Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.346
Filter
1.
Article in Spanish | LILACS, CUMED | ID: biblio-1289427

ABSTRACT

Introducción: La leucemia linfoide crónica es un trastorno linfoproliferativo caracterizado por la acumulación de linfocitos pequeños de aspecto maduro en sangre periférica, médula ósea y tejidos linfoides con un período de vida prolongado. Presenta una gran variabilidad clínica y genética. Objetivo: Describir los aspectos citogenéticos y moleculares de la leucemia linfoide crónica. Métodos: Se realizó revisión de la literatura en inglés y español, a través del sitio web PubMed y el motor de búsqueda Google académico, de artículos publicados en los últimos 5 años. Se hizo un análisis y resumen de la bibliografía revisada. Desarrollo: En la leucemia linfoide crónica están presentes alteraciones citogenéticas frecuentes como la deleción de los cromosomas 13q, 11q y 17p, así como la trisomía 12, que unido al conocimiento del estado mutacional del gen de la región variable de la cadena pesada de la inmunoglobulina, y otras mutaciones somáticas en diferentes genes, así como a variables clínicas y de laboratorio permiten la estratificación pronóstica de los pacientes. Conclusiones: El diagnóstico a través de los estudios citogenéticos convencionales estimulados con mitógenos, la hibridación in situ por fluorescencia y la secuenciación génica permite una mayor comprensión de la biología de la enfermedad, así como tomar decisiones terapéuticas más personalizadas(AU)


Introduction: Chronic B lymphoid leukemia is a lymphoproliferative disorder characterized by the accumulation of small, mature-looking lymphocytes in peripheral blood, bone marrow and lymphoid tissues with a long life span. It has great clinical and genetic variability. Objective: To describe the cytogenetic and molecular aspects of the disease. Methods: A review of the literature in English and in Spanish was carried out, in the PubMed website and using the search engine of Google Scholar, for articles published in the last five years. We performed analysis and summary of the reviewed bibliography. Development: In chronic lymphoid leukemia, frequent cytogenetic alterations are present such as deletion of chromosomes 13q, 11q and 17p, as well as trisomy 12, which together with the knowledge of the mutational status of the gene for the variable region of the immunoglobulin heavy chain and other somatic mutations in different genes, as well as clinical and laboratory variables allows prognostic stratification of patients. Conclusions: Diagnosis through conventional mitogen-stimulated cytogenetic studies, fluorescence in situ hybridization and gene sequencing allow a better understanding of the biology of the disease, as well as making more personalized therapeutic decisions(AU)


Subject(s)
Biology , Genetic Therapy , Leukemia, Lymphoid/genetics , In Situ Hybridization , Cytogenetics , Lymphoproliferative Disorders , Mutation
2.
Arq. bras. oftalmol ; 84(3): 282-296, May-June 2021. tab, graf
Article in English | LILACS | ID: biblio-1248965

ABSTRACT

ABSTRACT This review is intended to describe the therapeutic approaches for corneal blindness, detailing the steps and elements involved in corneal wound healing. It also presents the limitations of the actual surgical and pharmacological strategies used to restore and maintain corneal transparency in terms of long-term survival and geographic coverage. In addition, we critically review the perspectives of anabolic agents, including vitamin A, hormones, growth factors, and novel promitotic and anti-inflammatory modulators, to assist corneal wound healing. We discuss the studies involving nanotechnology, gene therapy, and tissue reengineering as potential future strategies to work solely or in combination with corneal surgery to prevent or revert corneal blindness.(AU)


RESUMO O presente trabalho traz uma revisão das abordagens terapêuticas para a cegueira da córnea. O estudo detalha as etapas e os elementos envolvidos na cicatrização da córnea. Ele mostra as limitações das estratégias cirúrgicas e farmacológicas usadas para restaurar e manter a transparência da córnea em termos de sobrevida a longo prazo e alcance geográfico. As perspectivas dos agentes anabólicos, incluindo vitamina A, hormônios, fatores de crescimento e novos moduladores pró-mitóticos e anti-inflamatórios para auxiliar a cicatrização da ferida na córnea, são revisadas criticamente. Aqui, apresentamos estudos envolvendo nanotecnologia, terapia gênica e reengenharia de tecidos como possíveis estratégias futuras para atuar de maneira isolada ou combinada com a cirurgia da córnea para prevenir ou reverter a cegueira corneana.(AU)


Subject(s)
Humans , Blindness/prevention & control , Blindness/therapy , Corneal Injuries/prevention & control , Corneal Injuries/therapy , Stem Cells , Vitamin A/therapeutic use , Genetic Therapy/instrumentation , Nanotechnology/instrumentation , Intercellular Signaling Peptides and Proteins/therapeutic use , Hormones/therapeutic use , Anti-Inflammatory Agents/therapeutic use
3.
Rev. bras. oftalmol ; 80(2): 100-106, Mar.-Apr. 2021. tab, graf
Article in English | LILACS | ID: biblio-1280105

ABSTRACT

ABSTRACT Objective: A scientometric analysis produced in ophthalmic genetics and gene therapy research is lacking. The purpose of this study is to present a holistic analysis of ophthalmic genetics literature. Methods: The data used in this study were obtained from the Web of Science (WoS) Core Collection. All published documents between 1975-2019 were included. The data exported from WoS enabled the extensive details of ophthalmic genetics related literature including countries, institutions, authors, citations and keywords. Scientometric network maps of keywords and also country and institution co-authorships were created with free software. Global contributions of the countries to the ophthalmic genetics literature were shown by a graphic. Results: The search query revealed a total of 2322 documents. Most of the documents were original articles (75.75%). USA was the leading country by producing 45.39% of all documents in ophthalmic genetics research followed by UK, Germany, China and France. Pennsylvania University was the most contributing institution in the literature (5.25%) followed by University College London and Moorfields Eye Hospital. The average citations per item was 29.4. The most used keywords over a 40-year period were 'family', 'cell', 'photoreceptor' and 'expression'. Conclusions: USA and UK dominated the ophthalmic genetics research. A substantial increase in the number of published documents in this field were observed after 2010.


RESUMO Objetivo: A literatura carece de análise cienciométrica produzida em genética oftálmica e de pesquisa em terapia genética. O objetivo deste estudo é apresentar uma análise holística da literatura genética oftálmica. Métodos: Os dados utilizados neste estudo foram obtidos na base de dados Web of Science (WoS) Core Collection. Todos os documentos publicados entre 1975 e 2019 foram incluídos na análise. Os dados exportados da WoS viabilizaram acesso a amplos detalhes da literatura relacionada à genética oftálmica, incluindo países, instituições, autores, citações e palavras-chave. Mapas de rede cienciométrica foram criados por meio de software gratuito, com base em palavras-chave e em coautorias de países e instituições. As contribuições globais dos países para a literatura sobre genética oftálmica foram apresentadas em gráfico. Resultados: a busca por pesquisas revelou um total de 2.322 documentos cuja maioria eram artigos originais (75,75%). Os EUA foram o país que mais produziu artigos sobre o tema, com 45,39% de todos os documentos em pesquisa genética oftálmica; ele foi seguido pelo Reino Unido, Alemanha, China e França. A Universidade da Pensilvânia foi a instituição que mais contribuiu para a literatura (5,25%), e foi seguida pela University College London e pelo Moorfields Eye Hospital. A média de citações por item foi de 29,4. As palavras-chave mais usadas em um período de 40 anos foram 'família', 'célula', 'fotorreceptor' e 'expressão'. Conclusões: Os EUA e o Reino Unido dominaram a pesquisa em genética oftálmica. Após 2010, observou-se um aumento substancial no número de documentos publicados nessa área.


Subject(s)
Humans , Genetic Therapy , Bibliometrics , Eye Diseases, Hereditary , Eye Diseases/genetics , Eye Diseases/therapy , Ophthalmology/trends , Periodicals as Topic/trends , Periodicals as Topic/statistics & numerical data , Publications , Publishing/statistics & numerical data , Databases, Factual , Genomics/trends , Genetic Research
4.
Rev. Hosp. Ital. B. Aires (2004) ; 41(1): 37-42, mar. 2021. ilus, tab
Article in Spanish | LILACS | ID: biblio-1178964

ABSTRACT

El término CRISPR, por su acrónimo en inglés refiere a Clustered Regularly Interspaced Short Palindromic Repeats, es decir, repeticiones palindrómicas cortas, agrupadas y regularmente esparcidas, por sus características en el genoma, pertenece naturalmente al sistema de defensa de bacterias y arqueas. Este ha sido adaptado biotecnológicamente para la edición del ADN de células eucariotas, incluso de células humanas. El sistema CRISPR-Cas para editar genes consta, en forma generalizada, de dos componentes: una proteína nucleasa (Cas) y un ARN guía (sgRNA). La simplicidad del complejo lo hace una herramienta molecular reprogramable capaz de ser dirigida y de editar cualquier sitio en un genoma conocido. Su principal foco son las terapias para enfermedades hereditarias monogénicas y para el cáncer. Sin embargo, además de editor de genes, la tecnología CRISPR se utiliza para edición epigenética, regulación de la expresión génica y método de diagnóstico molecular. Este artículo tiene por objetivo presentar una revisión de las aplicaciones de la herramienta molecular CRISPR-Cas, particularmente en el campo biomédico, posibles tratamientos y diagnósticos, y los avances en investigación clínica, utilizando terapia génica con CRISPR/Cas más relevantes hasta la fecha. (AU)


CRISPR are Clustered Regularly Interspaced Short Palindromic Repeats, which naturally belong to the defense system of bacteria and archaea. It has been biotechnologically adapted for editing the DNA of eukaryotic cells, including human cells. The CRISPR-Cas system for editing genes generally consists of two components, a nuclease protein (Cas) and a guide RNA (sgRNA). The simplicity of the complex makes it a reprogrammable molecular tool capable of being targeted and editing any site in a known genome. Its main focus is therapies for monogenic inherited diseases and cancer. However, in addition to gene editor, CRISPR technology is used for epigenetic editing, regulation of gene expression, and molecular diagnostic methods. This article aims to present a review of the applications of the CRISPR-Cas molecular tool, particularly in the biomedical field, possible treatments and diagnoses, and the advances in clinical research, using the most relevant CRISPR-Cas gene therapy to date. (AU)


Subject(s)
Humans , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , CRISPR-Cas Systems/genetics , Biotechnology , Genetic Therapy/methods , Gene Expression , Genome, Human/genetics , Gene Expression Regulation , Epigenomics/trends , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/therapeutic use , Genetic Diseases, Inborn/therapy , Neoplasms/therapy
5.
Journal of Integrative Medicine ; (12): 515-525, 2021.
Article in English | WPRIM | ID: wpr-922523

ABSTRACT

OBJECTIVE@#Plant-derived cytotoxic transgene expression, such as trichosanthin (tcs), regulated by recombinant adeno-associated virus (rAAV) vector is a promising cancer gene therapy. However, the cytotoxic transgene can hamper the vector production in the rAAV producer cell line, human embryonic kidney (HEK293) cells. Here, we explored microRNA-122 (miR122) and its target sequence to limit the expression of the cytotoxic gene in the rAAV producer cells.@*METHODS@#A miR122 target (122T) sequence was incorporated into the 3' untranslated region of the tcs cDNA sequence. The firefly luciferase (fluc) transgene was used as an appropriate control. Cell line HEK293-mir122 was generated by the lentiviral vector-mediated genome integration of the mir122 gene in parental HEK293 cells. The effects of miR122 overexpression on cell growth, transgene expression, and rAAV production were determined.@*RESULTS@#The presence of 122T sequence significantly reduced transgene expression in the miR122-enriched Huh7 cell line (in vitro), fresh human hepatocytes (ex vivo), and mouse liver (in vivo). Also, the normal liver physiology was unaffected by delivery of 122T sequence by rAAV vectors. Compared with the parental cells, the miR122-overexpressing HEK293-mir122 cell line showed similar cell growth rate and expression of transgene without 122T, as well as the ability to produce liver-targeting rAAV vectors. Fascinatingly, the yield of rAAV vectors carrying the tcs-122T gene was increased by 77.7-fold in HEK293-mir122 cells. Moreover, the tcs-122T-containing rAAV vectors significantly reduced the proliferation of hepatocellular carcinoma cells without affecting the normal liver cells.@*CONCLUSION@#HEK293-mir122 cells along with the 122T sequence provide a potential tool to attenuate the cytotoxic transgene expression, such as tcs, during rAAV vector production.


Subject(s)
Animals , Dependovirus/genetics , Genetic Therapy , Genetic Vectors/genetics , HEK293 Cells , Humans , Mice , MicroRNAs/genetics , Trichosanthin
6.
Journal of Experimental Hematology ; (6): 1676-1679, 2021.
Article in Chinese | WPRIM | ID: wpr-922316

ABSTRACT

β-thalassemia is a monogenetic inherited hemolytic anemia, which results in a series of pathophysiological changes due to partial or complete inhibition of the synthesis of β-globin chain. The curative therapy for this disease is to reconstitute hematopoiesis, and transplantation with genetically modified autologous hematopoietic stem cells can avoid the major difficulties of traditional allogeneic hematopoietic stem cell transplantation,such as HLA matching and immune rejection. β-thalassemia gene therapy strategies mainly include gene integration and genome editing. The former relies on the development of lentiviral vectors and adds a fully functional HBB gene to the chromosome; the latter rapidly develops with the research of specific nuclease which can repair the HBB gene in situ. In this review, the latest progress of the two strategies in gene therapy of β-thalassemia is summarized.


Subject(s)
Gene Editing , Genetic Therapy , Genetic Vectors , Humans , beta-Globins/genetics , beta-Thalassemia/therapy
7.
Article in English | WPRIM | ID: wpr-880727

ABSTRACT

Since it was first recognized in bacteria and archaea as a mechanism for innate viral immunity in the early 2010s, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) has rapidly been developed into a robust, multifunctional genome editing tool with many uses. Following the discovery of the initial CRISPR/Cas-based system, the technology has been advanced to facilitate a multitude of different functions. These include development as a base editor, prime editor, epigenetic editor, and CRISPR interference (CRISPRi) and CRISPR activator (CRISPRa) gene regulators. It can also be used for chromatin and RNA targeting and imaging. Its applications have proved revolutionary across numerous biological fields, especially in biomedical and agricultural improvement. As a diagnostic tool, CRISPR has been developed to aid the detection and screening of both human and plant diseases, and has even been applied during the current coronavirus disease 2019 (COVID-19) pandemic. CRISPR/Cas is also being trialed as a new form of gene therapy for treating various human diseases, including cancers, and has aided drug development. In terms of agricultural breeding, precise targeting of biological pathways via CRISPR/Cas has been key to regulating molecular biosynthesis and allowing modification of proteins, starch, oil, and other functional components for crop improvement. Adding to this, CRISPR/Cas has been shown capable of significantly enhancing both plant tolerance to environmental stresses and overall crop yield via the targeting of various agronomically important gene regulators. Looking to the future, increasing the efficiency and precision of CRISPR/Cas delivery systems and limiting off-target activity are two major challenges for wider application of the technology. This review provides an in-depth overview of current CRISPR development, including the advantages and disadvantages of the technology, recent applications, and future considerations.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Crops, Agricultural/genetics , Gene Editing/methods , Genetic Therapy , Humans , Nobel Prize , Plant Breeding
8.
Article in Chinese | WPRIM | ID: wpr-880127

ABSTRACT

Sickle cell disease (SCD) is a single gene genetic disease, which seriously threatens the life span and quality of patients. On the basis of the pathogenesis of SCD and the alternative therapy based on fetal hemoglobin F (HbF), the research progress of transcription factors involved in the regulation of HbF gene expression, such as BCL11A, ZBTB7A, KLF-1, c-MYB and SOX6, as well as the application of CRISPR / Cas9, TALEN, zinc finger nuclease and other gene editing technologies in this field has been made, providing a solid theoretical basis for the exploration of new treatment schemes for β- like hemoglobin diseases, such as sickle cell disease and β- thalassemia.


Subject(s)
Anemia, Sickle Cell/therapy , Cell Line, Tumor , DNA-Binding Proteins , Fetal Hemoglobin/genetics , Genetic Therapy , Humans , Repressor Proteins/genetics , Transcription Factors
9.
Braz. dent. j ; 31(6): 634-639, Nov.-Dec. 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1132353

ABSTRACT

Abstract Micro-RNA-221(miR-221) is one of oncogenic miRNAs that plays a vital role in the development and progression of oral cancers. The aim of this study is to introduce a new gene therapy for oral squamous cell carcinoma by blocking the expression of oncogenic miR-221 by its inhibitor. The present work was performed on squamous cell carcinoma cell line SCC-25 and anti-miR-221 was delivered to the cells using an ultrasound micro bubbles. Assessment of the effect of miR-221 inhibitor on SCC-25 cells was done using MTT assay, cell cycle analysis and apoptosis detection. In addition, reverse transcription-polymerase chain reaction was also used to detect the expression -miR-221 and its target genes. Using ANOVA, statistical analysis of the results showed significant inhibition of cell viability with and induction of cell apoptosis of SCC-25 cell line after transfection. Moreover, the expression of miR-221, Epidermal growth factor receptor (EGFR) and CDKNIB/p27 were downregulated without significant difference. Transfection of SCC-25 by inhibitor of miR-221 resulting in blockage of its expression leading to arresting of tumor growth. These results proved the effective role of micro-RNA inhibitors as novel therapeutic agent for oral cancers.


Resumo Micro-RNA-221 (miR-221) é um dos miRNAs oncogênicos que desempenham um papel vital no desenvolvimento e progressão de carcinomas orais. O objetivo deste estudo é apresentar uma nova terapia gênica para o carcinoma epidermóide oral por meio do bloqueio da expressão do miR-221 oncogênico por seu inibidor. O presente trabalho foi realizado na linhagem de células de carcinoma de células escamosas SCC-25 e o anti-miR-221 foi administrado às células usando micro-bolhas de ultrassom. A avaliação do efeito do inibidor miR-221 em células SCC-25 foi feita usando ensaio de MTT, análise do ciclo celular e detecção de apoptose. Além disso, a reação em cadeia da polimerase com transcrição reversa também foi usada para detectar a expressão -miR-221 e seus genes-alvo. Usando ANOVA, a análise estatística dos resultados mostrou inibição significativa da viabilidade celular e indução da apoptose celular da linhagem celular SCC-25 após a transfecção. Além disso, a expressão de miR-221, receptor do fator de crescimento epidérmico (EGFR) e CDKNIB/p27 foram regulados para baixo sem diferença significativa. A transfecção de SCC-25 por inibidor de miR-221 resultou no bloqueio de sua expressão, levando à interrupção do crescimento do tumor. Esses resultados comprovaram o papel eficaz dos inibidores de micro-RNA como novo agente terapêutico para carcinomas orais.


Subject(s)
Humans , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/therapy , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , MicroRNAs/therapeutic use , Mouth Neoplasms/therapy , Genetic Therapy , Apoptosis , Cell Line, Tumor , Cell Proliferation
10.
Rev. colomb. cardiol ; 27(4): 294-302, jul.-ago. 2020. tab, graf
Article in Spanish | LILACS, COLNAL | ID: biblio-1289228

ABSTRACT

Resumen Objetivo: describir el estado del arte del marcapasos biológico y las perspectivas para crear tejido cardíaco de marcapasos utilizando modernas tecnologías genéticas y de ingeniería de tejidos. Métodos: revisión sistemática de la literatura. Resultados: los marcapasos se han convertido en el tratamiento primordial para cierto tipo de arritmias o bloqueos avanzados sintomáticos. Somos testigos de mejoras continuas en la tecnología del dispositivo, con avances en el diseño del cable, el tamaño del generador, la longevidad de la batería y los algoritmos de software que se han traducido en dispositivos más pequeños con funcionalidad mejorada. En la actualidad existen muchos sistemas implantables de cardioestimulación capaces de reemplazar la función de los marcapasos fisiológicos (seno y nódulos aurículo-ventriculares) que incluyen los recientemente desarrollados marcapasos secuenciales y autoprogramables. En la última década la investigación ha confirmado que el marcapasos biológico se puede crear mediante la terapia génica y la terapia celular. Hoy existen dos enfoques para construir marcapasos biológicos: uno es para introducir genes de marcapasos en células madre mesenquimales, y el otro es para inducir células madre pluripotentes en las células del nódulo sinoauricular. Conclusiones: los marcapasos biológicos, actualmente en la etapa preclínica, podrían ser una alternativa a los dispositivos electrónicos para pacientes seleccionados en el futuro.


Abstract Objective: To describe the state of the art of biological pacemakers and the perspectives for creating cardiac pacing tissue using modern genetic and tissue engineering technologies. Methods: A systematic review of the literature. Results: Pacemakers have become the first line treatment for certain types of arrhythmias and advanced symptomatic blocks. We are witnessing continuous improvements in the technology of the device, with advances in the design of the cable, the size of the generator, the longevity of the battery, as well as the software algorithms that have led to smaller devices with improved functions. There are currently many cardiac stimulation implantable systems capable of replacing the function of physiological pacemakers systems (sinus and atrial-ventricular nodes) that include the recently developed sequential and self-programmable pacemakers. In the last ten years or so, studies have confirmed that biological pacemakers can be created using gene therapy and cell therapy. There are currently to main efforts to construct biological pacemakers. One is to introduce pacemaker genes in mesenchymal stem cells, and the other is to introduce pluripotent stem cells in cells of the sinoatrial node. Conclusions: Biological pacemakers, currently in the pre-clinical stage, could be an alternative to the electronic devices for selected patients in the future.


Subject(s)
Humans , Pacemaker, Artificial , Stem Cells , Cell- and Tissue-Based Therapy , Genetic Therapy , Tissue Engineering
11.
Braz. j. med. biol. res ; 53(3): e8876, 2020. graf
Article in English | LILACS | ID: biblio-1089338

ABSTRACT

The immune stimulatory and anti-neoplastic functions of type I interferon have long been applied for the treatment of melanoma. However, the systemic application of high levels of this recombinant protein is often met with toxicity. An approach that provides localized, yet transient, production of type I interferon may overcome this limitation. We propose that the use of mesenchymal stem cells (MSCs) as delivery vehicles for the production of interferon-β (IFNβ) may be beneficial when applied together with our cancer gene therapy approach. In our previous studies, we have shown that adenovirus-mediated gene therapy with IFNβ was especially effective in combination with p19Arf gene transfer, resulting in immunogenic cell death. Here we showed that MSCs derived from mouse adipose tissue were susceptible to transduction with adenovirus, expressed the transgene reliably, and yet were not especially sensitive to IFNβ production. MSCs used to produce IFNβ inhibited B16 mouse melanoma cells in a co-culture assay. Moreover, the presence of p19Arf in the B16 cells sensitizes them to the IFNβ produced by the MSCs. These data represent a critical demonstration of the use of MSCs as carriers of adenovirus encoding IFNβ and applied as an anti-cancer strategy in combination with p19Arf gene therapy.


Subject(s)
Animals , Male , Rabbits , Melanoma, Experimental/therapy , Interferon-beta/metabolism , Cyclin-Dependent Kinase Inhibitor p16/administration & dosage , Mesenchymal Stem Cells/metabolism , Transduction, Genetic , Melanoma, Experimental/metabolism , Genetic Therapy , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Mice, Inbred C57BL
12.
Clinics ; 75: e1530, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089607

ABSTRACT

OBJECTIVE: Heart failure is a progressive and debilitating disease. Intracoronary sarcoplasmic reticulum calcium-ATPase gene therapy may improve the function of cardiac muscle cells. This study aimed to test the hypothesis that intracoronary sarcoplasmic reticulum calcium-ATPase gene therapy can improve outcomes and reduce the number of recurrent and terminal events in advanced heart failure patients with reduced ejection fraction. METHODS: A total of 768 heart failure patients with reduced ejection fraction and New York Heart Association classification II to IV were included in this prospective cohort study. Patients either underwent intracoronary sarcoplasmic reticulum calcium-ATPase gene therapy (CA group, n=384) or received oral placebo (PA group; n=384). Data regarding recurrent and terminal event(s), treatment-emergent adverse effects, and outcome measures were collected and analyzed. RESULTS: After a follow-up period of 18 months, intracoronary sarcoplasmic reticulum calcium-ATPase gene therapy reduced the number of hospital admissions (p=0.001), ambulatory treatments (p=0.0004), and deaths (p=0.024). Additionally, intracoronary sarcoplasmic reticulum calcium-ATPase gene therapy improved the left ventricular ejection fraction (p<0.0001) and Kansas City Cardiomyopathy Questionnaire score (p<0.0001). The number of recurrent and terminal events/patients were higher in the PA group than in the CA group after the follow-up period of 18 months (p=0.015). The effect of the intracoronary sarcoplasmic reticulum calcium-ATPase gene therapy was independent of the confounding variables. No new arrhythmias were reported in the CA group. CONCLUSIONS: Intracoronary sarcoplasmic reticulum calcium-ATPase gene therapy reduces the number of recurrent and terminal events and improves the clinical course of advanced heart failure patients with reduced ejection fraction.


Subject(s)
Humans , Male , Female , Sarcoplasmic Reticulum , Heart Failure , Stroke Volume , Genetic Therapy , Calcium , Prospective Studies , Ventricular Function, Left , Sarcoplasmic Reticulum Calcium-Transporting ATPases
13.
Article in Chinese | WPRIM | ID: wpr-826328

ABSTRACT

Ultrasound contrast agent microbubbles combined with low frequency ultrasound named as low-frequency ultrasound-targeted microbubble destruction technology has become an effective and non-invasive anti-tumor therapy for deep tumors.It can enhance the efficacies of chemotherapy,gene therapy,immunotherapy,and anti-angiogenic therapy by improving cell membrane permeability and destroying tumor neovasculature.It can be applied to sonodynamic therapy and realize multimodal synergistic therapy on the basis of nanoparticles,which increases the anti-tumor efficiency and offers a promising target therapy for tumors.


Subject(s)
Contrast Media , Genetic Therapy , Humans , Microbubbles , Neoplasms , Ultrasonography
15.
Chinese Journal of Biotechnology ; (12): 2707-2718, 2020.
Article in Chinese | WPRIM | ID: wpr-878523

ABSTRACT

Alzheimer's disease (AD) and Parkinson's disease (PD) are common neurodegenerative diseases in human. The pathogenesis of AD and PD is complex, and the current drugs and surgical treatments have not successfully alleviated or terminated the progression of the diseases. The lentiviral vector (LV) is a retroviral vector. In recent years, LV mediated gene therapy has been a hotspot to study the mechanisms of human disease and clinical drug discovery. This review summarizes the recent progresses in the treatment of AD and PD by the application of LV, and offers a prospect for its application.


Subject(s)
Alzheimer Disease/therapy , Genetic Therapy , Humans , Parkinson Disease/therapy
16.
Protein & Cell ; (12): 707-722, 2020.
Article in English | WPRIM | ID: wpr-828750

ABSTRACT

The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.


Subject(s)
Adoptive Transfer , Alveolar Epithelial Cells , Pathology , Animals , Apoptosis , Betacoronavirus , Body Fluids , Metabolism , CD4-Positive T-Lymphocytes , Allergy and Immunology , Clinical Trials as Topic , Coinfection , Therapeutics , Coronavirus Infections , Allergy and Immunology , Disease Models, Animal , Endothelial Cells , Pathology , Extracorporeal Membrane Oxygenation , Genetic Therapy , Methods , Genetic Vectors , Therapeutic Uses , Humans , Immunity, Innate , Inflammation Mediators , Metabolism , Lung , Pathology , Mesenchymal Stem Cell Transplantation , Methods , Mesenchymal Stem Cells , Physiology , Multiple Organ Failure , Pandemics , Pneumonia, Viral , Allergy and Immunology , Respiratory Distress Syndrome , Allergy and Immunology , Pathology , Therapeutics , Translational Medical Research
17.
Protein & Cell ; (12): 707-722, 2020.
Article in English | WPRIM | ID: wpr-828586

ABSTRACT

The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.


Subject(s)
Adoptive Transfer , Alveolar Epithelial Cells , Pathology , Animals , Apoptosis , Betacoronavirus , Body Fluids , Metabolism , CD4-Positive T-Lymphocytes , Allergy and Immunology , Clinical Trials as Topic , Coinfection , Therapeutics , Coronavirus Infections , Allergy and Immunology , Disease Models, Animal , Endothelial Cells , Pathology , Extracorporeal Membrane Oxygenation , Genetic Therapy , Methods , Genetic Vectors , Therapeutic Uses , Humans , Immunity, Innate , Inflammation Mediators , Metabolism , Lung , Pathology , Mesenchymal Stem Cell Transplantation , Methods , Mesenchymal Stem Cells , Physiology , Multiple Organ Failure , Pandemics , Pneumonia, Viral , Allergy and Immunology , Respiratory Distress Syndrome , Allergy and Immunology , Pathology , Therapeutics , Translational Medical Research
18.
Protein & Cell ; (12): 707-722, 2020.
Article in English | WPRIM | ID: wpr-827023

ABSTRACT

The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.


Subject(s)
Adoptive Transfer , Alveolar Epithelial Cells , Pathology , Animals , Apoptosis , Betacoronavirus , Body Fluids , Metabolism , CD4-Positive T-Lymphocytes , Allergy and Immunology , Clinical Trials as Topic , Coinfection , Therapeutics , Coronavirus Infections , Allergy and Immunology , Disease Models, Animal , Endothelial Cells , Pathology , Extracorporeal Membrane Oxygenation , Genetic Therapy , Methods , Genetic Vectors , Therapeutic Uses , Humans , Immunity, Innate , Inflammation Mediators , Metabolism , Lung , Pathology , Mesenchymal Stem Cell Transplantation , Methods , Mesenchymal Stem Cells , Physiology , Multiple Organ Failure , Pandemics , Pneumonia, Viral , Allergy and Immunology , Respiratory Distress Syndrome , Allergy and Immunology , Pathology , Therapeutics , Translational Medical Research
19.
Int. j. morphol ; 37(4): 1564-1571, Dec. 2019. tab
Article in Spanish | LILACS | ID: biblio-1040170

ABSTRACT

Las glándulas salivales humanas pueden ser gravemente lesionadas por la radioterapia utilizada contra neoplasias de cabeza y cuello, produciendo hiposialia y xerostomía, las cuales afectan la salud oral y sistémica, mermando la calidad de vida de la persona. Los tratamientos convencionales actuales están diseñados para disminuir los síntomas, sin actuar sobre los cambios fisiopatológicos que se dan a nivel glandular. Esta revisión intenta analizar aquellas terapias preventivas y/o curativas que están desarrollándose en el campo biomolecular y que tienen un futuro prometedor por sus características innovadoras: terapia génica, terapia con células madre y terapia con factores de crecimiento. Se evidencia un aporte adicional de la nanotecnología, la cual está mejorando las vías de aplicación de los tratamientos.


Human salivary glands can be seriously injured by the radiotherapy used against head and neck neoplasms, producing hyposialia and xerostomy, which affect oral and systemic health, diminishing the person's quality of life. Current conventional treatments are designed to reduce symptoms, without acting on the pathophysiological changes that occur at the glandular level. This review attempts to analyze those preventive and /or curative therapies that are developing in the biomolecular field and that have a promising future due to their innovative features: Gene therapy, stem cell therapy and growth factor therapy. An additional contribution of nanotechnology is evident, which is improving the routes of treatment application.


Subject(s)
Humans , Radiotherapy/adverse effects , Salivary Gland Diseases/prevention & control , Stem Cells/physiology , Genetic Therapy/methods , Intercellular Signaling Peptides and Proteins/therapeutic use , Radiation Injuries/prevention & control , Radiation-Protective Agents/therapeutic use , Salivary Gland Diseases/therapy , Salivary Glands/radiation effects , Xerostomia/prevention & control , Nanotechnology
20.
Medicina (B.Aires) ; 79(6): 493-501, dic. 2019. ilus, tab
Article in Spanish | LILACS | ID: biblio-1056758

ABSTRACT

En los ó;ºltimos aó;±os la terapia gó;©nica se ha posicionado como una opció;n real y segura en el desarrollo de alternativas terapó;©uticas para la cura y la prevenció;n de diferentes enfermedades. Consiste en la inserció;n de material genó;©tico en un tejido o có;©lula defectuosa, mediante el uso de un vector. Existen varias consideraciones para seleccionar el vector más apropiado, incluyendo el potencial de unió;n y entrada a la có;©lula diana, la capacidad de transferencia del material genó;©tico al nó;ºcleo, la habilidad de expresió;n del inserto y la ausencia de toxicidad. En el panorama actual, los vectores virales más utilizados son los derivados de los virus adenoasociados (AAV). Características como su bioseguridad, baja toxicidad y tropismo selectivo, han posibilitado su evaluació;n como opció;n terapó;©utica en un amplio nó;ºmero de enfermedades monogó;©nicas o complejas. A pesar de sus ventajas, los vectores AAV presentan inconvenientes, siendo el más importante la respuesta inmune del paciente al vector, especialmente la respuesta mediada por anticuerpos neutralizantes (NAb). Los NAb disminuyen la transducció;n del vector e impiden la expresió;n del gen que transporta, limitando su aplicació;n clínica. Por lo tanto, identificar y cuantificar la presencia y actividad de los NAbs, es el primer paso en cualquier protocolo de terapia gó;©nica con vectores AAV. La presencia de NAb depende principalmente de la exposició;n al virus en la naturaleza y varía drásticamente segó;ºn edad, localizació;n geográfica y estado de salud de la persona evaluada.


In recent years, gene therapy has been positioned as a real and safe option in the development of therapeutic alternatives for the cure and prevention of different diseases. It consists in the insertion of genetic material in a defective tissue or cell, through the use of a vector. There are several considerations for selecting the most appropriate vector, including the potential for binding and entry to the target cell, the ability of the genetic material to transfer to the nucleus, the ability to express the insert, and the absence of toxicity. In the current scenario, the most commonly used viral vectors are those derived from adeno-associated viruses (AAV). Characteristics such as biosafety, low toxicity and selective tropism have enabled its evaluation as a therapeutic option in many monogenic or complex diseases. Despite their advantages, AAV vectors have drawbacks, the most important being the patient’s immune response to the vector, especially the response mediated by neutralizing antibodies (NAb). NAbs decrease the transduction of the vector and prevent the expression of the gene it transports, limiting its clinical application. Therefore, identifying and quantifying the presence and activity of NAbs is the first step in any gene therapy protocol with AAV vectors. The presence of NAbs depends mainly on exposure to the virus in nature and varies drastically according to age, geographic location and health status of the person evaluated.


Subject(s)
Humans , Male , Female , Genetic Therapy/methods , Dependovirus/genetics , Dependovirus/immunology , Parvoviridae Infections/genetics , Parvoviridae Infections/immunology , Parvoviridae Infections/virology , Antibodies, Neutralizing/analysis , Serogroup , Genetic Vectors , Antibodies, Viral/analysis
SELECTION OF CITATIONS
SEARCH DETAIL