA-damaging agents, the tyrosine kinase inhibitor, imatinib, and pharmacological inhibitors, such as BIBR1532. hTERT is associated with apoptosis. Some patients show drug-resistance during anti-cancer drug treatment and the cancer cell acquire anti-apoptotic mechanism. Therefore, we attempted to study correlation between hTERT and drug-resistance. METHODS: To study the correlation between protein level and activity of hTERT and drug-resistance, Western blotting and telomerase repeat amplification protocol (TRAP) assays were performed. To investigate whether hTERT contributes to drug resistance in tumor cells, we transiently decreased hTERT levels using small interfering RNA (siRNA) in T24/R2 cells. RESULTS: hTERT knockdown increased Bax translocation into the mitochondria and cytochrome C release into the cytosol. Caspase inhibitors, especially Z-VAD-FMK, rescued this phenomenon, suggesting that the stability or expression of hTERT might be regulated by caspase activity. CONCLUSIONS: These data suggest that hTERT might be a target molecule for drug-resistant tumor therapy.


Subject(s)
Amino Acid Chloromethyl Ketones/pharmacology , Antineoplastic Agents/pharmacology , Caspases/antagonists & inhibitors , Cell Line, Tumor , Cisplatin/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Cytochrome c Group/metabolism , Drug Resistance, Neoplasm/genetics , Humans , Neoplasms/therapy , RNA, Small Interfering , Telomerase/antagonists & inhibitors , bcl-2-Associated X Protein/metabolism
20.
Indian J Cancer ; 2007 Oct-Dec; 44(4): 142-6
Article in English | IMSEAR | ID: sea-50825

ABSTRACT

CONTEXT: Oral cancers represent a disparate group of tumors with diverse clinical behavior and chemosensitivity profile. Currently, it is difficult to predict whether a tumor will respond to chemotherapy and which drug(s) will achieve the maximum clinical response. AIMS: To study in vitro chemosensitivity profile of oral cancers and to correlate the in vitro chemosensitivity of oral cancer to clinical response to chemotherapy. SETTINGS AND DESIGN: Prospective study in a tertiary cancer care center. METHODS AND MATERIAL: We prospectively studied the chemosensitivity profile of 57 untreated, advanced, unresectable oral cancers to cisplatin, methotrexate, 5-fluorouracil and their combinations by using histoculture drug response assay (HDRA) and correlated them to the clinical response to chemotherapy. STATISTICAL ANALYSIS USED: Chi Square test. RESULTS: Biopsy samples were successfully histocultured in 52/57 (91%) cases. Of these 52 evaluable patients, 47 had primary gingivo-buccal cancers and five had tongue / floor of mouth cancers. Based on the assay, 27 (52%) tumors were sensitive to cisplatin, 27 (52%) to methotrexate, 24 (46%) to 5-fluorouracil, 38 (73%) to combination of cisplatin and methotrexate and 36 (69%) to combination of cisplatin and 5-fluorouracil. Of these, 31 patients with good performance status received two cycles of chemotherapy using one or more of these test drugs. There was a significant correlation (p=0.03) between the in vitro chemosensitivity and the clinical response. Negative predictive value of the test was 80%, positive predictive value-69%, sensitivity-79% and specificity -71%. The overall accuracy of the assay was 74%. CONCLUSIONS: We found HDRA to be a fairly good predictor of chemo-response of oral cancer.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Antineoplastic Agents/pharmacology , Biological Assay , Carcinoma, Squamous Cell/drug therapy , Cisplatin/pharmacology , Female , Fluorouracil/pharmacology , Humans , Male , Methotrexate/pharmacology , Middle Aged , Mouth Neoplasms/drug therapy , Prospective Studies , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL