Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Article in English | WPRIM | ID: wpr-1010594

ABSTRACT

Cardiovascular diseases (CVDs) are a leading factor driving mortality worldwide. Iron, an essential trace mineral, is important in numerous biological processes, and its role in CVDs has raised broad discussion for decades. Iron-mediated cell death, namely ferroptosis, has attracted much attention due to its critical role in cardiomyocyte damage and CVDs. Furthermore, ferritinophagy is the upstream mechanism that induces ferroptosis, and is closely related to CVDs. This review aims to delineate the processes and mechanisms of ferroptosis and ferritinophagy, and the regulatory pathways and molecular targets involved in ferritinophagy, and to determine their roles in CVDs. Furthermore, we discuss the possibility of targeting ferritinophagy-induced ferroptosis modulators for treating CVDs. Collectively, this review offers some new insights into the pathology of CVDs and identifies possible therapeutic targets.


Subject(s)
Humans , Cardiovascular Diseases , Ferroptosis , Iron , Trace Elements
2.
Cambios rev. méd ; 22 (2), 2023;22(2): 770, 16 octubre 2023. ilus., tabs.
Article in Spanish | LILACS | ID: biblio-1526584

ABSTRACT

INTRODUCCIÓN. El gen Tp53 proporciona instrucciones para producir proteína tumoral 53. El Tp53 es un gen supresor tumoral que protege el ciclo celular, reparando el ADN o activando la apoptosis. Es clave en la carcinogénesis del carcinoma basocelular, patología que cobra relevancia en Ecuador, debido a su latitud y altitud, factores que determinan un mayor daño por exposición a radiación ultravioleta y por ende para carcinoma basocelular. Estudios sugieren que la inmunoexpresión de la proteína tumoral 53 podría ser un predictor de recurrencia en esta neoplasia. OBJETIVO. Determinar si el grado de expresividad de especies mutadas de proteína tumoral 53 en pacientes con carcinoma basocelular es una variable que tiene relación con la recurrencia y agresividad en los diferentes subtipos histológicos. MATERIALES Y MÉTODOS. Estudio de revisión bibliográfica de diferentes artículos científicos publicados en revistas indexadas y bases de datos durante los últimos diez años: ElSevier, Medigraphic, PubMed, Redalyc, ResearchGate, ScienceDirect, SpringerLink, Cochrane Database of Systematic Reviews. RESULTADOS. Se obtuvieron 104 resultados de los cuales se seleccionaron 50 artículos científicos que incluyeron revisiones sistemáticas, meta-análisis, artículos originales y reportes de casos en idiomas español e inglés. CONCLUSIÓN. Tp53 se encuentra mutado en más del 50% de carcinomas basocelulares y tiene un rol clave en su carcinogénesis. La inmunoexpresión aberrante de proteína tumoral 53 es un marcador de riesgo de recurrencia y agresividad en carcinoma basocelular, como lo indican los artículos revisados. Sin embargo, se requiere estudios locales que establezcan el verdadero valor de proteína tumoral 53 como marcador de recurrencia y/o agresividad en la población ecuatoriana.


INTRODUCTION. The Tp53 gene provides instructions to produce tumor protein 53. Tp53 is a tumor suppressor gene that protects the cell cycle, repairing DNA or activating apoptosis. It is key in the carcinogenesis of basal cell carcinoma, a pathology that is relevant in Ecuador, due to its latitude and altitude, factors that determine greater damage by exposure to ultraviolet radiation and therefore for basal cell carcinoma. Studies suggest that the immunoexpression of tumor protein 53 could be a predictor of recurrence in this neoplasm. OBJECTIVE. To determine whether the degree of expression of mutated species of tumor protein 53 in patients with basal cell carcinoma is a variable related to recurrence and aggressiveness in the different histologic subtypes. MATERIALS AND METHODS. Bibliographic review study of different scientific articles published in indexed journals and databases during the last ten years: El-Sevier, Medigraphic, PubMed, Redalyc, ResearchGate, ScienceDirect, SpringerLink, Cochrane Database of Systematic Reviews. RESULTS. A total of 104 results were obtained from which 50 scientific articles were selected, including systematic reviews, meta-analyses, original articles and case reports in Spanish and English. CONCLUSIONS. Tp53 is mutated in more than 50% of basal cell carcinomas and plays a key role in their carcinogenesis. Aberrant immunoexpression of tumor protein 53 is a risk marker for recurrence and aggressiveness in basal cell carcinoma, as indicated by the reviewed articles. However, local studies are required to establish the true value of tumor protein 53 as a marker of recurrence and/or aggressiveness in the Ecuadorian population.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Aged, 80 and over , Young Adult , Recurrence , Skin Neoplasms , Immunohistochemistry , Carcinoma, Basal Cell , Tumor Suppressor Protein p53 , Histology , Apoptosis , Ecuador , Ferroptosis , Neoplasms
3.
Rev. cuba. med ; 62(2)jun. 2023.
Article in Spanish | LILACS, CUMED | ID: biblio-1530123

ABSTRACT

Introducción: La ferroptosis es un proceso no apoptótico de muerte celular regulada que depende de la presencia de iones hierro en el medio intracelular. Se caracterizada por la acumulación de especies reactivas de lípidos oxidados y radicales libres en las membranas celulares. Los inductores e inhibidores de este proceso inciden de manera circunstancial en él, con cuya respuesta celular se trabaja en función de elaborar modelos para el tratamiento del cáncer. Objetivo: Profundizar en el proceso de ferroptosis con un enfoque hacia los inductores e inhibidores, el establecimiento de modelos biofisicoquímicos y las estrategias terapéuticas para el tratamiento del cáncer. Métodos: Se realizó una revisión de los estudios más significativos sobre el tema, publicados en la Web of Science, PubMed, EBSCO, y Scopus. Resultados: Gracias al novedoso descubrimiento de la ferroptosis como impulsor de la muerte de células tumorales para tratar el cáncer, se han comenzado a desarrollar modelos teóricos que simulan el comportamiento de estas células y la complejidad en sistemas biológicos; que permiten encontrar procedimientos alternativos y menos invasivos contra esta y otras enfermedades. Conclusiones: Los inductores e inhibidores tienen una función primordial a la hora de predecir la influencia en la sensibilidad a la ferroptosis; por lo que se indagó en los mecanismos de funcionamiento de estos, que facilitará la forma de inducir en mayor o menor grado la muerte celular y disminuir la población de células cancerígenas(AU)


Introduction: Ferroptosis is a non-apoptotic process of regulated cell death that depends on the presence of iron ions in the intracellular medium. It is characterized by the accumulation of reactive species of oxidized lipids and free radicals in cell membranes. The inducers and inhibitors of this process circumstantially affect it, whose cellular response is used to develop models for cancer treatment. Objective: To deepen the ferroptosis process focusing on inducers and inhibitors, the establishment of biophysiochemical models and therapeutic strategies for cancer treatment. Methods: A review was carried out of the most significant studies on the subject, published in the Web of Science, PubMed, EBSCO and Scopus. Results: Thanks to the novel discovery of ferroptosis as a conductor of tumor cell death to treat cancer, theoretical models have begun to be developed that simulate the behavior of these cells and the complexity in biological systems; that allow finding alternative and less invasive procedures against this and other diseases. Conclusions: Inductors and inhibitors have a primary role in predicting the influence on sensitivity to ferroptosis; therefore, the mechanisms of operation of these were investigated, which will facilitate the way to induce cell death to a greater or lesser degree and reduce the population of cancer cells(AU)


Subject(s)
Humans , Male , Female , Ferroptosis , Neoplasms/drug therapy
4.
Chinese Critical Care Medicine ; (12): 1177-1181, 2023.
Article in Chinese | WPRIM | ID: wpr-1010922

ABSTRACT

OBJECTIVE@#To study whether wedelolactone can reduce hyperoxia-induced acute lung injury (HALI) by regulating ferroptosis, and provide a basic theoretical basis for the drug treatment of HALI.@*METHODS@#A total of 24 C57BL/6J mice were randomly divided into normal oxygen control group, HALI model group and wedelolactone pretreatment group, with 8 mice in each group. Mice in wedelolactone pretreatment group were treated with wedelolactone 50 mg/kg intraperitoneally for 6 hours, while the other two groups were not given with wedelolactone. After that, the HALI model was established by maintaining the content of carbon dioxide < 0.5% and oxygen > 90% in the molding chamber for 48 hours, and the normal oxygen control group was placed in indoor air. After modeling, the mice were sacrificed and lung tissues were collected. The lung histopathological changes were observed under light microscope and pathological scores were performed to calculate the ratio of lung wet/dry mass (W/D). The levels of tumor necrosis factor-α (TNF-α), interleukins (IL-6, IL-1β), superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) in lung tissues of mice in each group were determined. The protein expression of glutathione peroxidase 4 (GPX4) in lung tissue was detected by Western blotting.@*RESULTS@#Under light microscope, the alveolar structure of HALI model group was destroyed, and a large number of neutrophils infiltrated the alveolar and interstitial lung, and the interstitial lung was thickened. The pathological score of lung injury (score: 0.75±0.02 vs. 0.11±0.01) and the ratio of lung W/D (6.23±0.34 vs. 3.68±0.23) were significantly higher than those in the normal oxygen control group (both P < 0.05). Wedelolactone pretreated mice had clear alveolar cavity and lower neutrophil infiltration and interstitial thickness than HALI group. Pathological scores (score: 0.43±0.02 vs. 0.75±0.02) and W/D ratio (4.56±0.12 vs. 6.23±0.34) were significantly lower than HALI group (both P < 0.05). Compared with the normal oxygen control group, the levels of SOD (kU/g: 26.41±4.25 vs. 78.64±3.95) and GSH (mol/g: 4.51±0.33 vs. 12.53±1.25) in HALI group were significantly decreased, while the levels of MDA (mmol/g: 54.23±4.58 vs. 9.65±1.96), TNF-α (μg/L: 96.32±3.67 vs. 11.65±2.03), IL-6 (ng/L: 163.35±5.89 vs. 20.56±3.63) and IL-1β (μg/L: 72.34±4.64 vs. 15.64±2.47) were significantly increased, and the protein expression of GPX4 (GPX4/β-actin: 0.44±0.02 vs. 1.00±0.09) was significantly decreased (all P < 0.05). Compared with the HALI group, the levels of SOD (kU/g: 53.28±3.69 vs. 26.41±4.25) and GSH (mol/g: 6.73±0.97 vs. 12.53±1.25) were significantly higher in the wedelolactone pretreatment group, and the levels of MDA (mmol/g: 25.36±1.98 vs. 54.23±4.58), TNF-α (μg/L: 40.25±4.13 vs. 96.32±3.67), IL-6 (ng/L: 78.32±4.65 vs. 163.35±5.89), and IL-1β (μg/L: 30.65±3.65 vs. 72.34±4.64) were significantly lower (all P < 0.05), and protein expression of GPX4 was significantly higher (GPX4/β-actin: 0.68±0.04 vs. 0.44±0.02, P < 0.05).@*CONCLUSIONS@#Wedelolactone attenuates HALI injury by regulating ferroptosis.


Subject(s)
Mice , Animals , Hyperoxia , Ferroptosis , Tumor Necrosis Factor-alpha , Interleukin-6 , Actins , Mice, Inbred C57BL , Acute Lung Injury/drug therapy , Lung , Oxygen , Superoxide Dismutase
5.
Chinese Critical Care Medicine ; (12): 1188-1194, 2023.
Article in Chinese | WPRIM | ID: wpr-1010924

ABSTRACT

OBJECTIVE@#To investigate whether ferroptosis exists in sepsis induced intestinal injury, and to verify the association between ferroptosis in sepsis induced intestinal injury and intestinal inflammation and barrier function by stimulating and inhibiting the nuclear factor E2-related factor 2/glutathione peroxidase 4 (Nrf2/GPX4) pathway.@*METHODS@#Forty-eight SPF grade male Sprague-Darvley (SD) rats with a body weight of 220-250 g were divided into sham operation group (Sham group), sepsis group (CLP group), sepsis+iron chelating agent deferoxamine (DFO) group (CLP+DFO group) and sepsis+ferroptosis inducer Erastin group (CLP+Erastin group) using a random number table method, with 12 rats in each group. The sepsis model was established by cecal ligation and puncture (CLP). The Sham group was only performed with abdominal opening and closing operations. After modeling, the CLP+DFO group received subcutaneous injection of 20 mg/kg of DFO, the CLP+Erastin group was intraperitoneally injected with 20 mg/kg of Erastin. Each group received subcutaneous injection of 50 mg/kg physiological saline for fluid resuscitation after surgery, and the survival status of the rats was observed 24 hours after surgery. At 24 hours after model establishment, 6 rats in each group were selected. First, live small intestine tissue was taken for observation of mitochondrial morphology in smooth muscle cells under transmission electron microscopy and determination of reactive oxygen species (ROS). Then, blood was collected from the abdominal aorta and euthanized. The remaining 6 rats were sacrificed after completing blood collection from the abdominal aorta, and then small intestine tissue was taken. Western blotting was used to detect the expression of intestinal injury markers such as Claudin-1 and ferroptosis related proteins GPX4 and Nrf2. Observe the pathological changes of small intestine tissue using hematoxylin-eosin (HE) staining and complete Chiu score; Detection of tumor necrosis factor-α (TNF-α), interleukins (IL-1β, IL-6) levels in serum using enzyme-linked immunosorbent assay (ELISA). The levels of serum iron ions (Fe3+), malondialdehyde (MDA), and D-lactate dehydrogenase (D-LDH) were measured.@*RESULTS@#(1) Compared with the Sham group, the 24-hour survival rate of rats in the CLP group and CLP+Erastin group significantly decreased (66.7%, 50.0% vs. 100%, both P < 0.05), while there was no significant difference in the CLP+DFO group (83.3% vs. 100%, P = 0.25). (2) Western blotting results showed that compared with the Sham group, the expressions of GPX4 and Claudin-1 in the small intestine tissue of the CLP group, CLP+DFO group, and CLP+Erastin group decreased significantly, while the expression of Nrf2 increased significantly (GPX4/β-actin: 0.56±0.02, 1.03±0.01, 0.32±0.01 vs. 1.57±0.01, Claudin-1/β-actin: 0.60±0.04, 0.96±0.07, 0.41±0.01 vs. 1.40±0.01, Nrf2/β-actin: 0.88±0.02, 0.72±0.01, 1.14±0.01 vs. 0.43±0.02, all P < 0.05). Compared with the CLP group, the expressions of GPX4 and Claudin-1 were significantly increased in the CLP+DFO group, while the expression of Nrf2 was significantly reduced. In the CLP+Erastin group, the expressions of GPX4 and Claudin-1 further decreased, while the expression of Nrf2 further increased (all P < 0.05). (3) Under the light microscope, compared with the Sham group, the CLP group, CLP+DFO group, and CLP+Erastin group showed structural disorder in the small intestinal mucosa and submucosal tissue, significant infiltration of inflammatory cells, and destruction of glandular and villous structures. The Chui score was significantly higher (3.25±0.46, 2.00±0.82, 4.50±0.55 vs. 1.25±0.45, all P < 0.05). (4) Under transmission electron microscopy, compared with the Sham group, the mitochondria in the other three groups of small intestinal smooth muscle cells showed varying degrees of volume reduction, increased membrane density, and reduced or disappeared cristae. The CLP+Erastin group showed the most significant changes, while the CLP+DFO group showed only slight changes in mitochondrial morphology. (5) Compared to the Sham group, the CLP group, CLP+DFO group, and CLP+Erastin group had serum levels of TNF-α, IL-1β, IL-6, MDA, D-LDH, and ROS in small intestine tissue were significantly increased, while the serum Fe3+ content was significantly reduced [TNF-α (ng/L): 21.49±1.41, 17.24±1.00, 28.66±2.72 vs. 14.17±1.24; IL-1β (ng/L): 108.40±3.09, 43.19±8.75, 145.70±11.00 vs. 24.50±5.55; IL-6 (ng/L): 112.50±9.76, 45.90±6.52, 151.80±9.38 vs. 12.89±6.11; MDA (μmol/L): 5.61±0.49, 3.89±0.28, 8.56±1.17 vs. 1.86±0.41; D-LDH (kU/L): 39.39±3.22, 25.38±2.34, 53.29±10.53 vs. 10.79±0.52; ROS (fluorescence intensity): 90 712±6 436, 73 278±4 775, 110 913±9 287 vs. 54 318±2 226; Fe3+ (μmol/L): 22.19±1.34, 34.05±1.94, 12.99±1.08 vs. 51.74±11.07; all P < 0.05]. Compared with CLP group, the levels of TNF-α, IL-1β, IL-6, MDA, D-LDH and ROS in CLP+Erastin group were further increased, and the content of Fe3+ was further decreased, the CLP+DFO group was the opposite (all P < 0.05).@*CONCLUSIONS@#Ferroptosis exists in the intestinal injury of septic rats, and stimulating or inhibiting ferroptosis through the Nrf2/GPX4 pathway can effectively intervene in the inflammatory state and intestinal mechanical barrier of the body.


Subject(s)
Rats , Male , Animals , NF-E2-Related Factor 2 , Tumor Necrosis Factor-alpha , Ferroptosis , Reactive Oxygen Species , Actins , Claudin-1 , Interleukin-6 , Sepsis/metabolism , Iron
6.
Journal of Integrative Medicine ; (12): 464-473, 2023.
Article in English | WPRIM | ID: wpr-1010956

ABSTRACT

OBJECTIVE@#Acute liver failure (ALF) is characterized by severe liver dysfunction, rapid progression and high mortality and is difficult to treat. Studies have found that sulforaphane (SFN), a nuclear factor E2-related factor 2 (NRF2) agonist, has anti-inflammatory, antioxidant and anticancer effects, and has certain protective effects on neurodegenerative diseases, cancer and liver fibrosis. This paper aimed to explore the protective effect of SFN in ALF and it possible mechanisms of action.@*METHODS@#Lipopolysaccharide and D-galactosamine were used to induce liver injury in vitro and in vivo. NRF2 agonist SFN and histone deacetylase 6 (HDAC6) inhibitor ACY1215 were used to observe the protective effect and possible mechanisms of SFN in ALF, respectively. Cell viability, lactate dehydrogenase (LDH), Fe2+, glutathione (GSH) and malondialdehyde (MDA) were detected. The expression of HDAC6, NRF2, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 4 (ACSL4) and solute carrier family 7 member 11 (SLC7A11) were detected by Western blotting and immunofluorescence.@*RESULTS@#Our results show that NRF2 was activated by SFN. LDH, Fe2+, MDA and ACSL4 were downregulated, while GSH, GPX4 and SLC7A11 were upregulated by SFN in vitro and in vivo, indicating the inhibitory effect of SFN on ferroptosis. Additionally, HDAC6 expression was decreased in the SFN group, indicating that SFN could downregulate the expression of HDAC6 in ALF. After using the HDAC6 inhibitor, ACY1215, SFN further reduced HDAC6 expression and inhibited ferroptosis, indicating that SFN may inhibit ferroptosis by regulating HDAC6 activity.@*CONCLUSION@#SFN has a protective effect on ALF, and the mechanism may include reduction of ferroptosis through the regulation of HDAC6. Please cite this article as: Zhang YQ, Shi CX, Zhang DM, Zhang LY, Wang LW, Gong ZJ. Sulforaphane, an NRF2 agonist, alleviates ferroptosis in acute liver failure by regulating HDAC6 activity. J Integr Med. 2023; 21(5): 464-473.


Subject(s)
Humans , Ferroptosis , NF-E2-Related Factor 2/genetics , Liver Failure, Acute/drug therapy , Isothiocyanates/pharmacology , Glutathione , Histone Deacetylase 6
7.
Article in English | WPRIM | ID: wpr-1010989

ABSTRACT

Influenza is an acute viral respiratory infection that has caused high morbidity and mortality worldwide. Influenza A virus (IAV) has been found to activate multiple programmed cell death pathways, including ferroptosis. Ferroptosis is a novel form of programmed cell death in which the accumulation of intracellular iron promotes lipid peroxidation, leading to cell death. However, little is known about how influenza viruses induce ferroptosis in the host cells. In this study, based on network pharmacology, we predicted the mechanism of action of Maxing Shigan decoction (MXSGD) in IAV-induced ferroptosis, and found that this process was related to biological processes, cellular components, molecular function and multiple signaling pathways, where the hypoxia inducible factor-1(HIF-1) signaling pathway plays a significant role. Subsequently, we constructed the mouse lung epithelial (MLE-12) cell model by IAV-infected in vitro cell experiments, and revealed that IAV infection induced cellular ferroptosis that was characterized by mitochondrial damage, increased reactive oxygen species (ROS) release, increased total iron and iron ion contents, decreased expression of ferroptosis marker gene recombinant glutathione peroxidase 4 (GPX4), increased expression of acyl-CoA synthetase long chain family member 4 (ACSL4), and enhanced activation of hypoxia inducible factor-1α (HIF-1α), induced nitric oxide synthase (iNOS) and vascular endothelial growth factor (VEGF) in the HIF-1 signaling pathway. Treatment with MXSGD effectively reduced intracellular viral load, while reducing ROS, total iron and ferrous ion contents, repairing mitochondrial results and inhibiting the expression of cellular ferroptosis and the HIF-1 signaling pathway. Finally, based on animal experiments, it was found that MXSGD effectively alleviated pulmonary congestion, edema and inflammation in IAV-infected mice, and inhibited the expression of ferroptosis-related protein and the HIF-1 signaling pathway in lung tissues.


Subject(s)
Animals , Mice , Ferroptosis , Network Pharmacology , Reactive Oxygen Species , Vascular Endothelial Growth Factor A , Influenza A virus , Iron , Hypoxia
8.
Article in Chinese | WPRIM | ID: wpr-1009448

ABSTRACT

Objective To investigate the effects of YAP on the occurrence and progression of acute liver failure by regulating the ferroptosis pathway and its underlying mechanism. Methods A total of 20 8-week-old C57BL/6 mice were randomly divided into four groups: a control group, an acute liver failure model group, a YAP agonist XMU-MP-1 treatment group and a YAP inhibitor verteporfin treatment group, five mice for each group. HE staining was used to observe the pathological changes of hepatic inflammation and necrosis. Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were detected by liver biochemistry. Iron (Fe), malondialdehyde (MDA), glutathione (GSH) determination kits were used to measure their levels in liver tissues of each group. The changes of hepatocyte mitochondrial in each group were observed by electron microscopy. Real time PCR and Western blot analysis were used to detect the mRNA and protein expressions of YAP, glutathione peroxidase 4 (GPX4) and 5-lipoxygenase (5-LOX). Results Compared with the control group, mice in the acute liver failure model group and the YAP inhibitor verteporfin treatment group showed severe liver tissue congestion with inflammatory cell infiltration and structural damage to hepatic lobules. Liver injury was alleviated in the XMU-MP-1 treatment group. With the occurrence of liver failure, plasma ALT and AST levels significantly increased, and liver function was improved in XMU-MP-1 treatment group. Electron microscopy showed that mitochondria in hepatocytes of mice with liver failure became smaller and bilayer membrane density increased, while mitochondria changes in the XMU-MP-1 group were alleviated. In addition, the acute liver failure model group showed an increase in Fe and MDA contents, decreased protein expressions of GPX4, and enhanced expression of 5-LOX, suggesting that ferroptosis was involved in acute liver failure in C57BL/6 mice. Ferroptosis was inhibited by activation of YAP. Conclusion Activation of YAP may ameliorate liver injury by inhibiting ferroptosis.


Subject(s)
Animals , Mice , Ferroptosis , Glutathione , Liver Failure , Liver Failure, Acute/drug therapy , Mice, Inbred C57BL , Verteporfin , YAP-Signaling Proteins/metabolism
9.
Zhongguo fei'ai zazhi (Online) ; Zhongguo fei'ai zazhi (Online);(12): 765-773, 2023.
Article in Chinese | WPRIM | ID: wpr-1010084

ABSTRACT

Lung cancer is one of the most common cancers in the world, and its treatment strategy is mainly surgery combined with radiotherapy and chemotherapy. However, long-term chemotherapy will result in drug resistance, which is also one of the difficulties in the treatment of lung cancer. Ferroptosis is an iron-dependent and lipid peroxidation-driven non-apoptotic cell death cascade, occurring when there is an imbalance of redox homeostasis in the cell. Nuclear factor erythroid 2-related factor 2 (Nrf2) is key for cellular antioxidant responses. Numerous studies suggest that Nrf2 assumes an extremely important role in regulation of ferroptosis, for its various functions in iron, lipid, and amino acid metabolism, and so on. In this review, a brief overview of the research progress of ferroptosis over the past decade will be presented. In particular, the mechanism of ferroptosis and the regulation of ferroptosis by Nrf2 will be discussed, as well as the role of the Nrf2 pathway and ferroptosis in tumor drug resistance, which will provide new research directions for the treatment of drug-resistant lung cancer patients.
.


Subject(s)
Humans , Ferroptosis , NF-E2-Related Factor 2/genetics , Lung Neoplasms/genetics , Drug Resistance, Neoplasm , Iron
10.
Zhongguo fei'ai zazhi (Online) ; Zhongguo fei'ai zazhi (Online);(12): 813-821, 2023.
Article in Chinese | WPRIM | ID: wpr-1010089

ABSTRACT

BACKGROUND@#Lung adenocarcinoma (LUAD) is the most common type of non-small cell lung cancer, and any change of miRNAs expression will affect the degree of target regulation, thus affecting intracellular homeostasis. This study verified that miR-186-5p could inhibit the proliferation, migration and invasion of LUAD cells by regulating PRKAA2.@*METHODS@#Previous investigations found that the expression of miR-186-5p was markedly suppressed in LUAD. Bioinformatics method is used to predict the target protein related to ferroptosis downstream and inquire about its expression level in LUAD and its influence on the survival of patients. Double luciferase verified the binding site of PRKAA2 and miR-186-5p. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to detect the expression of PRKAA2. The effects of miR-186-5p of LUAD cells as well as the mechanism by which miR-186-5p inhibits Fer-1's sensitivity to ferroptosis were confirmed by EdU, Transwell, and scratch assays. The effect of miR-186-5p on the amount of reactive oxygen species (ROS) in LUAD cells was discovered using ROS experiment. Malondialdehyde (MDA) and glutathione (GSH) experiments were used to detect the effects of miR-186-5p and PRKAA2 on ferroptosis index of LUAD cells. The concentration of lipid ROS (L-ROS) in LUAD cells were measured using the L-ROS tests to determine the effects of miR-186-5p and PRKAA2.@*RESULTS@#The expression of PRKAA2 is up-regulated, and a high level of PRKAA2 expression was associated with a poor prognosis for patients with LUAD. Overexpression of miR-186-5p decreased the gene and protein expression of PRKAA2. By promoting ferroptosis, miR-186-5p overexpression prevented lung cancer cells from proliferating, invading, and migrating. ROS could be produced in higher amounts in LUAD cells due to miR-186-5p. Overexpression of miR-186-5p and knockdown PRKAA2 up-regulated MDA content and reduced GSH content in LUAD cells, respectively. miR-186-5p could increase the content of L-ROS and promote the ferroptosis sensitivity of LUAD cells by targeting PRKAA2.@*CONCLUSIONS@#miR-186-5p promotes ferroptosis of LUAD cells through targeted regulation of PRKAA2, thus inhibiting the proliferation, invasion and migration of LUAD.
.


Subject(s)
Humans , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung , Ferroptosis/genetics , Reactive Oxygen Species , Adenocarcinoma of Lung/genetics , MicroRNAs/genetics , 3,4-Methylenedioxyamphetamine , Cell Proliferation/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , AMP-Activated Protein Kinases
11.
Chin. med. j ; Chin. med. j;(24): 886-898, 2023.
Article in English | WPRIM | ID: wpr-980847

ABSTRACT

Ferroptosis is an iron-dependent cell death pathway that is different from apoptosis, pyroptosis, and necrosis. The main characteristics of ferroptosis are the Fenton reaction mediated by intracellular free divalent iron ions, lipid peroxidation of cell membrane lipids, and inhibition of the anti-lipid peroxidation activity of intracellular glutathione peroxidase 4 (GPX4). Recent studies have shown that ferroptosis can be involved in the pathological processes of many disorders, such as ischemia-reperfusion injury, nervous system diseases, and blood diseases. However, the specific mechanisms by which ferroptosis participates in the occurrence and development of acute leukemia still need to be more fully and deeply studied. This article reviews the characteristics of ferroptosis and the regulatory mechanisms promoting or inhibiting ferroptosis. More importantly, it further discusses the role of ferroptosis in acute leukemia and predicts a change in treatment strategy brought about by increased knowledge of the role of ferroptosis in acute leukemia.


Subject(s)
Humans , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Ferroptosis , Cell Death , Iron/metabolism , Leukemia, Myeloid, Acute
12.
Sheng Li Xue Bao ; (6): 255-268, 2023.
Article in Chinese | WPRIM | ID: wpr-981003

ABSTRACT

Cerebral hypoxia often brings irreversible damage to the central nervous system, which seriously endangers human health. It is of great significance to further explore the mechanism of hypoxia-associated brain injury. As a programmed cell death, ferroptosis mainly manifests as cell death caused by excessive accumulation of iron-dependent lipid peroxides. It is associated with abnormal glutathione metabolism, lipid peroxidation and iron metabolism, and is involved in the occurrence and development of various diseases. Studies have found that ferroptosis plays an important role in hypoxia-associated brain injury. This review summarizes the mechanism of ferroptosis, and describes its research progress in cerebral ischemia reperfusion injury, neonatal hypoxic-ischemic brain damage, obstructive sleep apnea-induced brain injury and high-altitude hypoxic brain injury.


Subject(s)
Humans , Infant, Newborn , Ferroptosis , Apoptosis , Hypoxia-Ischemia, Brain , Brain Injuries , Iron , Reperfusion Injury
13.
Zhongguo Zhong Yao Za Zhi ; (24): 2176-2183, 2023.
Article in Chinese | WPRIM | ID: wpr-981348

ABSTRACT

To investigate the protective effect and the potential mechanism of leonurine(Leo) against erastin-induced ferroptosis in human renal tubular epithelial cells(HK-2 cells), an in vitro erastin-induced ferroptosis model was constructed to detect the cell viability as well as the expressions of ferroptosis-related indexes and signaling pathway-related proteins. HK-2 cells were cultured in vitro, and the effects of Leo on the viability of HK-2 cells at 10, 20, 40, 60, 80 and 100 μmol·L~(-1) were examined by CCK-8 assay to determine the safe dose range of Leo administration. A ferroptosis cell model was induced by erastin, a common ferroptosis inducer, and the appropriate concentrations were screened. CCK-8 assay was used to detect the effects of Leo(20, 40, 80 μmol·L~(-1)) and positive drug ferrostatin-1(Fer-1, 1, 2 μmol·L~(-1)) on the viability of ferroptosis model cells, and the changes of cell morphology were observed by phase contrast microscopy. Then, the optimal concentration of Leo was obtained by Western blot for nuclear factor erythroid 2-related factor 2(Nrf2) activation, and transmission electron microscope was further used to detect the characteristic microscopic morphological changes during ferroptosis. Flow cytometry was performed to detect reactive oxygen species(ROS), and the level of glutathione(GSH) was measured using a GSH assay kit. The expressions of glutathione peroxidase 4(GPX4), p62, and heme oxygenase 1(HO-1) in each group were quantified by Western blot. RESULTS:: showed that Leo had no side effects on the viability of normal HK-2 cells in the concentration range of 10-100 μmol·L~(-1). The viability of HK-2 cells decreased as the concentration of erastin increased, and 5 μmol·L~(-1) erastin significantly induced ferroptosis in the cells. Compared with the model group, Leo dose-dependently increased cell via-bility and improved cell morphology, and 80 μmol·L~(-1) Leo promoted the translocation of Nrf2 from the cytoplasm to the nucleus. Further studies revealed that Leo remarkably alleviated the characteristic microstructural damage of ferroptosis cells caused by erastin, inhibited the release of intracellular ROS, elevated GSH and GPX4, promoted the nuclear translocation of Nrf2, and significantly upregulated the expression of p62 and HO-1 proteins. In conclusion, Leo exerted a protective effect on erastin-induced ferroptosis in HK-2 cells, which might be associated with its anti-oxidative stress by activating p62/Nrf2/HO-1 signaling pathway.


Subject(s)
Humans , Ferroptosis , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Sincalide/pharmacology , Signal Transduction , Epithelial Cells/metabolism , Glutathione
14.
Zhongguo Zhong Yao Za Zhi ; (24): 3046-3054, 2023.
Article in Chinese | WPRIM | ID: wpr-981435

ABSTRACT

The aim of this study is to explore the mechanism of ligustilide, the main active constituent of essential oils of traditional Chinese medicine Angelicae Sinensis Radix, on alleviating oxygen-glucose deprivation/reperfusion(OGD/R) injury in PC12 cells from the perspective of ferroptosis. OGD/R was induced in vitro, and 12 h after ligustilide addition during reperfusion, cell viability was detected by cell counting kit-8(CCK-8) assay. DCFH-DA staining was used to detect the level of intracellular reactive oxygen species(ROS). Western blot was employed to detect the expression of ferroptosis-related proteins, glutathione peroxidase 4(GPX4), transferrin receptor 1(TFR1), and solute carrier family 7 member 11(SLC7A11), and ferritinophagy-related proteins, nuclear receptor coactivator 4(NCOA4), ferritin heavy chain 1(FTH1), and microtubule-associated protein 1 light chain 3(LC3). The fluorescence intensity of LC3 protein was analyzed by immunofluorescence staining. The content of glutathione(GSH), malondialdehyde(MDA), and Fe was detected by chemiluminescent immunoassay. The effect of ligustilide on ferroptosis was observed by overexpression of NCOA4 gene. The results showed that ligustilide increased the viability of PC12 cells damaged by OGD/R, inhibited the release of ROS, reduced the content of Fe and MDA and the expression of TFR1, NCOA4, and LC3, and improved the content of GSH and the expression of GPX4, SLC7A11, and FTH1 compared with OGD/R group. After overexpression of the key protein NCOA4 in ferritinophagy, the inhibitory effect of ligustilide on ferroptosis was partially reversed, indicating that ligustilide may alleviate OGD/R injury of PC12 cells by blocking ferritinophagy and then inhibiting ferroptosis. The mechanism by which ligustilide reduced OGD/R injury in PC12 cells is that it suppressed the ferroptosis involved in ferritinophagy.


Subject(s)
Animals , Rats , PC12 Cells , Ferroptosis/genetics , Reactive Oxygen Species , Transcription Factors , Glutathione
15.
Asian j. androl ; Asian j. androl;(6): 375-381, 2023.
Article in English | WPRIM | ID: wpr-981946

ABSTRACT

Bisphenol A is a common environmental factor and endocrine disruptor that exerts a negative impact on male reproductive ability. By exploring bisphenol A-induced testicular cell death using the Institute of Cancer Research (ICR) mouse model, we found that a ferroptosis phenomenon may exist. Mice were divided into six groups and administered different doses of bisphenol A via intragastric gavage once daily for 45 consecutive days. Serum was then collected to determine the levels of superoxide dismutase and malondialdehyde. Epididymal sperm was also collected for semen analysis, and testicular tissue was collected for ferritin content determination, electron microscope observation of mitochondrial morphology, immunohistochemistry, real-time quantitative polymerase chain reaction, and western blot analysis. Exposure to bisphenol A was found to decrease sperm quality and cause oxidative damage, iron accumulation, and mitochondrial damage in the testes of mice. In addition, bisphenol A was confirmed to affect the expression of the ferroptosis-related genes, glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), cyclooxygenase 2 (COX2), and acyl-CoA synthetase 4 (ACSL4) in mouse testicular tissues. Accordingly, we speculate that bisphenol A induces oxidative stress, which leads to the ferroptosis of testicular cells. Overall, the inhibition of ferroptosis may be a potential strategy to reduce male reproductive toxicity caused by bisphenol A.


Subject(s)
Male , Mice , Animals , Testis/metabolism , Ferroptosis , Semen , Oxidative Stress
16.
Article in Chinese | WPRIM | ID: wpr-982074

ABSTRACT

OBJECTIVE@#To explore the role of ferroptosis-related genes in multiple myeloma(MM) through TCGA database and FerrDb, and build a prognostic model of ferroptosis-related genes for MM patients.@*METHODS@#Using the TCGA database containing clinical information and gene expression profile data of 764 patients with MM and the FerrDb database including ferroptosis-related genes, the differentially expressed ferroptosis-related genes were screened by wilcox.test function. The prognostic model of ferroptosis-related genes was established by Lasso regression, and the Kaplan-Meier survival curve was drawn. Then COX regression analysis was used to screen independent prognostic factors. Finally, the differential genes between high-risk and low-risk patients were screened, and enrichment analysis was used to explore the mechanism of the relationship between ferroptosis and prognosis in MM.@*RESULTS@#36 differential genes related to ferroptosis were screened out from bone marrow samples of 764 MM patients and 4 normal people, including 12 up-regulated genes and 24 down-regulated genes. Six prognosis-related genes (GCLM, GLS2, SLC7A11, AIFM2, ACO1, G6PD) were screened out by Lasso regression and the prognostic model with ferroptosis-related genes of MM was established. Kaplan-Meier survival curve analysis showed that the survival rate between high risk group and low risk group was significantly different(P<0.01). Univariate COX regression analysis showed that age, sex, ISS stage and risk score were significantly correlated with overall survival of MM patients(P<0.05), while multivariate COX regression analysis showed that age, ISS stage and risk score were independent prognostic indicators for MM patients (P<0.05). GO and KEGG enrichment analysis showed that the ferroptosis-related genes was mainly related to neutrophil degranulation and migration, cytokine activity and regulation, cell component, antigen processing and presentation, complement and coagulation cascades, haematopoietic cell lineage and so on, which may affect the prognosis of patients.@*CONCLUSION@#Ferroptosis-related genes change significantly during the pathogenesis of MM. The prognostic model of ferroptosis-related genes can be used to predict the survival of MM patients, but the mechanism of the potential function of ferroptosis-related genes needs to be confirmed by further clinical studies.


Subject(s)
Humans , Multiple Myeloma , Ferroptosis , Prognosis , Hematopoietic System , Blood Coagulation
17.
Frontiers of Medicine ; (4): 173-206, 2023.
Article in English | WPRIM | ID: wpr-982584

ABSTRACT

Ferroptosis is defined as an iron-dependent regulated form of cell death driven by lipid peroxidation. In the past decade, it has been implicated in the pathogenesis of various diseases that together involve almost every organ of the body, including various cancers, neurodegenerative diseases, cardiovascular diseases, lung diseases, liver diseases, kidney diseases, endocrine metabolic diseases, iron-overload-related diseases, orthopedic diseases and autoimmune diseases. Understanding the underlying molecular mechanisms of ferroptosis and its regulatory pathways could provide additional strategies for the management of these disease conditions. Indeed, there are an expanding number of studies suggesting that ferroptosis serves as a bona-fide target for the prevention and treatment of these diseases in relevant pre-clinical models. In this review, we summarize the progress in the research into ferroptosis and its regulatory mechanisms in human disease, while providing evidence in support of ferroptosis as a target for the treatment of these diseases. We also discuss our perspectives on the future directions in the targeting of ferroptosis in human disease.


Subject(s)
Humans , Ferroptosis , Autoimmune Diseases , Cardiovascular Diseases , Iron , Musculoskeletal Diseases
18.
Chinese Critical Care Medicine ; (12): 376-380, 2023.
Article in Chinese | WPRIM | ID: wpr-982597

ABSTRACT

OBJECTIVE@#To investigate whether the acetaldehyde dehydrogenase 2 specific activator, Alda-1, can alleviate brain injury after cardiopulmonary resuscitation (CPR) by inhibiting cell ferroptosis mediated by acyl-CoA synthetase long-chain family member 4/glutathione peroxidase 4 (ACSL4/GPx4) pathway in swine.@*METHODS@#Twenty-two conventional healthy male white swine were divided into Sham group (n = 6), CPR model group (n = 8), and Alda-1 intervention group (CPR+Alda-1 group, n = 8) using a random number table. The swine model of CPR was reproduced by 8 minutes of cardiac arrest induced by ventricular fibrillation through electrical stimulation in the right ventricle followed by 8 minutes of CPR. The Sham group only experienced general preparation. A dose of 0.88 mg/kg of Alda-1 was intravenously injected at 5 minutes after resuscitation in the CPR+Alda-1 group. The same volume of saline was infused in the Sham and CPR model groups. Blood samples were collected from the femoral vein before modeling and 1, 2, 4, 24 hours after resuscitation, and the serum levels of neuron specific enolase (NSE) and S100 β protein were determined by enzyme-linked immunosorbent assay (ELISA). At 24 hours after resuscitation, the status of neurologic function was evaluated by neurological deficit score (NDS). Thereafter, the animals were sacrificed, and brain cortex was harvested to measure iron deposition by Prussian blue staining, malondialdehyde (MDA) and glutathione (GSH) contents by colorimetry, and ACSL4 and GPx4 protein expressions by Western blotting.@*RESULTS@#Compared with the Sham group, the serum levels of NSE and S100β after resuscitation were gradually increased over time, and the NDS score was significantly increased, brain cortical iron deposition and MDA content were significantly increased, GSH content and GPx4 protein expression in brain cortical were significantly decreased, and ACSL4 protein expression was significantly increased at 24 hours after resuscitation in the CPR model and CPR+Alda-1 groups, which indicated that cell ferroptosis occurred in the brain cortex, and the ACSL4/GPx4 pathway participated in this process of cell ferroptosis. Compared with the CPR model group, the serum levels of NSE and S100 β starting 2 hours after resuscitation were significantly decreased in the CPR+Alda-1 group [NSE (μg/L): 24.1±2.4 vs. 28.2±2.1, S100 β (ng/L): 2 279±169 vs. 2 620±241, both P < 0.05]; at 24 hours after resuscitation, the NDS score and brain cortical iron deposition and MDA content were significantly decreased [NDS score: 120±44 vs. 207±68, iron deposition: (2.61±0.36)% vs. (6.31±1.66)%, MDA (μmol/g): 2.93±0.30 vs. 3.68±0.29, all P < 0.05], brain cortical GSH content and GPx4 expression in brain cortical was significantly increased [GSH (mg/g): 4.59±0.63 vs. 3.51±0.56, GPx4 protein (GPx4/GAPDH): 0.54±0.14 vs. 0.21±0.08, both P < 0.05], and ACSL4 protein expression was significantly decreased (ACSL4/GAPDH: 0.46±0.08 vs. 0.85±0.13, P < 0.05), which indicated that Alda-1 might alleviate brain cortical cell ferroptosis through regulating ACSL4/GPx4 pathway.@*CONCLUSIONS@#Alda-1 can reduce brain injury after CPR in swine, which may be related to the inhibition of ACSL4/GPx4 pathway mediated ferroptosis.


Subject(s)
Male , Animals , Swine , Phospholipid Hydroperoxide Glutathione Peroxidase , Ferroptosis , Brain Injuries , Glutathione , Cardiopulmonary Resuscitation , Ligases , Iron
19.
Chinese Critical Care Medicine ; (12): 684-689, 2023.
Article in Chinese | WPRIM | ID: wpr-982655

ABSTRACT

OBJECTIVE@#To observe the ferroptosis triggered by in different pathways during cecal ligation and puncture (CLP)-induced liver injury in septic mice, and to investigate whether mitochondrial aldehyde dehydrogenase 2 (ALDH2) can alleviate sepsis-induced liver injury by inhibiting ferroptosis.@*METHODS@#Sixty 8-week-old male C57BL/6J mice were randomly divided into sham operation group (Sham group), CLP group, ferroptosis inhibitor ferrostain-1 (Fer-1) group, ALDH2-specific agonist Alda-1 group, iron chelator deferasirox Fe3+ chelate (DXZ) group and dimethyl sulfoxide (DMSO) group, with 10 mice in each group. The septic liver injury was induced by CLP in mice model. In the Sham group, only laparotomy was performed without ligation and puncture of the cecum. 10 mL/kg 5% DMSO, 5 mg/kg Fer-1, 50 mg/kg DXZ and 10 mg/kg Alda-1 were injected intraperitoneally 1 hour before CLP in the DMSO, Fer-1, DXZ and Alda-1 groups respectively. At 24 hours after operation, eyeball blood and liver tissue were collected from anesthetized mice. The hepatic structure and inflammatory infiltration were observed by hematoxylin-eosin (HE) staining. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) in serum, the levels of hepatic malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen species (ROS) were detected. Western blotting was used to detect the protein expressions of ALDH2, ferroptosis-related proteins glutathione peroxidase 4 (GPX4), ferroptosis suppressor protein 1 (FSP1) and transferrin receptor 1 (TFR1) in liver tissue.@*RESULTS@#Compared with Sham group, the mice in CLP group showed varying degrees of congestion, disorganized hepatocyte arrangement, inflammatory cell infiltration at 24 hours after operation. Compared with the CLP group, the mice in the Fer-1 group, DXZ group and Alda-1 group liver morphology, liver injury and inflammatory cell infiltration was improved. Compared with Sham group, the serum levels of ALT and AST, the contents of MDA and ROS, and the expression of TFR1 protein in CLP group were significantly increased, while the activity of SOD and the expressions of ALDH2, GPX4 and FSP1 protein in CLP group were significantly decreased. Compared with CLP group, serum ALT and AST levels in Fer-1, DXZ and Alda-1 groups were significantly decreased [ALT (U/L): 45.76±10.81, 37.30±2.98, 36.40±12.75 vs. 73.06±12.20, AST (U/L): 61.57±2.69, 52.41±6.92, 56.05±8.29 vs. 81.59±5.46, all P < 0.05], and the contents of MDA, ROS and TFR1 protein expression in liver tissue were significantly decreased [MDA (μmol/L): 0.60±0.10, 0.57±0.18, 0.83±0.39 vs. 1.61±0.30, ROS (fluorescence intensity): 270.34±9.64, 276.02±62.33, 262.05±18.55 vs. 455.38±36.07, TFR1/GAPDH: 0.90±0.04, 1.01±0.09, 0.55±0.08 vs. 1.18±0.06, all P < 0.05], and the SOD activity and ALDH2, GPX4 and FSP1 protein expressions in liver tissue were significantly increased [SOD (kU/g): 88.77±8.20, 88.37±4.47, 93.43±7.24 vs. 50.27±3.57, ALDH2/GAPDH: 1.10±0.15, 1.02±0.07, 1.14±0.07 vs. 0.70±0.04, GPX4/GAPDH: 1.02±0.12, 0.99±0.08, 1.05±0.19 vs. 0.71±0.10, FSP1/GAPDH: 1.06±0.24, 1.02±0.08, 0.93±0.09 vs. 0.66±0.03, all P < 0.05]. There was no significant difference in the parameters between DMSO group and CLP group.@*CONCLUSIONS@#Both GPX4 and FSP1 mediated ferroptosis are involved in liver injury in septic mice. Activation of ALDH2 and inhibition of ferroptosis can alleviatehepatic injury. ALDH2 may play a protective role by regulating FSP1 and GPX4 mediated ferroptosis.


Subject(s)
Mice , Male , Animals , Aldehyde Dehydrogenase, Mitochondrial , Ferroptosis , Reactive Oxygen Species , Chemical and Drug Induced Liver Injury, Chronic , Dimethyl Sulfoxide , Mice, Inbred C57BL , Sepsis , Disease Models, Animal
20.
Article in English | WPRIM | ID: wpr-1010583

ABSTRACT

自噬是细胞内一种高度保守的生理过程,可通过溶酶体系统降解过量或受损的细胞器、有毒的蛋白聚集体和病原体等。最新研究表明,海马钙素样1(HPCAL1)可作为特异性自噬受体和铁死亡的正调节因子。HPCAL1可选择性降解钙粘素2(CDH2),加速脂质过氧化,促进癌细胞铁死亡。iHPCAL1是抑制HPCAL1的小分子化合物,可抑制Erastin诱导的肿瘤细胞铁死亡。此外,它还可以抑制铁死亡诱导的急性胰腺炎。本文通过对HPCAL1在铁死亡中的具体作用机制进行概述,为HPCAL1作为铁死亡相关疾病的潜在治疗靶点提供新思路和理论依据。


Subject(s)
Ferroptosis , Cell Line, Tumor , Autophagy
SELECTION OF CITATIONS
SEARCH DETAIL