ABSTRACT
Renal ischemia-reperfusion injury (IRI) is histologically characterized by tubular cell death. Diverse pathways of regulated cell death (RCD) have been reported to contribute to renal IRI in recent studies. In this review, we discuss the signaling pathways, regulators and crosstalk of RCD, including necroptosis, ferroptosis and pyroptosis, and their role in renal IRI in order to pave the way for new therapeutic opportunities.
Subject(s)
Apoptosis , Ferroptosis , Humans , Kidney/metabolism , Necroptosis , Regulated Cell Death , Reperfusion Injury/drug therapyABSTRACT
OBJECTIVE@#To explore the mechanism by which berberine inhibits ferroptosis of mouse hippocampal neuronal cells (HT22).@*METHODS@#Cultured HT22 cells were pretreated with 30 or 60 μmol/L berberine for 2 h before exposure to 0.5 μmol/L erastin for 8 h, and the cell proliferation, intracellular ferric iron level, changes in intracellular reactive oxygen species (ROS) and cell apoptosis were detected using CCK-8, Fe2+ fluorescent probe, fluorescent dye (DAPI) and fluorescent probe (H2DCFH-DA). RT-qPCR and Western blotting were used to detect the mRNA and protein expressions of Nrf2, HO-1 and GPX4 in the cells. We further tested the effects of treatments with 2 μmol/L ML385 (a Nrf2 inhibitor), 60 μmol/L berberine and erastin in the cells to explore the protective mechanism of berberine against erastin-induced ferroptosis in the neuronal cells.@*RESULTS@#Treatment with 0.5 μmol/L erastin significantly lowered the viability of HT22 cells (P < 0.05) and increased the production of ROS, cell apoptosis rate and ferric iron level (P < 0.05). Pretreatment with 30 and 60 μmol/L berberine both significantly increased the vitality of erastin-exposed cells (P < 0.05) and lowered the levels of intracellular ROS and ferric iron content (P < 0.05). RT-qPCR and Western blotting showed that berberine obviously promoted the expressions of Nrf2, HO-1 and GPX4 in the cells (P < 0.05), and treatment with ML385 significantly inhibited the Nrf2-HO-1/GPX4 pathway, increased intracellular ROS and ferric iron contents and mitigated the protective effect of berberine against erastin-induced ferroptosis (P < 0.05).@*CONCLUSION@#Berberine can inhibit erastin-induced ferroptosis in HT22 cells possibly by activating the Nrf2-HO-1/ GPX4 pathway.
Subject(s)
Animals , Berberine/pharmacology , Ferroptosis , Fluorescent Dyes , Hippocampus/metabolism , Iron/metabolism , Mice , NF-E2-Related Factor 2/metabolism , Piperazines , Reactive Oxygen Species/metabolismABSTRACT
OBJECTIVE@#To investigate the inhibitory effect of RSL3 on the proliferation, invasion and migration of cisplatinresistant testicular cancer cells (I-10/DDP) and the effect of carbenoxolone on the activity of RSL3 against testicular cancer.@*METHODS@#MTT assay was used to evaluate the survival rate of I-10/DDP cells following treatment with RSL3 (1, 2, 4, 8, 16 or 32 μmol/L) alone or in combination with carbenoxolone (100 μmol/L) or after treatment with Fer-1 (2 μmol/L), RSL3 (4 μmol/L), RSL3+Fer-1, RSL3+carbenoxolone (100 μmol/L), or RSL3+Fer-1+carbenoxolone. Colony formation assay was used to assess the proliferation ability of the treated cells; wounding-healing assay and Transwell assay were used to assess the invasion and migration ability of the cells. The expression of GPX4 was detected using Western blotting, the levels of lipid ROS were detected using C11 BODIPY 581/591 fluorescent probe, and the levels of Fe2+ were determined with FerroOrange fluorescent probe.@*RESULTS@#RSL3 dose-dependently decreased the survival rate of I-10/DDP cells, and the combined treatment with 2, 4, or 8 μmol/L RSL3 with carbenoxolone, as compared with RSL3 treatment alone, resulted in significant reduction of the cell survival rate. The combination with carbenoxolone significantly enhanced the inhibitory effect of RSL3 on colony formation, wound healing rate (P=0.005), invasion and migration of the cells (P < 0.001). Fer-1 obviously attenuated the inhibitory effects of RSL3 alone and its combination with carbenoxolone on I-10/DDP cells (P < 0.01). RSL3 treatment significantly decreased GPX4 expression (P=0.001) and increased lipid ROS level (P=0.001) and Fe2+ level in the cells, and these effects were further enhanced by the combined treatment with carbenoxolone (P < 0.01).@*CONCLUSION@#Carbenoxolone enhances the inhibitory effect of RSL3 on the proliferation, invasion and migration of cisplatin-resistant testicular cancer cells by promoting RSL3-induced ferroptosis.
Subject(s)
Carbenoxolone/pharmacology , Cell Line, Tumor , Cell Proliferation , Cisplatin/pharmacology , Ferroptosis , Fluorescent Dyes/pharmacology , Humans , Lipids , Male , Neoplasms, Germ Cell and Embryonal , Reactive Oxygen Species , Testicular NeoplasmsABSTRACT
OBJECTIVE@#To explore the contribution of ferroptosis to myocardial injury in mouse models of sepsis and the role lipocalin-2 (Lcn2) in ferroptosis.@*METHODS@#Adult male C57BL/6 mice were randomized equally into sham-operated group, cecal ligation and puncture (CLP)-induced sepsis group, and CLP + Fer-1 group where the mice received intraperitoneal injection of 5 mg/mL Fer-1 (5 mg/kg) 1 h before CLP. The left ventricular functions (including LVEF%, LVFS%, LVIDd and LVIDs) of the mice were assessed by echocardiography at 24 h after CLP. Myocardial injury in the mice was observed with HE staining, and the changes of myocardial ultrastructure and mitochondria were observed using transmission electron microscopy (TEM). Serum TNF-α level was measured with ELISA, and the changes of myocardial iron content were detected using tissue iron kit. The protein expressions of myocardial Lcn2, glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) were determined with Western blotting.@*RESULTS@#The septic mice showed significantly decreased LVEF%, LVFS% and LVIDd and increased LVIDs at 24 h after CLP (P < 0.05), and these changes were significantly improved by Fer-1 treatment. Sepsis caused obvious myocardial pathologies and changes in myocardial ultrastructure and mitochondria, which were significantly improved by Fer-1 treatment. Fer-1 treatment also significantly ameliorated sepsis-induced elevations of serum TNF-α level, myocardial tissue iron content, and Lcn2 protein expression and the reduction of GPX4 and FSP1 protein expression levels (P < 0.05).@*CONCLUSION@#GPX4- and FSP1-mediated ferroptosis are involved in myocardial injury in mice with CLP-induced sepsis, and inhibition of ferroptosis can attenuate septic myocardial injury, in which Lcn2 may play a role.
Subject(s)
Animals , Ferroptosis , Heart Injuries , Lipocalin-2 , Male , Mice , Mice, Inbred C57BL , Sepsis/metabolismABSTRACT
OBJECTIVE@#To explore the expression of microRNA-132 (miR-132) and its potential role in the development of atherosclerosis (AS).@*METHODS@#Thirty AS samples and 30 samples of normal peripheral vessels were collected from atherosclerotic patients undergoing peripheral angiostomy in our hospital for detecting the expression level of miR-132 using RT-qPCR. The expression of miR-132 in human umbilical vein endothelial cells (HUVEC) was up-regulated by liposome transfection, and intracellular reactive oxygen species (ROS), localization relationship between ROS and mitochondria, functional changes of mitochondrial reactive oxygen superoxide species (mtROS), mitochondrial membrane potential (MMP) and opening of mitochondrial permeability transition pore (mPTP) were analyzed by flow cytometry and laser confocal microscopy. The activity of mitochondrial redox respiratory chain complex (type I, II, III, IV and V) in HUVECs was detected using ELISA, and the expression levels of key iron death proteins were detected with Western blotting.@*RESULTS@#RT-qPCR results showed that miR-132 was significantly up-regulated in atherosclerotic plaques compared with normal vascular samples (P < 0.001). Compared with control HUVECs, HUVECs overexpressing miR-132 showed a significantly increased level of intracellular ROS (P < 0.001), and most of ROS was colocalized with mitochondria. HUVECs overexpressing miR-132 also showed significantly decreased MMP (P < 0.001) and obviously increased mtROS (P < 0.001) and opening of mPTP (P < 0.001), which led to mitochondrial REDOX respiratory chain stress disorder. The key iron death protein GPX4 was significantly down-regulated and the oxidized protein NOX4 was significantly increased in miR-132-overexpressing HUVECs (P < 0.001).@*CONCLUSION@#MiR-132 promotes atherosclerosis by inducing mitochondrial oxidative stress-mediated ferroptosis, which may serve as a promising therapeutic target for AS.
Subject(s)
Apoptosis , Atherosclerosis/genetics , Ferroptosis , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Membrane Potential, Mitochondrial , MicroRNAs/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolismABSTRACT
OBJECTIVE@#To explore the interaction between reactive oxygen species (ROS) and ferroptosis in methylglyoxalinduced injury of mouse embryonic osteoblasts (MC3T3-E1 cells).@*METHODS@#MC3T3-E1 cells were treated with methylglyoxal to establish a cell model of diabetic osteoporosis. CCK-8 assay was used to detect the viability of MC3T3-E1 cells. Rhodamine 123 staining followed by photofluorography was used to examine mitochondrial membrane potential (MMP). The intracellular ROS level was detected by 2', 7'-dichlorodihydrofluorescein diacetate staining with photofluorograph. Alkaline phosphatase (ALP) activity in the cells was detected using an ALP kit, the number of mineralized nodules was determined with alizarin red S staining, and the level of iron ions was detected using a detection kit. The expression level of glutathione peroxidase 4 (GPX4, a marker protein that inhibits ferroptosis) in the osteoblasts was determined using Western blotting.@*RESULTS@#Treatment of MC3T3-E1 cells with 0.6 mmol/L methylglyoxal for 24 h significantly inhibited the expression level of GPX4 (P < 0.001), increased intracellular iron ion concentration, decreased the cell viability, increased the loss of MMP and intracellular ROS level, decreased both ALP activity and the number of mineralized nodules in the cells (P < 0.001). Co-treatment of MC3T3-E1 cells with 2 mmol/L N-acetylcysteine (NAC, a ROS scavenger) and methylglyoxal significantly increased the expression level of GPX4 (P < 0.01); co-treatment with 4 mmo/L FER-1 (a ferroptosis inhibitor) and methylglyoxal obviously decreased the intracellular ROS level (P < 0.001). Co-treatment of the cells either with NAC and methylglyoxal or with FER-1 and methylglyoxal attenuated methylglyoxal-induced injuries in the osteoblasts (P < 0.001).@*CONCLUSION@#The interaction between ROS and ferroptosis pathway plays an important role in methylglyoxal-induced injury of mouse embryonic osteoblasts.
Subject(s)
Animals , Cell Survival , Ferroptosis , Mice , Osteoblasts , Pyruvaldehyde/metabolism , Reactive Oxygen Species/metabolismABSTRACT
Objective: To investigate ferroptosis in laryngeal squamous cell carcinoma (LSCC) and its regulation by M2 macrophage-derived exosomes. Methods: LSCC and adjacent noncancerous tissue samples were collected from 32 patients treated in the Department of Otorhinolaryngology, Head and Neck Surgery of the Second Affiliated Hospital of Harbin between September 2018 and April 2021, including 26 males and 6 females, aged 43-79 years. The expressions of ferroptosis marker glutathione peroxidase 4(GPX4) in LSCC and adjacent noncancerous tissues were detected by immunohistochemistry and reverse transcriptase-polymerase chain reaction(RT-PCR). The correlations between GPX4 expression and clinicopathological factors in LSCC were analyzed. Biological changes of TU212 cells after treated with ferroptosis-induced agent erastin were detected by transmission electron microscope, cell counting kit-8(CCK-8), clone test, reactive oxygen species(ROS), malondialdehyde(MDA), glutathione(GSH), JC-1, RT-PCR and western blot. Exosomes were isolated from the supernatant of M0/M2 macrophages (M0-exos/M2-exos) and co-incubated with erastin-treated TU212 cells to detect the change of ferroptosis in cells of each group. The data were analyzed by SPSS software of version19.0. Results: GPX4 expression in LSCC tissues was significantly higher than that in adjacent noncancerous tissues (2.04±0.65 vs. 0.99±0.09, F=30.36, P<0.001), and was closely related to T stage and clinical stage (Ⅰ-Ⅱvs.Ⅲ-Ⅳ: 1.75±0.39 vs. 2.18±0.71, F=2.25, P<0.05; T1-2 vs. T3-4: 1.71±0.42 vs. 2.20±0.69, F=2.06, P<0.05). In TU212 cells treated with erastin, mitochondrial crest became smaller, membrane density increased, proliferation rate decreased, intracellular ROS level increased, mitochondrial membrane potential depolarized, GSH content decreased, intracellular MDA level increased and expressions of GPX4 mRNA and protein decreased. Change of M0 into M2 macrophages was induced by IL-4 stimulation. When erastin-treated TU212 cells were incubated with M2-exos, cell proliferation was partially restored and GPX4 expression was enhanced, and also with the recoveries of levels of ROS, MDA and GSH (all P<0.05). Conclusions: Ferroptosis is one of the cell death ways of LSCC. M2-exos may inhibit ferroptosis of LSCC cells.
Subject(s)
Adult , Aged , Exosomes , Female , Ferroptosis , Head and Neck Neoplasms , Humans , Macrophages , Male , Middle Aged , Squamous Cell Carcinoma of Head and NeckABSTRACT
Breast cancer is one of the most malignant tumors and is associated with high mortality rates among women. Lycium barbarum polysaccharide (LBP) is an extract from the fruits of the traditional Chinese herb, L. barbarum. LBP is a promising anticancer drug, due to its high activity and low toxicity. Although it has anticancer properties, its mechanisms of action have not been fully established. Ferroptosis, which is a novel anticancer strategy, is a cell death mechanism that relies on iron-dependent lipid reactive oxygen species (ROS) accumulation. In this study, human breast cancer cells (Michigan Cancer Foundation-7 (MCF-7) and MD Anderson-Metastatic Breast-231 (MDA-MB-231)) were treated with LBP. LBP inhibited their viability and proliferation in association with high levels of ferroptosis. Therefore, we aimed to ascertain whether LBP reduced cell viability through ferroptosis. We found that the structure and function of mitochondria, lipid peroxidation, and expression of solute carrier family 7 member 11 (SLC7A11, also known as xCT, the light-chain subunit of cystine/glutamate antiporter system Xc-) and glutathione peroxidase 4 (GPX4) were altered by LBP. Moreover, the ferroptosis inhibitor, Ferrostatin-1 (Fer-1), rescued LBP-induced ferroptosis-associated events including reduced cell viability and glutathione (GSH) production, accumulation of intracellular free divalent iron ions and malondialdehyde (MDA), and down-regulation of the expression of xCT and GPX4. Erastin (xCT inhibitor) and RSL3 (GPX4 inhibitor) inhibited the expression of xCT and GPX4, respectively, which was lower after the co-treatment of LBP with Erastin and RSL3. These results suggest that LBP effectively prevents breast cancer cell proliferation and promotes ferroptosis via the xCT/GPX4 pathway. Therefore, LBP exhibits novel anticancer properties by triggering ferroptosis, and may be a potential therapeutic option for breast cancer.
Subject(s)
Breast Neoplasms/drug therapy , Drugs, Chinese Herbal/pharmacology , Female , Ferroptosis , Glutathione/metabolism , Humans , Iron/metabolismABSTRACT
OBJECTIVE@#To investigate the effect and involved mechanism of RSL3 on ferroptosis action in acute leukemia cells MOLM13 and its drug-resistant cells.@*METHODS@#After MOLM13 treated with RSL3, CCK-8 assay was performed to detect cell viability, flow cytometry was used to detect the reactive oxygen species (ROS) level of the cells, RT-qPCR and Western blot were used to detect the expression of glutathione peroxidase 4 (GPX4). After MOLM13/IDA and MOLM13/Ara-C, the drug-resistant cell lines were constructed, the ferroptosis induced by RSL3 was observed. Bone marrow samples were collected from patients with acute monocytic leukemia. RT-qPCR and Western blot were performed to detect the expression of related genes and proteins involved in ferroptosis pathway.@*RESULTS@#RSL3 significantly inhibited the cell viability of MOLM13 and increased the intracellular ROS level, which were partially reversed by ferrostatin-1. The mRNA and protein expression of GPX4 decreased in MOLM13 treated with RSL3. RSL3 inhibited the viability of MOLM13/IDA and MOLM13/Ara-C cells more strongly than that of non-drug resistant cells, also increased the intracellular ROS level . The cytotoxic effects were partially reversed by ferrostatin-1. The mRNA and protein expressions of GPX4 in MOLM13/IDA and MOLM13/Ara-C cells were higher than those in non-drug resistant cells. The mRNA and protein levels of GPX4 in bone marrow of relapsed/refractory acute mononuclear leukemia patients were higher than those of ordinary acute mononuclear leukemia patients.@*CONCLUSION@#RSL3 can induce non-drug resistant cells MOLM13 ferroptosis by inhibiting GPX4 activity. MOLM13/IDA and MOLM13/Ara-C are more sensitive to RSL3 compared with non-drug resistant cells MOLM13, which may be caused by the differences in GPX4 expression. The expressions of GPX4 mRNA and protein in relapsed/refractory acute mononuclear leukemia are higher than those in ordinary acute mononuclear leukemia.
Subject(s)
Carbolines , Cell Line , Child , Ferroptosis , Humans , Leukemia, Myeloid, Acute , Pharmaceutical PreparationsABSTRACT
Aberrant de novo lipid synthesis is involved in the progression and treatment resistance of many types of cancers, including lung cancer; however, targeting the lipogenetic pathways for cancer therapy remains an unmet clinical need. In this study, we tested the anticancer activity of orlistat, an FDA-approved anti-obesity drug, in human and mouse cancer cells in vitro and in vivo, and we found that orlistat, as a single agent, inhibited the proliferation and viabilities of lung cancer cells and induced ferroptosis-like cell death in vitro. Mechanistically, we found that orlistat reduced the expression of GPX4, a central ferroptosis regulator, and induced lipid peroxidation. In addition, we systemically analyzed the genome-wide gene expression changes affected by orlistat treatment using RNA-seq and identified FAF2, a molecule regulating the lipid droplet homeostasis, as a novel target of orlistat. Moreover, in a mouse xenograft model, orlistat significantly inhibited tumor growth and reduced the tumor volumes compared with vehicle control (P < 0.05). Our study showed a novel mechanism of the anticancer activity of orlistat and provided the rationale for repurposing this drug for the treatment of lung cancer and other types of cancer.
Subject(s)
Animals , Cell Death , Cell Line, Tumor , Ferroptosis , Lung Neoplasms/drug therapy , Mice , OrlistatABSTRACT
Ferroptosis, an iron-dependent form of regulated cell death driven by peroxidative damages of polyunsaturated-fatty-acid-containing phospholipids in cellular membranes, has recently been revealed to play an important role in radiotherapy-induced cell death and tumor suppression, and to mediate the synergy between radiotherapy and immunotherapy. In this review, we summarize known as well as putative mechanisms underlying the crosstalk between radiotherapy and ferroptosis, discuss the interactions between ferroptosis and other forms of regulated cell death induced by radiotherapy, and explore combination therapeutic strategies targeting ferroptosis in radiotherapy and immunotherapy. This review will provide important frameworks for future investigations of ferroptosis in cancer therapy.
Subject(s)
Ferroptosis/immunology , Humans , Immunotherapy , Neoplasms/therapy , RadiotherapyABSTRACT
OBJECTIVE@#To investigate the effect of autophagy to the ferroptosis in acute lymphocytic leukemia (ALL) cells and its mechanism.@*METHODS@#ALL cell lines (including Reh, Jurkat and CCRF-CEM) were selected. The cell viability was detected by MTS assay and trypan blue staining was used to evaluate the death of the cell. The expression of autophagy related protein (including p62, LC3I/II) and Ferritin in ALL cells were detected by Western blot. The alteration of labile iron pool (LIP) in ALL cells was evaluated by flow cytometry.@*RESULTS@#Reh cells showed sensitivity to ferroptosis activator Erastin, while Jurkat and CCRF-CEM cells showed resistant. Autophagy activator rapamycin could promote the sensitivity of Jurkat and CCRF-CEM cells to Erastin, and the ferroptosis of the cells (P<0.001). Autophagy inhibitor chloroquine could reduce the sensitivity of Reh cells to Erastin and resist the ferroptosis of the cells (P<0.001). The expression of Ferritin could be down-regulated after autophagy was activated in Jurkat and CCRF-CEM cells (P<0.05), while the level of LIP was significantly increased (P<0.05). Inhibiting the autophgy in Reh cells could up-regulate the expression of Ferritin (P<0.01),while decrease the level of LIP (P<0.001).@*CONCLUSION@#The iron homeostasis in cells could be regulated by autophagy through affecting Ferritin expression and LIP level. Autophagy can alter sensitivity of ALL cells to ferroptosis activator Erastin, which suggestes that combining autophagy regulator with ferroptosis activator may be a new strategy for the treatment of chemotherapy-resistant ALL.
Subject(s)
Autophagy , Ferroptosis , Homeostasis , Humans , Iron , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Reactive Oxygen SpeciesABSTRACT
Ferroptosis is an iron-dependent programmed cell death characterized by reactive oxygen species-induced lipid peroxide accumulation, which is different from cell apoptosis, pyroptosis, necrosis or autophagy. Ferroptosis plays an important role in the regulation of tumorigenesis and tumor development. Recent studies have shown that natural medicinal ingredients can induce ferroptosis in tumor cells through glutathione (GSH)/glutathione peroxidase 4 (GPx4) pathway, iron metabolism, lipid metabolism or other mechanisms. It has been reported that more than 30 natural medicinal ingredients can induce ferroptosis in tumor cells with multiple pathways and multiple targets. This article reviews the current research progress on the antitumor effects of natural medicinal ingredients through inducing cell ferroptosis.
Subject(s)
Apoptosis , Autophagy , Ferroptosis , Humans , Neoplasms/drug therapy , Reactive Oxygen SpeciesABSTRACT
Hypoxia-inducible factors (HIFs) are one of the primary transcription factors regulating oxygen balance, and their stability is determined by the hydroxylation state of the prolyl hydroxylase domain (PHD) that is sensitive to oxygen. In recent years, studies have shown that HIFs-prolyl hydroxylases (PHDs) oxygen-sensing pathway is involved in the process of cellular ferroptosis. Ferroptosis, a new type of cell death, different from necrosis, apoptosis, necrotizing apoptosis, and pyroptosis, is essentially a programmed death caused by the accumulation of iron-dependent lipid peroxides in cells. This paper focuses on the role and mechanism of the HIFs-PHDs oxygen-sensing pathway in cellular ferroptosis involved in nerve diseases, tumors, lung injury, and chemical nerve damage from three aspects of iron metabolism, lipid metabolism, and glutathione (GSH) synthesis/metabolism. This review will provide a theoretical basis and new ideas for the development of novel drugs targeting the HIFs-PHDs oxygen-sensing pathway and capable of regulating ferroptosis for the treatment of diseases related to ferroptosis such as nervous system diseases and tumors.
Subject(s)
Apoptosis , Basic Helix-Loop-Helix Transcription Factors , Ferroptosis , Oxygen , Prolyl HydroxylasesABSTRACT
Objective To observe the effect of cryptotanshinone on the ferroptosis of human liver cancer HepG2 cells. Methods The viability of the HepG2 cells cultured
Subject(s)
Ferroptosis , Hep G2 Cells , Humans , Liver Neoplasms , Phenanthrenes/pharmacology , Reactive Oxygen SpeciesABSTRACT
Neonatal hypoxic-ischemic brain damage (HIBD) remains an important cause of neonatal death and disability in infants and young children, but it has a complex mechanism and lacks specific treatment methods. As a new type of programmed cell death, ferroptosis has gradually attracted more and more attention as a new therapeutic target. This article reviews the research advances in abnormal iron metabolism, glutamate antiporter dysfunction, and abnormal lipid peroxide regulation which are closely associated with ferroptosis and HIBD.
Subject(s)
Animals , Animals, Newborn , Brain , Child , Child, Preschool , Ferroptosis , Humans , Hypoxia-Ischemia, Brain , Infant, Newborn , NeuronsABSTRACT
OBJECTIVE@#To explore the protective effect of vitamin E (VE) against radiation injury of hippocampal neurons in mice and explore the possible mechanism.@*METHODS@#Cultured HT-22 and U251 cells with or without exposure to 8 Gy irradiation were treated with VE (200 μmol/L for 24 h), ferroptosis inhibitor (ferrostatin-1, 5 μmol/L for 24 h), apoptosis inhibitor (ZVAD-FMK, 2 μmol/L), or necroptosis inhibitor (100 μmol/L). MTT assay was used to evaluate the cell viability after the treatments, and reduced glutathione (GSH), malondialdehyde (MDA), lipid reactive oxygen species (lipid ROS), and intracellular iron ion levels were detected for assessment of ferroptosis. The mice exposed to 16 Gy irradiation with or without vitamin E (500 U/kg) treatment for 6 weeks were assessed for behavioral changes and cognitive functions using Morris water maze test.@*RESULTS@#Treatment with VE significantly promoted the cell survival following irradiation in HT-22 cells ( < 0.05) but not in U251 cells ( > 0.05). Ferrostatin-1, but not ZVAD or the necroptosis inhibitor, promoted the survival of HT-22 cells following the irradiation. Exposure to irradiation significantly increased ferroptosis-related oxidative stress level in HT-22 cells, manifested by decreased GSH level and increased MDA, lipid ROS and intracellular iron ion levels ( < 0.05); treatment with VE and ferrostatin-1 both obviously reversed radiation-induced ferroptosis-related oxidative stress in the cells ( < 0.05). In Morris water maze test, the mice with radiation exposure showed obviously increased exploration time and distance ( < 0.05), which were significantly decreased after treatment with VE ( < 0.05).@*CONCLUSIONS@#Vitamin E reduces radiation injury by inhibiting ferroptosis in the hippocampal neurons in mice.
Subject(s)
Animals , Ferroptosis , Hippocampus , Mice , Neurons , Radiation Injuries , Vitamin EABSTRACT
Recently, ferroptosis, an iron-dependent novel type of cell death, has been characterized as an excessive accumulation of lipid peroxides and reactive oxygen species. Emerging studies demonstrate that ferroptosis not only plays an important role in the pathogenesis and progression of chronic diseases, but also functions differently in the different disease context. Notably, it is shown that activation of ferroptosis could potently inhibit tumor growth and increase sensitivity to chemotherapy and immunotherapy in various cancer settings. As a result, the development of more efficacious ferroptosis agonists remains the mainstay of ferroptosis-targeting strategy for cancer therapeutics. By contrast, in non-cancerous chronic diseases, including cardiovascular & cerebrovascular diseases and neurodegenerative diseases, ferroptosis functions as a risk factor to promote these diseases progression through triggering or accelerating tissue injury. As a matter of fact, blocking ferroptosis has been demonstrated to effectively prevent ischemia-reperfusion heart disease in preclinical animal models. Therefore, it is a promising field to develope potent ferroptosis inhibitors for preventing and treating cardiovascular & cerebrovascular diseases and neurodegenerative diseases. In this article, we summarize the most recent progress on ferroptosis in chronic diseases, and draw attention to the possible clinical impact of this recently emerged ferroptosis modalities.
Subject(s)
Animals , Chronic Disease , Ferroptosis , Physiology , Iron , Metabolism , Reactive Oxygen SpeciesABSTRACT
Ferroptosis is a novel form of regulated cell death which is dependent on iron and reactive oxygen species (ROS) and associated with the accumulation of lipid peroxides. It is obviously different from other cell death types in terms of morphology, biochemistry, genetics, etc. Also, it is related to the production of iron catalyzed lipid peroxides which is triggered by non-enzymatic or enzymatic reactions. Ferroptosis has been proved to be involved in hematological diseases, cardio-cerebrovascular diseases, liver and kidney diseases. This paper will review the definition, mechanism, inducers of ferroptosis, as well as the function of ferroptosis in respiratory system. We expect to present a new concept for respiratory research and suggest potential targets for clinical prevention and treatment of respiratory diseases.
Subject(s)
Cell Death , Ferroptosis , Humans , Iron , Reactive Oxygen Species , Respiration DisordersABSTRACT
Ferroptosis is a newly discovered non-apoptotic form of regulated cell death driven by iron-dependent lipid peroxidation. The present studies have shown that many metabolic processes and homeostasis are affected by ferroptosis. It is related to many lung diseases, including acute lung injury, chronic obstructive pulmonary disease and pulmonary fibrosis, etc. Currently, the research on ferroptosis is still in its infancy. Previous studies have confirmed that ferroptosis is regulated by a variety of genes, and the mechanism is complex, mainly involving iron homeostasis and lipid peroxidation metabolism. This review summarizes some regulation networks of metabolic processes associated with ferroptosis and discusses the roles of ferroptosis in the pathophysiological progression of many lung diseases. We expected to provide new ideas and references for the treatment of these diseases.