Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.300
Filter
1.
Neuroscience Bulletin ; (6): 65-78, 2024.
Article in English | WPRIM | ID: wpr-1010670

ABSTRACT

Interactions between brain-resident and peripheral infiltrated immune cells are thought to contribute to neuroplasticity after cerebral ischemia. However, conventional bulk sequencing makes it challenging to depict this complex immune network. Using single-cell RNA sequencing, we mapped compositional and transcriptional features of peri-infarct immune cells. Microglia were the predominant cell type in the peri-infarct region, displaying a more diverse activation pattern than the typical pro- and anti-inflammatory state, with axon tract-associated microglia (ATMs) being associated with neuronal regeneration. Trajectory inference suggested that infiltrated monocyte-derived macrophages (MDMs) exhibited a gradual fate trajectory transition to activated MDMs. Inter-cellular crosstalk between MDMs and microglia orchestrated anti-inflammatory and repair-promoting microglia phenotypes and promoted post-stroke neurogenesis, with SOX2 and related Akt/CREB signaling as the underlying mechanisms. This description of the brain's immune landscape and its relationship with neurogenesis provides new insight into promoting neural repair by regulating neuroinflammatory responses.


Subject(s)
Humans , Ischemic Stroke , Brain/metabolism , Macrophages , Brain Ischemia/metabolism , Microglia/metabolism , Gene Expression Profiling , Anti-Inflammatory Agents , Neuronal Plasticity/physiology , Infarction/metabolism
2.
Article in English | WPRIM | ID: wpr-1010722

ABSTRACT

Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism, and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-β expression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA bulk data, and highlights potential targets for therapy.


Subject(s)
Humans , Carcinoma, Squamous Cell/metabolism , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms/metabolism , Immunosuppression Therapy , Transforming Growth Factor beta , Head and Neck Neoplasms , Gene Expression Profiling , Tumor Microenvironment
3.
Chin. j. traumatol ; Chin. j. traumatol;(6): 34-41, 2024.
Article in English | WPRIM | ID: wpr-1009508

ABSTRACT

PURPOSE@#To identify the potential target genes of blast lung injury (BLI) for the diagnosis and treatment.@*METHODS@#This is an experimental study. The BLI models in rats and goats were established by conducting a fuel-air explosive power test in an unobstructed environment, which was subsequently validated through hematoxylin-eosin staining. Transcriptome sequencing was performed on lung tissues from both goats and rats. Differentially expressed genes were identified using the criteria of q ≤ 0.05 and |log2 fold change| ≥ 1. Following that, enrichment analyses were conducted for gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathways. The potential target genes were further confirmed through quantitative real-time polymerase chain reaction and enzyme linked immunosorbent assay.@*RESULTS@#Observations through microscopy unveiled the presence of reddish edema fluid, erythrocytes, and instances of focal or patchy bleeding within the alveolar cavity. Transcriptome sequencing analysis identified a total of 83 differentially expressed genes in both rats and goats. Notably, 49 genes exhibited a consistent expression pattern, with 38 genes displaying up-regulation and 11 genes demonstrating down-regulation. Enrichment analysis highlighted the potential involvement of the interleukin-17 signaling pathway and vascular smooth muscle contraction pathway in the underlying mechanism of BLI. Furthermore, the experimental findings in both goats and rats demonstrated a strong association between BLI and several key genes, including anterior gradient 2, ankyrin repeat domain 65, bactericidal/permeability-increasing fold containing family A member 1, bactericidal/permeability-increasing fold containing family B member 1, and keratin 4, which exhibited up-regulation.@*CONCLUSIONS@#Anterior gradient 2, ankyrin repeat domain 65, bactericidal/permeability-increasing fold containing family A member 1, bactericidal/permeability-increasing fold containing family B member 1, and keratin 4 hold potential as target genes for the prognosis, diagnosis, and treatment of BLI.


Subject(s)
Rats , Animals , Lung Injury/genetics , Goats/genetics , Keratin-4 , Gene Expression Profiling , Gene Expression
4.
Zhonghua Yu Fang Yi Xue Za Zhi ; (12): 1040-1046, 2023.
Article in Chinese | WPRIM | ID: wpr-985506

ABSTRACT

Objective: Using bioinformatics methods to analyze the core pathogenic genes and related pathways in elderly osteoporosis. Methods: From November 2020 and August 2021, eight elderly osteoporosis patients who received treatment and five healthy participants who underwent physical examinations in Beijing Jishuitan Hospital were selected as subjects. The expression level of RNA in the peripheral blood of eight elderly osteoporosis patients and five healthy participants was collected for high-throughput transcriptome sequencing and analysis. The gene ontology (GO) analysis Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed for the differentially expressed genes (DEGs). The protein-protein interaction (PPI) network was constructed using the STRING website and Cytoscape software, and the most significant modules and hub genes were screened out. Results: Among the eight elderly osteoporosis patients, there were seven females and one male, with an average age of 72.4 years (SD=4.2). Among the five healthy participants, there were four females and one male, with an average age of 68.2 years (SD=5.7). A total of 1 635 DEGs (847 up-regulated and 788 down-regulated) were identified. GO analysis revealed that the molecular functions of DEGs were mainly enriched in structural constituents of the ribosome, protein dimerization activity, and cellular components were mainly enriched in the nucleosome, DNA packaging complex, cytosolic part, protein-DNA complex and the cytosolic ribosome. KEGG pathway analysis showed that DEGs were mainly enriched in systemic lupus erythematosus and ribosome. Gene UBA52, UBB, RPS27A, RPS15, RPS12, RPL13A, RPL23A, RPL10A, RPS25 and RPS6 were selected and seven of them could encode ribosome proteins. Conclusion: The pathogenesis of elderly osteoporosis may be associated with ribosome-related genes and pathways.


Subject(s)
Female , Humans , Male , Aged , Gene Expression Profiling/methods , Transcriptome , Protein Interaction Maps/genetics , Computational Biology/methods , Osteoporosis/genetics
5.
Zhonghua fu chan ke za zhi ; Zhonghua fu chan ke za zhi;(12): 430-441, 2023.
Article in Chinese | WPRIM | ID: wpr-985664

ABSTRACT

Objective: To identify the expression profile of circular RNA (circRNA) in placenta of pre-eclampsia (PE) pregnant women by high-throughput sequencing, and to construct the circRNA-microRNA (miRNA)-messenger RNA (mRNA) interaction network, so as to reveal the related pathways and regulatory mechanisms of PE. Methods: The clinical data and placentas of 42 women with PE (PE group) and 30 normal pregnant women (control group) who delivered in West China Second University Hospital from November 2019 to June 2021 were collected. (1) High-throughput sequencing was used to establish the differentially expressed circRNA profiles in placental tissues of 5 pairs of PE group and the control group. (2) Real-time quantitative PCR (qRT-PCR) was used to verify the expression levels of 6 differentially expressed circRNAs in placental tissues of PE group and control group. (3) Bioinformatics analysis was used to predict the target miRNA and analyze the co-expressed mRNA to construct a competitive endogenous RNA (ceRNA) network. The differentially expressed circRNAs were analyzed by Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. (4) Logistic regression analysis, Pearson correlation and Kendall's tau-b correlation analysis were used to test the correlation between the three differentially expressed circRNAs and the risk of PE and clinical characteristics. (5) circRNA_05393 was selected for subsequent functional study. Small interfering RNA (siRNA) and overexpression plasmid were used to knock down or increase the expression level of circRNA_05393 in trophoblast cell line HTR-8/SVneo cells, respectively. Transwell assay was used to detect the migration and invasion ability of the trophoblasts in vitro. Cell counting kit-8 assay was used to detect the proliferation ability of the trophoblasts. Results: (1) Seventy-two differentially expressed circRNAs were identified by high-throughput sequencing, of which 35 were up-regulated and 37 were down-regulated. (2) qRT-PCR showed that compared with the control group, circRNA_00673 (1.306±0.168 vs 2.059±0.242; t=2.356, P=0.021) and circRNA_07796 (1.275±0.232 vs 1.954±0.230; t=2.018, P=0.047) were significantly increased, while circRNA_05393 (1.846±0.377 vs 0.790±0.094; t=3.138, P=0.002) was significantly decreased. (3) The circRNA-miRNA-mRNA interaction network contained 3 circRNAs, 8 miRNAs and 53 mRNAs. GO functional annotation analysis showed that the biological process was mainly enriched in iron ion homeostasis, membrane depolarization during action potential and neuronal action potential. In terms of cellular components, they were mainly enriched in cytoskeleton and membrane components. In terms of molecular function, they were mainly enriched in the activity of voltage-gated sodium channel and basic amino acid transmembrane transporter. KEGG pathway enrichment analysis showed that mRNAs in the interaction network were mainly enriched in complement and coagulation cascade, glycine, serine and threonine metabolism, p53 signaling pathway and peroxisome proliferators-activated receptors (PPAR) signaling pathway. (4) Logistic regression analysis showed that down-regulation of circRNA_05393 expression was a risk factor for PE (OR=0.044, 95%CI: 0.003-0.596; P=0.019). Correlation analysis showed that circRNA_05393 was significantly correlated with systolic blood pressure and diastolic blood pressure in PE pregnant women (both P<0.05). (5) Knock down or overexpression of circRNA_05393 significantly reduced or increased the migration and invasion abilities of HTR-8/SVneo cells (all P<0.05), but had no significant effect on the ability of tube formation and proliferation (all P>0.05). Conclusions: The construction of circRNA expression profile in placenta and the exploration of circRNA-miRNA-mRNA interaction network provide the possibility to reveal the regulatory mechanism of specific circRNA involved in PE. Inhibition of circRNA_05393 may induce the progression of PE by reducing the migration and invasion of trophoblasts.


Subject(s)
Female , Humans , Pregnancy , MicroRNAs/metabolism , RNA, Circular/metabolism , RNA, Messenger/metabolism , Pre-Eclampsia/metabolism , Placenta/metabolism , RNA/metabolism , RNA, Small Interfering , Gene Expression Profiling
6.
Article in Chinese | WPRIM | ID: wpr-986977

ABSTRACT

OBJECTIVE@#To explore the driving gene of hepatocellular carcinoma (HCC) occurrence and progression and its potential as new therapeutic target of HCC.@*METHODS@#The transcriptome and genomic data of 858 HCC tissues and 493 adjacent tissues were obtained from TCGA, GEO, and ICGC databases. Gene Set Enrichment Analysis (GSEA) identified EHHADH (encoding enoyl-CoA hydratase/L-3-hydroxyacyl-CoA dehydrogenase) as the hub gene in the significantly enriched differential pathways in HCC. The downregulation of EHHADH expression at the transcriptome level was found to correlate with TP53 mutation based on analysis of the TCGA- HCC dataset, and the mechanism by which TP53 mutation caused EHHADH downregulation was explored through correlation analysis. Analysis of the data from the Metascape database suggested that EHHADH was strongly correlated with the ferroptosis signaling pathway in HCC progression, and to verify this result, immunohistochemical staining was used to examine EHHADH expression in 30 HCC tissues and paired adjacent tissues.@*RESULTS@#All the 3 HCC datasets showed signficnatly lowered EHHADH expression in HCC tissues as compared with the adjacent tissues (P < 0.05) with a close correlation with the degree of hepatocyte de-differentiation (P < 0.01). The somatic landscape of HCC cohort in TCGA dataset showed that HCC patients had the highest genomic TP53 mutation rate. The transcriptomic level of PPARGC1A, the upstream gene of EHHADH, was significantly downregulated in HCC patients with TP53 mutation as compared with those without the mutation (P < 0.05), and was significantly correlated with EHHADH expression level. GO and KEGG enrichment analyses showed that EHHADH expression was significantly correlated with abnormal fatty acid metabolism in HCC. The immunohistochemical results showd that the expression level of EHHADH in HCC tissues was down-regulated, and its expression level was related to the degree of hepatocytes de-differentiation and the process of ferroptosis.@*CONCLUSION@#TP53 mutations may induce abnormal expression of PPARGC1A to cause downregulation of EHHADH expression in HCC. The low expression of EHHADH is closely associated with aggravation of de-differentiation and ferroptosis escape in HCC tissues, suggesting the potential of EHHADH as a therapeutic target for HCC.


Subject(s)
Humans , Carcinoma, Hepatocellular/genetics , Transcriptome , Liver Neoplasms/genetics , Gene Expression Profiling , Fatty Acids , Peroxisomal Bifunctional Enzyme
7.
Chinese Journal of Biotechnology ; (12): 286-303, 2023.
Article in Chinese | WPRIM | ID: wpr-970375

ABSTRACT

Gelsemium elegans is a traditional Chinese herb of medicinal importance, with indole terpene alkaloids as its main active components. To study the expression of the most suitable housekeeping reference genes in G. elegans, the root bark, stem segments, leaves and inflorescences of four different parts of G. elegans were used as materials in this study. The expression stability of 10 candidate housekeeping reference genes (18S, GAPDH, Actin, TUA, TUB, SAND, EF-1α, UBC, UBQ, and cdc25) was assessed through real-time fluorescence quantitative PCR, GeNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that EF-1α was stably expressed in all four parts of G. elegans and was the most suitable housekeeping gene. Based on the coexpression pattern of genome, full-length transcriptome and metabolome, the key candidate targets of 18 related genes (AS, AnPRT, PRAI, IGPS, TSA, TSB, TDC, GES, G8H, 8-HGO, IS, 7-DLS, 7-DLGT, 7-DLH, LAMT, SLS, STR, and SGD) involved in the Gelsemium alkaloid biosynthesis were obtained. The expression of 18 related enzyme genes were analyzed by qRT-PCR using the housekeeping gene EF-1α as a reference. The results showed that these genes' expression and gelsenicine content trends were correlated and were likely to be involved in the biosynthesis of the Gelsemium alkaloid, gelsenicine.


Subject(s)
Genes, Essential , Gelsemium/genetics , Peptide Elongation Factor 1/genetics , Transcriptome , Gene Expression Profiling/methods , Alkaloids , Real-Time Polymerase Chain Reaction/methods , Reference Standards
8.
Article in English | WPRIM | ID: wpr-971466

ABSTRACT

Long non-coding RNAs (lncRNAs) play a significant role in maintaining tissue morphology and functions, and their precise regulatory effectiveness is closely related to expression patterns. However, the spatial expression patterns of lncRNAs in humans are poorly characterized. Here, we constructed five comprehensive transcriptomic atlases of human lncRNAs covering thousands of major tissue samples in normal and disease states. The lncRNA transcriptomes exhibited high consistency within the same tissues across resources, and even higher complexity in specialized tissues. Tissue-elevated (TE) lncRNAs were identified in each resource and robust TE lncRNAs were refined by integrative analysis. We detected 1 to 4684 robust TE lncRNAs across tissues; the highest number was in testis tissue, followed by brain tissue. Functional analyses of TE lncRNAs indicated important roles in corresponding tissue-related pathways. Moreover, we found that the expression features of robust TE lncRNAs made them be effective biomarkers to distinguish tissues; TE lncRNAs also tended to be associated with cancer, and exhibited differential expression or were correlated with patient survival. In summary, spatial classification of lncRNAs is the starting point for elucidating the function of lncRNAs in both maintenance of tissue morphology and progress of tissue-constricted diseases.


Subject(s)
Humans , Gene Expression Profiling , Neoplasms/genetics , Organ Specificity , RNA, Long Noncoding/genetics , Transcriptome
9.
Acta Medica Philippina ; : 34-41, 2023.
Article in English | WPRIM | ID: wpr-980361

ABSTRACT

Background@#Sepsis is a life-threatening multiple-organ dysfunction caused by a dysregulated host response to infection and is the leading cause of death in non-cardiac intensive care facilities. Early reliable prediction of sepsis outcomes leads to cost-efficient resource allocation and therapeutic strategies. However, there are still no reliable markers to predict the outcome of patients at the initial stage of sepsis. Analyzing transcription profiles enables researchers to predict early outcomes using transcripts and their expression patterns. Transcriptomic profiling of septic patients has been done recently; however, analysis of prognostic outcomes is still scarce.@*Objective@#This study aimed to determine transcriptional indicators that may be useful in the prognosis of the severity of sepsis.@*Methods@#This is a prospective cohort study of Filipino patients admitted for sepsis at the national tertiary referral hospital in Manila, Philippines. We conducted differentially expressed gene analysis, network analyses, and area under the curve study of publicly available datasets of surviving vs. non-surviving sepsis patients to identify candidate prognosticator markers. Quantitative PCR was used to characterize the expression of each marker. A model using ordinal logistic regression analysis was done to determine which among the markers can best predict the outcome of sepsis severity.@*Results@#We identified ACTB, RAC1, STAT3, and UBQLN1 as candidate mRNA prognosticators. The expression of STAT3, a gene involved in immunosuppression, is inversely correlated with the severity of sepsis.@*Conclusion@#Transcriptomic markers such as STAT3 can predict the severity of patients with sepsis. Early detection of its inverse expression may prompt early and more aggressive management of patients.


Subject(s)
Sepsis , Data Mining , Gene Expression Profiling
10.
Zhonghua zhong liu za zhi ; (12): 44-49, 2023.
Article in Chinese | WPRIM | ID: wpr-969804

ABSTRACT

Carcinoma of unknown primary (CUP) is a kind of metastatic tumor whose primary origin cannot be identified after adequate examination and evaluation. The main treatment modality of CUP is empiric chemotherapy, and the median overall survival time is less than 1 year. Compared with immunohistochemistry, novel method based on gene expression profiling have improved the sensitivity and specificity of CUP detection, but its guiding value for treatment is still controversial. The approval of immune checkpoint inhibitors and pan-cancer antitumor agents has improved the prognosis of patients with CUP, and targeted therapy and immunotherapy based on specific molecular characteristics are the main directions of future research. Given the high heterogeneity and unique clinicopathological characteristics of CUP, "basket trial" is more suitable for clinical trial design in CUP.


Subject(s)
Humans , Neoplasms, Unknown Primary/genetics , Carcinoma/drug therapy , Gene Expression Profiling/methods , Microarray Analysis , Prognosis
11.
Chinese Journal of Biotechnology ; (12): 2874-2896, 2023.
Article in Chinese | WPRIM | ID: wpr-981238

ABSTRACT

Glutamate receptor-like (GLR) is an important class of Ca2+ channel proteins, playing important roles in plant growth and development as well as in response to biotic and abiotic stresses. In this paper, we performed genome-wide identification of banana GLR gene family based on banana genomic data. Moreover, we analyzed the basic physicochemical properties, gene structure, conserved motifs, promoter cis-acting elements, evolutionary relationships, and used real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) to verify the expression patterns of some GLR family members under low temperature of 4 ℃ and different hormone treatments. The results showed that there were 19 MaGLR family members in Musa acuminata, 16 MbGLR family members in Musa balbisiana and 14 MiGLR family members in Musa itinerans. Most of the members were stable proteins and had signal peptides, all of them had 3-6 transmembrane structures. Prediction of subcellular localization indicated that all of them were localized on the plasma membrane and irregularly distributed on the chromosome. Phylogenetic analysis revealed that banana GLRs could be divided into 3 subclades. The results of promoter cis-acting elements and transcription factor binding site prediction showed that there were multiple hormone- and stress-related response elements and 18 TFBS in banana GLR. RT-qPCR analysis showed that MaGLR1.1 and MaGLR3.5 responded positively to low temperature stress and were significantly expressed in abscisic acid/methyl jasmonate treatments. In conclusion, the results of this study suggest that GLR, a highly conserved family of ion channels, may play an important role in the growth and development process and stress resistance of banana.


Subject(s)
Musa/metabolism , Phylogeny , Abscisic Acid/metabolism , Temperature , Stress, Physiological/genetics , Hormones/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Gene Expression Profiling
12.
Chinese Journal of Biotechnology ; (12): 2897-2913, 2023.
Article in Chinese | WPRIM | ID: wpr-981239

ABSTRACT

MADS-box gene family is a significant transcription factor family that plays a crucial role in regulating plant growth, development, signal transduction, and other processes. In order to study the characteristics of MADS-box gene family in Docynia delavayi (Franch.) Schneid. and its expression during different stages of seed germination, this study used seedlings at different stages of germination as materials and screened MADS-box transcription factors from the transcriptome database of D. delavayi using bioinformatics methods based on transcriptome sequencing. The physical and chemical properties, protein conservative motifs, phylogenetic evolution, and expression patterns of the MADS-box transcription factors were analyzed. Quantitative real-time PCR (qRT-PCR) was used to verify the expression of MADS-box gene family members during different stages of seed germination in D. delavayi. The results showed that 81 genes of MADS-box gene family were identified from the transcriptome data of D. delavayi, with the molecular weight distribution ranged of 6 211.34-173 512.77 Da and the theoretical isoelectric point ranged from 5.21 to 10.97. Phylogenetic analysis showed that the 81 genes could be divided into 15 subgroups, among which DdMADS27, DdMADS42, DdMADS45, DdMADS46, DdMADS53, DdMADS61, DdMADS76, DdMADS77 and DdMADS79 might be involved in the regulation of ovule development in D. delavayi. The combination of the transcriptome data and the qRT-PCR analysis results of D. delavayi seeds indicated that DdMADS25 and DdMADS42 might be involved in the regulation of seed development, and that DdMADS37 and DdMADS38 might have negative regulation effects on seed dormancy. Previous studies have reported that the MIKC* subgroup is mainly involved in regulating flower organ development. For the first time, we found that the transcription factors of the MIKC* subgroup exhibited a high expression level at the early stage of seed germination, so we speculated that the MIKC* subgroup played a regulatory role in the process of seed germination. To verify the accuracy of this speculation, we selected DdMADS60 and DdMADS75 from the MIKC* subgroup for qRT-PCR experiments, and the experimental results were consistent with the expression trend of transcriptome sequencing. This study provides a reference for further research on the biological function of D. delavayi MADS-box gene family from the perspective of molecular evolution.


Subject(s)
MADS Domain Proteins/metabolism , Phylogeny , Gene Expression Regulation, Plant , Genes, Plant , Transcription Factors/genetics , Plant Proteins/metabolism , Gene Expression Profiling
13.
Chinese Journal of Biotechnology ; (12): 3015-3036, 2023.
Article in Chinese | WPRIM | ID: wpr-981246

ABSTRACT

To explore the differentially expressed genes (DEGs) related to biosynthesis of active ingredients in wolfberry fruits of different varieties of Lycium barbarum L. and reveal the molecular mechanism of the differences of active ingredients, we utilized Illumina NovaSeq 6000 high-throughput sequencing technology to conduct transcriptome sequencing on the fruits of 'Ningqi No.1' and 'Ningqi No.7' during the green fruit stage, color turning stage and maturity stage. Subsequently, we compared the profiles of related gene expression in the fruits of the two varieties at different development stages. The results showed that a total of 811 818 178 clean reads were obtained, resulting in 121.76 Gb of valid data. There were 2 827, 2 552 and 2 311 DEGs obtained during the green fruit stage, color turning stage and maturity stage of 'Ningqi No. 1' and 'Ningqi No. 7', respectively, among which 2 153, 2 050 and 1 825 genes were annotated in six databases, including gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) and clusters of orthologous groups of proteins (KOG). In GO database, 1 307, 865 and 624 DEGs of green fruit stage, color turning stage and maturity stage were found to be enriched in biological processes, cell components and molecular functions, respectively. In the KEGG database, the DEGs at three developmental stages were mainly concentrated in metabolic pathways, biosynthesis of secondary metabolites and plant-pathogen interaction. In KOG database, 1 775, 1 751 and 1 541 DEGs were annotated at three developmental stages, respectively. Searching the annotated genes against the PubMed database revealed 18, 26 and 24 DEGs related to the synthesis of active ingredients were mined at the green fruit stage, color turning stage and maturity stage, respectively. These genes are involved in carotenoid, flavonoid, terpenoid, alkaloid, vitamin metabolic pathways, etc. Seven DEGs were verified by RT-qPCR, which showed consistent results with transcriptome sequencing. This study provides preliminary evidences for the differences in the content of active ingredients in different Lycium barbarum L. varieties from the transcriptional level. These evidences may facilitate further exploring the key genes for active ingredients biosynthesis in Lycium barbarum L. and analyzing their expression regulation mechanism.


Subject(s)
Flavonoids/metabolism , Fruit/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Lycium/metabolism , Metabolic Networks and Pathways , Transcriptome
14.
Zhongguo Zhong Yao Za Zhi ; (24): 1840-1850, 2023.
Article in Chinese | WPRIM | ID: wpr-981402

ABSTRACT

Uridine diphosphate glycosyltransferase(UGT) is a highly conserved protein in plants, which usually functions in secondary metabolic pathways. This study used the Hidden Markov Model(HMM) to screen out members of UGT gene family in the whole genome of Dendrobium officinale, and 44 UGT genes were identified. Bioinformatics was used to analyze the structure, phylogeny, and promoter region components of D. officinale genes. The results showed that UGT gene family could be divided into four subfamilies, and UGT gene structure was relatively conserved in each subfamily, with nine conserved domains. The upstream promoter region of UGT gene contained a variety of cis-acting elements related to plant hormones and environmental factors, indicating that UGT gene expression may be induced by plant hormones and external environmental factors. UGT gene expression in different tissues of D. officinale was compared, and UGT gene expression was found in all parts of D. officinale. It was speculated that UGT gene played an important role in many tissues of D. officinale. Through transcriptome analysis of D. officinale mycorrhizal symbiosis environment, low temperature stress, and phosphorus deficiency stress, this study found that only one gene was up-regulated in all three conditions. The results of this study can help understand the functions of UGT gene family in Orchidaceae plants and provide a basis for further study on the molecular regulation mechanism of polysaccharide metabolism pathway in D. officinale.


Subject(s)
Dendrobium/genetics , Plant Growth Regulators , Glycosyltransferases/metabolism , Gene Expression Profiling , Mycorrhizae , Phylogeny , Plant Proteins/metabolism
15.
Zhongguo Zhong Yao Za Zhi ; (24): 1916-1926, 2023.
Article in Chinese | WPRIM | ID: wpr-981411

ABSTRACT

The immunomodulatory effect of Saposhnikoviae Radix polysaccharide(SRP) was evaluated based on the zebrafish mo-del, and its mechanism was explored by transcriptome sequencing and real-time fluorescence-based quantitative PCR(RT-qPCR). The immune-compromised model was induced by navelbine in the immunofluorescence-labeled transgenic zebrafish Tg(lyz: DsRed), and the effect of SRP on the density and distribution of macrophages in zebrafish was evaluated. The effect of SRP on the numbers of macrophages and neutrophils in wild-type AB zebrafish was detected by neutral red and Sudan black B staining. The content of NO in zebrafish was detected by DAF-FM DA fluorescence probe. The content of IL-1β and IL-6 in zebrafish was detected by ELISA. The differentially expressed genes(DEGs) of zebrafish in the blank control group, the model group, and the SRP treatment group were analyzed by transcriptome sequencing. The immune regulation mechanism was analyzed by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment, and the expression levels of key genes were verified by RT-qPCR. The results showed that SRP could significantly increase the density of immune cells in zebrafish, increase the number of macrophages and neutrophils, and reduce the content of NO, IL-1β, and IL-6 in immune-compromised zebrafish. The results of transcriptome sequencing analysis showed that SRP could affect the expression level of immune-related genes on Toll-like receptor pathway and herpes simplex infection pathway to affect the release of downstream cytokines and interferon, thereby completing the activation process of T cells and playing a role in regulating the immune activity of the body.


Subject(s)
Animals , Zebrafish/genetics , Interleukin-6/genetics , Gene Expression Profiling , Cytokines/genetics , Macrophages , Transcriptome
16.
Chin. med. j ; Chin. med. j;(24): 2974-2982, 2023.
Article in English | WPRIM | ID: wpr-1007584

ABSTRACT

BACKGROUND@#High-grade serous ovarian cancer (HGSOC) is the biggest cause of gynecological cancer-related mortality because of its extremely metastatic nature. This study aimed to explore and evaluate the characteristics of candidate factors associated with the metastasis and progression of HGSOC.@*METHODS@#Transcriptomic data of HGSOC patients' samples collected from primary tumors and matched omental metastatic tumors were obtained from three independent studies in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were selected to evaluate the effects on the prognosis and progression of ovarian cancer using data from The Cancer Genome Atlas (TCGA) database. Hub genes' immune landscapes were estimated by the Tumor Immune Estimation Resource (TIMER) database. Finally, using 25 HGSOC patients' cancer tissues and 10 normal fallopian tube tissues, immunohistochemistry (IHC) was performed to quantify the expression levels of hub genes associated with International Federation of Gynecology and Obstetrics (FIGO) stages.@*RESULTS@#Fourteen DEGs, ADIPOQ , ALPK2 , BARX1 , CD37 , CNR2 , COL5A3 , FABP4 , FAP , GPR68 , ITGBL1 , MOXD1 , PODNL1 , SFRP2 , and TRAF3IP3 , were upregulated in metastatic tumors in every database while CADPS , GATA4 , STAR , and TSPAN8 were downregulated. ALPK2 , FAP , SFRP2 , GATA4 , STAR , and TSPAN8 were selected as hub genes significantly associated with survival and recurrence. All hub genes were correlated with tumor microenvironment infiltration, especially cancer-associated fibroblasts and natural killer (NK) cells. Furthermore, the expression of FAP and SFRP2 was positively correlated with the International Federation of Gynecology and Obstetrics (FIGO) stage, and their increased protein expression levels in metastatic samples compared with primary tumor samples and normal tissues were confirmed by IHC ( P = 0.0002 and P = 0.0001, respectively).@*CONCLUSIONS@#This study describes screening for DEGs in HGSOC primary tumors and matched metastasis tumors using integrated bioinformatics analyses. We identified six hub genes that were correlated with the progression of HGSOC, particularly FAP and SFRP2 , which might provide effective targets to predict prognosis and provide novel insights into individual therapeutic strategies for HGSOC.


Subject(s)
Humans , Female , Ovarian Neoplasms/pathology , Prognosis , Gene Expression Profiling , Transcriptome , Tumor Microenvironment , Receptors, G-Protein-Coupled/therapeutic use , Tetraspanins/genetics , Protein Kinases , Integrin beta1/therapeutic use
17.
Article in English | WPRIM | ID: wpr-1007936

ABSTRACT

OBJECTIVES@#To investigate possible cross-talk genes, associated pathways, and transcription factors between chronic periodontitis (CP) and chronic obstructive pulmonary disease (COPD).@*METHODS@#The gene expression profiles of CP (GSE10334 and GSE16134) and COPD (GSE76925) were downloaded from the GEO database. Differential expression and functional clustering analyses were performed. The protein‑protein interaction (PPI) network was constructed. The core cross-talk genes were filtered using four topological analysis algorithms and modular segmentation. Then, functional clustering analysis was performed again.@*RESULTS@#GSE10334 detected 164 differentially expressed genes (DEGs) (119 upregulated and 45 downregulated). GSE16134 identified 208 DEGs (154 upregulated and 54 downregulated). GSE76925 identified 1 408 DEGs (557 upregulated and 851 downregulated). The PPI network included 21 nodes and 20 edges. The final screening included seven cross-talk genes: CD79A, FCRLA, CD19, IRF4, CD27, SELL, and CXCL13. Relevant pathways included primary immunodeficiency, the B-cell receptor signaling pathway, and cytokine-cytokine receptor interaction.@*CONCLUSIONS@#This study indicates the probability of shared pathophysiology between CP and COPD, and their cross-talk genes, associated pathways, and transcription factors may offer novel concepts for future mechanistic investigations.


Subject(s)
Humans , Chronic Periodontitis/genetics , Gene Regulatory Networks , Gene Expression Profiling , Protein Interaction Maps/genetics , Pulmonary Disease, Chronic Obstructive/genetics
18.
Chinese Journal of Biotechnology ; (12): 4982-4995, 2023.
Article in Chinese | WPRIM | ID: wpr-1008073

ABSTRACT

The aldo-keto reductase super family (AKRs) has a wide range of substrate specificity. However, the systematic identification of insect AKR gene family members has not been reported. In this study, bioinformatics methods were used to predict the phylogenetic evolution, physical and chemical properties, chromosome location, conserved motifs, and gene structure of AKR family members in Bombyx mori (BmAKR). Transcriptome data or quantitative real time polymerase chain reaction (qRT-PCR) were used to analyze the expression level of BmAKR genes during different organizational periods and silkworm eggs in different developmental states. Moreover, Western blotting was used to detect the expression level of the BmAKR in silkworm eggs. The results showed that 11 BmAKR genes were identified. These genes were distributed on 4 chromosomes of the silkworm genome, all of which had the (α/β) 8-barrel motif, and their physical and chemical characteristics were relatively similar. Phylogenetic analysis showed that the BmAKR genes could be divided into 2 subgroups (AKR1 and AKR2). Transcriptome data analysis showed that the expression of BmAKR genes were quite different in different tissues and periods. Moreover, the expression analysis of BmAKR genes in silkworm eggs showed that some genes were expressed significantly higher in nondiapause eggs than in diapause eggs; but another gene, BmAKR1-1, was expressed significantly higher in diapause eggs than in nondiapause eggs. The detection of protein level found that the difference trend of BmAKR1-1 in diapause eggs and non-diapause eggs was consistent with the results of qRT-PCR. In conclusion, BmAKR1-1 was screened out as candidates through the identification and analysis of the BmAKR genes in silkworm, which may regulate silkworm egg development is worthy of further investigation.


Subject(s)
Animals , Bombyx/metabolism , Phylogeny , Diapause , Genes, Insect , Gene Expression Profiling , Insect Proteins/metabolism
19.
Zhongnan Daxue xuebao. Yixue ban ; (12): 1136-1151, 2023.
Article in English | WPRIM | ID: wpr-1010337

ABSTRACT

OBJECTIVES@#Laryngeal cancer (LC) is a globally prevalent and highly lethal tumor. Despite extensive efforts, the underlying mechanisms of LC remain inadequately understood. This study aims to conduct an innovative bioinformatic analysis to identify hub genes that could potentially serve as biomarkers or therapeutic targets in LC.@*METHODS@#We acquired a dataset consisting of 117 LC patient samples, 16 746 LC gene RNA sequencing data points, and 9 clinical features from the Cancer Genome Atlas (TCGA) database in the United States. We employed weighted gene co-expression network analysis (WGCNA) to construct multiple co-expression gene modules. Subsequently, we assessed the correlations between these co-expression modules and clinical features to validate their associations. We also explored the interplay between modules to identify pivotal genes within disease pathways. Finally, we used the Kaplan-Meier plotter to validate the correlation between enriched genes and LC prognosis.@*RESULTS@#WGCNA analysis led to the creation of a total of 16 co-expression gene modules related to LC. Four of these modules (designated as the yellow, magenta, black, and brown modules) exhibited significant correlations with 3 clinical features: The age of initial pathological diagnosis, cancer status, and pathological N stage. Specifically, the yellow and magenta gene modules displayed negative correlations with the age of pathological diagnosis (r=-0.23, P<0.05; r=-0.33, P<0.05), while the black and brown gene modules demonstrated negative associations with cancer status (r=-0.39, P<0.05; r=-0.50, P<0.05). The brown gene module displayed a positive correlation with pathological N stage. Gene Ontology (GO) enrichment analysis identified 77 items, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis identified 30 related signaling pathways, including the calcium signaling pathway, cytokine-cytokine receptor interaction, neuro active ligand-receptor interaction, and regulation of lipolysis in adipocytes, etc. Consequently, central genes within these modules that were significantly linked to the overall survival rate of LC patients were identified. Central genes included CHRNB4, FOXL2, KCNG1, LOC440173, ADAMTS15, BMP2, FAP, and KIAA1644.@*CONCLUSIONS@#This study, utilizing WGCNA and subsequent validation, pinpointed 8 genes with potential as gene biomarkers for LC. These findings offer valuable references for the clinical diagnosis, prognosis, and treatment of LC.


Subject(s)
Humans , Laryngeal Neoplasms/genetics , Rosaniline Dyes , Biomarkers , Adipocytes , Gene Regulatory Networks , Gene Expression Profiling
20.
Article in English | WPRIM | ID: wpr-1010700

ABSTRACT

Dental primary afferent (DPA) neurons and proprioceptive mesencephalic trigeminal nucleus (MTN) neurons, located in the trigeminal ganglion and the brainstem, respectively, are essential for controlling masticatory functions. Despite extensive transcriptomic studies on various somatosensory neurons, there is still a lack of knowledge about the molecular identities of these populations due to technical challenges in their circuit-validated isolation. Here, we employed high-depth single-cell RNA sequencing (scRNA-seq) in combination with retrograde tracing in mice to identify intrinsic transcriptional features of DPA and MTN neurons. Our transcriptome analysis revealed five major types of DPA neurons with cell type-specific gene enrichment, some of which exhibit unique mechano-nociceptive properties capable of transmitting nociception in response to innocuous mechanical stimuli in the teeth. Furthermore, we discovered cellular heterogeneity within MTN neurons that potentially contribute to their responsiveness to mechanical stretch in the masseter muscle spindles. Additionally, DPA and MTN neurons represented sensory compartments with distinct molecular profiles characterized by various ion channels, receptors, neuropeptides, and mechanoreceptors. Together, our study provides new biological insights regarding the highly specialized mechanosensory functions of DPA and MTN neurons in pain and proprioception.


Subject(s)
Animals , Mice , Neurons , Proprioception , Gene Expression Profiling , Pain , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL