Unable to write in log file ../../bases/logs/gimorg/logerror.txt Search | Global Index Medicus
Show: 20 | 50 | 100
Results 1 - 20 de 1.357
Braz. J. Pharm. Sci. (Online) ; 58: e19608, 2022. tab, graf
Article in English | LILACS | ID: biblio-1383987


Abstract Nanobubbles are nanometer size bubbles having different constituents of varying physicochemical characteristic for the inner core and outer shell. Nanobubbles are mainly fabricated to improve the stability, bioavailability and improve the biodistribution of the delivered drug to the specific targeted site. Their small sizes bubbles allow the possibility of extravasation from blood vessels into the surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. Nanobubbles are developing as important contrast agents for imaging and carriers for drug delivery at targeted region. Sonication is the primary method for preparation of nanobubbles followed by thin-layer evaporation, high shear emulsification, mechanical agitation and coacervation or coalescence. With exposure to ultrasound/extracorporeal shock waves, the drug is liberated from the nanobubbles into the target cells. This review paper is an effort to reveal the different formulation development techniques briefly and varying shell and core content for developing nanobubbles.

Pharmaceutical Preparations/analysis , Drug Delivery Systems/adverse effects , Blood Vessels , Genetic Therapy/adverse effects , Contrast Media/pharmacology , Methods
Article in Chinese | WPRIM | ID: wpr-939698


OBJECTIVE@#To provide a research basis for a safe and effective cell therapy for β-thalassemia through optimization of HS4 region of the third generation lentiviral vector for stable expression of β-globin.@*METHODS@#The human β-globin HS4 region in the third generation lentiviral expression vector was optimized to construct the lenti-HBB, and the transcription and translation of β-globin gene were analyzed by RT-PCR and Western blot after the transduction of lenti-HBB in MEL cell line. Furthermore, the erythroid differentiation of CD34+ cells which were transduced lentiviral virus carrying human β-globin from normal human umbilical cord blood cells and peripheral blood cells of patients with β-thalassemia major were confirmed by colony formation assay, cell smear assay and flow cytometry. The safety and effectiveness of the optimized lenti-HBB were verified by NSG mouse in vivo test.@*RESULTS@#The human β-globin was expressed stably in the MEL cells, and CD34+ cells from health umbilical cord blood as well as PBMC from patient with β-thalassemia major transduced with lenti-HBB could be differentiated to mature red blood cells. The β-globin expression and differentiation in CD34+ cells were demonstrated successfully in the NSG mouse for about 35 months after post-transplant.@*CONCLUSION@#Stable β-globin expression through the optimization of HS4 from CD34+ in the third generation lentiviral vector is safe and effective for patients with severe β-thalassemia and other β-globin abnormal diseases.

Animals , Genetic Therapy , Genetic Vectors , Humans , Lentivirus/genetics , Leukocytes, Mononuclear , Mice , beta-Globins/genetics , beta-Thalassemia/therapy
Arq. Asma, Alerg. Imunol ; 5(3): 246-254, jul.set.2021. ilus
Article in Portuguese | LILACS | ID: biblio-1399343


As síndromes autoinflamatórias associadas à criopirina (CAPS) compreendem um grupo espectral de doenças raras autoinflamatórias. Todas estas doenças estão relacionadas ao inflamassoma NLRP3, sendo que de 50-60% dos pacientes apresentam mutações ao longo do gene NLRP3. Clinicamente, febre recorrente associada à urticária neutrofílica e outros sintomas sistêmicos são o grande marco clínico, comum a todo o espectro. O bloqueio da interleucina-1 trouxe grande alívio ao tratamento destas desordens, mas variações na resposta clínica podem ser observadas, principalmente nos espectros mais graves. Neste trabalho os autores trazem uma revisão do estado da arte das doenças autoinflamatórias CAPS. Foi realizado levantamento de literatura e, ao final, 49 artigos restaram como base para construção do texto final. O trabalho traz de forma narrativa os principais pontos relacionados a imunofisiopatologia, manifestação clínica, diagnóstico, tratamento, complicações e novas armas diagnósticas, e terapia gênica.

Cryopyrin-associated periodic syndromes (CAPS) comprise a spectrum of rare autoinflammatory disorders. They are all related to the NLRP3 inflammasome, and 50-60% of the patients harbor mutations along the NLRP3 gene. Clinically, recurrent fever associated with neutrophilic urticaria and other systemic symptoms are a hallmark of all the disorders in the spectrum. Biologic drugs that can block interleukin-1 were a milestone for the treatment of such rare diseases, although variability in clinical response to this therapeutic intervention were observed, especially in those affected by severe phenotypes. In this paper, the authors provide a state-of-the-art review of CAPS. A literature search was performed and, finally, 49 articles remained for the construction of the final manuscript. The article presents a narrative review focused on the topics related to immune pathophysiology, clinical manifestations, diagnosis, treatment, complications and new therapeutic options, and gene therapy.

Humans , Genetic Therapy , Rare Diseases , Cryopyrin-Associated Periodic Syndromes , Patients , Phenotype , Relapsing Fever , Signs and Symptoms , Therapeutics , Urticaria , Biological Products , Interleukin-1 , PubMed , Diagnosis
Article in Spanish | LILACS, CUMED | ID: biblio-1289427


Introducción: La leucemia linfoide crónica es un trastorno linfoproliferativo caracterizado por la acumulación de linfocitos pequeños de aspecto maduro en sangre periférica, médula ósea y tejidos linfoides con un período de vida prolongado. Presenta una gran variabilidad clínica y genética. Objetivo: Describir los aspectos citogenéticos y moleculares de la leucemia linfoide crónica. Métodos: Se realizó revisión de la literatura en inglés y español, a través del sitio web PubMed y el motor de búsqueda Google académico, de artículos publicados en los últimos 5 años. Se hizo un análisis y resumen de la bibliografía revisada. Desarrollo: En la leucemia linfoide crónica están presentes alteraciones citogenéticas frecuentes como la deleción de los cromosomas 13q, 11q y 17p, así como la trisomía 12, que unido al conocimiento del estado mutacional del gen de la región variable de la cadena pesada de la inmunoglobulina, y otras mutaciones somáticas en diferentes genes, así como a variables clínicas y de laboratorio permiten la estratificación pronóstica de los pacientes. Conclusiones: El diagnóstico a través de los estudios citogenéticos convencionales estimulados con mitógenos, la hibridación in situ por fluorescencia y la secuenciación génica permite una mayor comprensión de la biología de la enfermedad, así como tomar decisiones terapéuticas más personalizadas(AU)

Introduction: Chronic B lymphoid leukemia is a lymphoproliferative disorder characterized by the accumulation of small, mature-looking lymphocytes in peripheral blood, bone marrow and lymphoid tissues with a long life span. It has great clinical and genetic variability. Objective: To describe the cytogenetic and molecular aspects of the disease. Methods: A review of the literature in English and in Spanish was carried out, in the PubMed website and using the search engine of Google Scholar, for articles published in the last five years. We performed analysis and summary of the reviewed bibliography. Development: In chronic lymphoid leukemia, frequent cytogenetic alterations are present such as deletion of chromosomes 13q, 11q and 17p, as well as trisomy 12, which together with the knowledge of the mutational status of the gene for the variable region of the immunoglobulin heavy chain and other somatic mutations in different genes, as well as clinical and laboratory variables allows prognostic stratification of patients. Conclusions: Diagnosis through conventional mitogen-stimulated cytogenetic studies, fluorescence in situ hybridization and gene sequencing allow a better understanding of the biology of the disease, as well as making more personalized therapeutic decisions(AU)

Humans , Biology , Genetic Therapy , Leukemia, Lymphoid/genetics , In Situ Hybridization , Cytogenetics , Lymphoproliferative Disorders , Mutation
Arq. bras. oftalmol ; 84(3): 282-296, May-June 2021. tab, graf
Article in English | LILACS | ID: biblio-1248965


ABSTRACT This review is intended to describe the therapeutic approaches for corneal blindness, detailing the steps and elements involved in corneal wound healing. It also presents the limitations of the actual surgical and pharmacological strategies used to restore and maintain corneal transparency in terms of long-term survival and geographic coverage. In addition, we critically review the perspectives of anabolic agents, including vitamin A, hormones, growth factors, and novel promitotic and anti-inflammatory modulators, to assist corneal wound healing. We discuss the studies involving nanotechnology, gene therapy, and tissue reengineering as potential future strategies to work solely or in combination with corneal surgery to prevent or revert corneal blindness.(AU)

RESUMO O presente trabalho traz uma revisão das abordagens terapêuticas para a cegueira da córnea. O estudo detalha as etapas e os elementos envolvidos na cicatrização da córnea. Ele mostra as limitações das estratégias cirúrgicas e farmacológicas usadas para restaurar e manter a transparência da córnea em termos de sobrevida a longo prazo e alcance geográfico. As perspectivas dos agentes anabólicos, incluindo vitamina A, hormônios, fatores de crescimento e novos moduladores pró-mitóticos e anti-inflamatórios para auxiliar a cicatrização da ferida na córnea, são revisadas criticamente. Aqui, apresentamos estudos envolvendo nanotecnologia, terapia gênica e reengenharia de tecidos como possíveis estratégias futuras para atuar de maneira isolada ou combinada com a cirurgia da córnea para prevenir ou reverter a cegueira corneana.(AU)

Humans , Blindness/prevention & control , Blindness/therapy , Corneal Injuries/prevention & control , Corneal Injuries/therapy , Stem Cells , Vitamin A/therapeutic use , Genetic Therapy/instrumentation , Nanotechnology/instrumentation , Intercellular Signaling Peptides and Proteins/therapeutic use , Hormones/therapeutic use , Anti-Inflammatory Agents/therapeutic use
Rev. bras. oftalmol ; 80(2): 100-106, Mar.-Apr. 2021. tab, graf
Article in English | LILACS | ID: biblio-1280105


ABSTRACT Objective: A scientometric analysis produced in ophthalmic genetics and gene therapy research is lacking. The purpose of this study is to present a holistic analysis of ophthalmic genetics literature. Methods: The data used in this study were obtained from the Web of Science (WoS) Core Collection. All published documents between 1975-2019 were included. The data exported from WoS enabled the extensive details of ophthalmic genetics related literature including countries, institutions, authors, citations and keywords. Scientometric network maps of keywords and also country and institution co-authorships were created with free software. Global contributions of the countries to the ophthalmic genetics literature were shown by a graphic. Results: The search query revealed a total of 2322 documents. Most of the documents were original articles (75.75%). USA was the leading country by producing 45.39% of all documents in ophthalmic genetics research followed by UK, Germany, China and France. Pennsylvania University was the most contributing institution in the literature (5.25%) followed by University College London and Moorfields Eye Hospital. The average citations per item was 29.4. The most used keywords over a 40-year period were 'family', 'cell', 'photoreceptor' and 'expression'. Conclusions: USA and UK dominated the ophthalmic genetics research. A substantial increase in the number of published documents in this field were observed after 2010.

RESUMO Objetivo: A literatura carece de análise cienciométrica produzida em genética oftálmica e de pesquisa em terapia genética. O objetivo deste estudo é apresentar uma análise holística da literatura genética oftálmica. Métodos: Os dados utilizados neste estudo foram obtidos na base de dados Web of Science (WoS) Core Collection. Todos os documentos publicados entre 1975 e 2019 foram incluídos na análise. Os dados exportados da WoS viabilizaram acesso a amplos detalhes da literatura relacionada à genética oftálmica, incluindo países, instituições, autores, citações e palavras-chave. Mapas de rede cienciométrica foram criados por meio de software gratuito, com base em palavras-chave e em coautorias de países e instituições. As contribuições globais dos países para a literatura sobre genética oftálmica foram apresentadas em gráfico. Resultados: a busca por pesquisas revelou um total de 2.322 documentos cuja maioria eram artigos originais (75,75%). Os EUA foram o país que mais produziu artigos sobre o tema, com 45,39% de todos os documentos em pesquisa genética oftálmica; ele foi seguido pelo Reino Unido, Alemanha, China e França. A Universidade da Pensilvânia foi a instituição que mais contribuiu para a literatura (5,25%), e foi seguida pela University College London e pelo Moorfields Eye Hospital. A média de citações por item foi de 29,4. As palavras-chave mais usadas em um período de 40 anos foram 'família', 'célula', 'fotorreceptor' e 'expressão'. Conclusões: Os EUA e o Reino Unido dominaram a pesquisa em genética oftálmica. Após 2010, observou-se um aumento substancial no número de documentos publicados nessa área.

Humans , Genetic Therapy , Bibliometrics , Eye Diseases, Hereditary , Eye Diseases/genetics , Eye Diseases/therapy , Ophthalmology/trends , Periodicals as Topic/trends , Periodicals as Topic/statistics & numerical data , Publications , Publishing/statistics & numerical data , Databases, Factual , Genomics/trends , Genetic Research
J. pediatr. (Rio J.) ; 97(supl.1): 17-23, Mar.-Apr. 2021. tab
Article in English | LILACS | ID: biblio-1250229


Abstract Objectives: To provide an overview of drug treatment, transplantation, and gene therapy for patients with primary immunodeficiencies. Source of data: Non-systematic review of the literature in the English language carried out at PubMed. Synthesis of data: The treatment of patients with primary immunodeficiencies aims to control their disease, especially the treatment and prevention of infections through antibiotic prophylaxis and/or immunoglobulin replacement therapy. In several diseases, it is possible to use specific medications for the affected pathway with control of the condition, especially in autoimmune or autoinflammatory processes associated with inborn immunity errors. In some diseases, treatment can be curative through hematopoietic stem cell transplantation (HSCT); more recently, gene therapy has opened new horizons through new technologies. Conclusions: Immunoglobulin replacement therapy remains the main therapeutic tool. Precision medicine with specific drugs for altered immune pathways is already a reality for several immune defects. Advances in the management of HSCT and gene therapy have expanded the capacity for curative treatments in patients with primary immunodeficiencies.

Humans , Hematopoietic Stem Cell Transplantation , Primary Immunodeficiency Diseases , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/therapy , Genetic Therapy
Rev. Hosp. Ital. B. Aires (2004) ; 41(1): 37-42, mar. 2021. ilus, tab
Article in Spanish | LILACS | ID: biblio-1178964


El término CRISPR, por su acrónimo en inglés refiere a Clustered Regularly Interspaced Short Palindromic Repeats, es decir, repeticiones palindrómicas cortas, agrupadas y regularmente esparcidas, por sus características en el genoma, pertenece naturalmente al sistema de defensa de bacterias y arqueas. Este ha sido adaptado biotecnológicamente para la edición del ADN de células eucariotas, incluso de células humanas. El sistema CRISPR-Cas para editar genes consta, en forma generalizada, de dos componentes: una proteína nucleasa (Cas) y un ARN guía (sgRNA). La simplicidad del complejo lo hace una herramienta molecular reprogramable capaz de ser dirigida y de editar cualquier sitio en un genoma conocido. Su principal foco son las terapias para enfermedades hereditarias monogénicas y para el cáncer. Sin embargo, además de editor de genes, la tecnología CRISPR se utiliza para edición epigenética, regulación de la expresión génica y método de diagnóstico molecular. Este artículo tiene por objetivo presentar una revisión de las aplicaciones de la herramienta molecular CRISPR-Cas, particularmente en el campo biomédico, posibles tratamientos y diagnósticos, y los avances en investigación clínica, utilizando terapia génica con CRISPR/Cas más relevantes hasta la fecha. (AU)

CRISPR are Clustered Regularly Interspaced Short Palindromic Repeats, which naturally belong to the defense system of bacteria and archaea. It has been biotechnologically adapted for editing the DNA of eukaryotic cells, including human cells. The CRISPR-Cas system for editing genes generally consists of two components, a nuclease protein (Cas) and a guide RNA (sgRNA). The simplicity of the complex makes it a reprogrammable molecular tool capable of being targeted and editing any site in a known genome. Its main focus is therapies for monogenic inherited diseases and cancer. However, in addition to gene editor, CRISPR technology is used for epigenetic editing, regulation of gene expression, and molecular diagnostic methods. This article aims to present a review of the applications of the CRISPR-Cas molecular tool, particularly in the biomedical field, possible treatments and diagnoses, and the advances in clinical research, using the most relevant CRISPR-Cas gene therapy to date. (AU)

Humans , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , CRISPR-Cas Systems/genetics , Biotechnology , Genetic Therapy/methods , Gene Expression , Genome, Human/genetics , Gene Expression Regulation , Epigenomics/trends , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/therapeutic use , Genetic Diseases, Inborn/therapy , Neoplasms/therapy
Rev. invest. clín ; 73(1): 39-51, Jan.-Feb. 2021. graf
Article in English | LILACS | ID: biblio-1289743


ABSTRACT Background: Cancer gene therapy using a nonviral vector is expected to be repeatable, safe, and inexpensive, and to have long-term effectiveness. Gene therapy using the E3 and C1 (E3C1) domain of developmental endothelial locus-1 (Del1) has been shown to improve prognosis in a mouse transplanted tumor model. Objective: In this study, we examined how this treatment affects angiogenesis in mouse transplanted tumors. Materials and methods: Mouse transplanted tumors (SCCKN human squamous carcinoma cell line) were injected locally with a nonviral plasmid vector encoding E3C1 weekly. Histochemical analysis of the transplanted tumors was then performed to assess the effects of E3C1 on prognosis. Results: All mice in the control group had died or reached an endpoint within 39 days. In contrast, one of ten mice in the E3C1 group had died by day 39, and eight of ten had died or reached an endpoint by day 120 (p < 0.01). Enhanced apoptosis in tumor stroma was seen on histochemical analyses, as was inhibited tumor angiogenesis in E3C1-treated mice. In addition, western blot analysis showed decreases in active Notch and HEY1 proteins. Conclusion: These findings indicate that cancer gene therapy using a nonviral vector encoding E3C1 significantly improved life-span by inhibiting tumor angiogenesis. (REV INVEST CLIN. 2021;73(1):39-51)

Animals , Rabbits , Calcium-Binding Proteins/therapeutic use , Carcinoma, Squamous Cell/blood supply , Carcinoma, Squamous Cell/therapy , Cell Adhesion Molecules/therapeutic use , Epidermal Growth Factor/therapeutic use , Discoidin Domain/genetics , Calcium-Binding Proteins/genetics , Tumor Cells, Cultured , Genetic Therapy , Cell Adhesion Molecules/genetics , Amino Acid Motifs , Epidermal Growth Factor/genetics , Mice, Nude , Neoplasm Transplantation , Neovascularization, Pathologic/therapy
Article in English | WPRIM | ID: wpr-880727


Since it was first recognized in bacteria and archaea as a mechanism for innate viral immunity in the early 2010s, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) has rapidly been developed into a robust, multifunctional genome editing tool with many uses. Following the discovery of the initial CRISPR/Cas-based system, the technology has been advanced to facilitate a multitude of different functions. These include development as a base editor, prime editor, epigenetic editor, and CRISPR interference (CRISPRi) and CRISPR activator (CRISPRa) gene regulators. It can also be used for chromatin and RNA targeting and imaging. Its applications have proved revolutionary across numerous biological fields, especially in biomedical and agricultural improvement. As a diagnostic tool, CRISPR has been developed to aid the detection and screening of both human and plant diseases, and has even been applied during the current coronavirus disease 2019 (COVID-19) pandemic. CRISPR/Cas is also being trialed as a new form of gene therapy for treating various human diseases, including cancers, and has aided drug development. In terms of agricultural breeding, precise targeting of biological pathways via CRISPR/Cas has been key to regulating molecular biosynthesis and allowing modification of proteins, starch, oil, and other functional components for crop improvement. Adding to this, CRISPR/Cas has been shown capable of significantly enhancing both plant tolerance to environmental stresses and overall crop yield via the targeting of various agronomically important gene regulators. Looking to the future, increasing the efficiency and precision of CRISPR/Cas delivery systems and limiting off-target activity are two major challenges for wider application of the technology. This review provides an in-depth overview of current CRISPR development, including the advantages and disadvantages of the technology, recent applications, and future considerations.

CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Crops, Agricultural/genetics , Gene Editing/methods , Genetic Therapy , Humans , Nobel Prize , Plant Breeding
Article in Chinese | WPRIM | ID: wpr-880127


Sickle cell disease (SCD) is a single gene genetic disease, which seriously threatens the life span and quality of patients. On the basis of the pathogenesis of SCD and the alternative therapy based on fetal hemoglobin F (HbF), the research progress of transcription factors involved in the regulation of HbF gene expression, such as BCL11A, ZBTB7A, KLF-1, c-MYB and SOX6, as well as the application of CRISPR / Cas9, TALEN, zinc finger nuclease and other gene editing technologies in this field has been made, providing a solid theoretical basis for the exploration of new treatment schemes for β- like hemoglobin diseases, such as sickle cell disease and β- thalassemia.

Anemia, Sickle Cell/therapy , Cell Line, Tumor , DNA-Binding Proteins , Fetal Hemoglobin/genetics , Genetic Therapy , Humans , Repressor Proteins/genetics , Transcription Factors
Journal of Integrative Medicine ; (12): 515-525, 2021.
Article in English | WPRIM | ID: wpr-922523


OBJECTIVE@#Plant-derived cytotoxic transgene expression, such as trichosanthin (tcs), regulated by recombinant adeno-associated virus (rAAV) vector is a promising cancer gene therapy. However, the cytotoxic transgene can hamper the vector production in the rAAV producer cell line, human embryonic kidney (HEK293) cells. Here, we explored microRNA-122 (miR122) and its target sequence to limit the expression of the cytotoxic gene in the rAAV producer cells.@*METHODS@#A miR122 target (122T) sequence was incorporated into the 3' untranslated region of the tcs cDNA sequence. The firefly luciferase (fluc) transgene was used as an appropriate control. Cell line HEK293-mir122 was generated by the lentiviral vector-mediated genome integration of the mir122 gene in parental HEK293 cells. The effects of miR122 overexpression on cell growth, transgene expression, and rAAV production were determined.@*RESULTS@#The presence of 122T sequence significantly reduced transgene expression in the miR122-enriched Huh7 cell line (in vitro), fresh human hepatocytes (ex vivo), and mouse liver (in vivo). Also, the normal liver physiology was unaffected by delivery of 122T sequence by rAAV vectors. Compared with the parental cells, the miR122-overexpressing HEK293-mir122 cell line showed similar cell growth rate and expression of transgene without 122T, as well as the ability to produce liver-targeting rAAV vectors. Fascinatingly, the yield of rAAV vectors carrying the tcs-122T gene was increased by 77.7-fold in HEK293-mir122 cells. Moreover, the tcs-122T-containing rAAV vectors significantly reduced the proliferation of hepatocellular carcinoma cells without affecting the normal liver cells.@*CONCLUSION@#HEK293-mir122 cells along with the 122T sequence provide a potential tool to attenuate the cytotoxic transgene expression, such as tcs, during rAAV vector production.

Animals , Dependovirus/genetics , Genetic Therapy , Genetic Vectors/genetics , HEK293 Cells , Humans , Mice , MicroRNAs/genetics , Trichosanthin
Journal of Experimental Hematology ; (6): 1676-1679, 2021.
Article in Chinese | WPRIM | ID: wpr-922316


β-thalassemia is a monogenetic inherited hemolytic anemia, which results in a series of pathophysiological changes due to partial or complete inhibition of the synthesis of β-globin chain. The curative therapy for this disease is to reconstitute hematopoiesis, and transplantation with genetically modified autologous hematopoietic stem cells can avoid the major difficulties of traditional allogeneic hematopoietic stem cell transplantation,such as HLA matching and immune rejection. β-thalassemia gene therapy strategies mainly include gene integration and genome editing. The former relies on the development of lentiviral vectors and adds a fully functional HBB gene to the chromosome; the latter rapidly develops with the research of specific nuclease which can repair the HBB gene in situ. In this review, the latest progress of the two strategies in gene therapy of β-thalassemia is summarized.

Gene Editing , Genetic Therapy , Genetic Vectors , Humans , beta-Globins/genetics , beta-Thalassemia/therapy
Braz. dent. j ; 31(6): 634-639, Nov.-Dec. 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1132353


Abstract Micro-RNA-221(miR-221) is one of oncogenic miRNAs that plays a vital role in the development and progression of oral cancers. The aim of this study is to introduce a new gene therapy for oral squamous cell carcinoma by blocking the expression of oncogenic miR-221 by its inhibitor. The present work was performed on squamous cell carcinoma cell line SCC-25 and anti-miR-221 was delivered to the cells using an ultrasound micro bubbles. Assessment of the effect of miR-221 inhibitor on SCC-25 cells was done using MTT assay, cell cycle analysis and apoptosis detection. In addition, reverse transcription-polymerase chain reaction was also used to detect the expression -miR-221 and its target genes. Using ANOVA, statistical analysis of the results showed significant inhibition of cell viability with and induction of cell apoptosis of SCC-25 cell line after transfection. Moreover, the expression of miR-221, Epidermal growth factor receptor (EGFR) and CDKNIB/p27 were downregulated without significant difference. Transfection of SCC-25 by inhibitor of miR-221 resulting in blockage of its expression leading to arresting of tumor growth. These results proved the effective role of micro-RNA inhibitors as novel therapeutic agent for oral cancers.

Resumo Micro-RNA-221 (miR-221) é um dos miRNAs oncogênicos que desempenham um papel vital no desenvolvimento e progressão de carcinomas orais. O objetivo deste estudo é apresentar uma nova terapia gênica para o carcinoma epidermóide oral por meio do bloqueio da expressão do miR-221 oncogênico por seu inibidor. O presente trabalho foi realizado na linhagem de células de carcinoma de células escamosas SCC-25 e o anti-miR-221 foi administrado às células usando micro-bolhas de ultrassom. A avaliação do efeito do inibidor miR-221 em células SCC-25 foi feita usando ensaio de MTT, análise do ciclo celular e detecção de apoptose. Além disso, a reação em cadeia da polimerase com transcrição reversa também foi usada para detectar a expressão -miR-221 e seus genes-alvo. Usando ANOVA, a análise estatística dos resultados mostrou inibição significativa da viabilidade celular e indução da apoptose celular da linhagem celular SCC-25 após a transfecção. Além disso, a expressão de miR-221, receptor do fator de crescimento epidérmico (EGFR) e CDKNIB/p27 foram regulados para baixo sem diferença significativa. A transfecção de SCC-25 por inibidor de miR-221 resultou no bloqueio de sua expressão, levando à interrupção do crescimento do tumor. Esses resultados comprovaram o papel eficaz dos inibidores de micro-RNA como novo agente terapêutico para carcinomas orais.

Humans , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/therapy , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , MicroRNAs/therapeutic use , Mouth Neoplasms/therapy , Genetic Therapy , Apoptosis , Cell Line, Tumor , Cell Proliferation
Arq. Asma, Alerg. Imunol ; 4(3): 325-331, jul.set.2020. ilus
Article in Portuguese | LILACS | ID: biblio-1382003


A deficiência de mevalonato quinase (MVK; MIM #142680; ORPHA #343) é uma doença genética, espectral, rara, associadas a mutações ao longo do gene MVK causando distúrbios na síntese do colesterol, que culminam em: inflamação sistêmica com febre, adenopatia, sintomas abdominais e outros achados clínicos. Enquanto no polo leve da doença os achados mais comuns são febres recorrentes com linfadenopatia, no polo mais grave adiciona-se o acometimento do sistema nervoso central (meningites assépticas, vasculites e atraso do desenvolvimento neuropsicomotor) e do sistema hematopoiético (síndrome de ativação macrofágica). Apesar de inúmeras terapêuticas, os bloqueadores da interleucina-1 ainda são os únicos medicamentos capazes de controlar a doença e de impedir a evolução para amiloidose. Os estudos atuais visam tentar novos tratamentos, como o transplante de células-tronco hematopoiéticas, ou mesmo a terapia gênica.

Mevalonate kinase deficiency (MVK; MIM #142680; ORPHA #343) is a rare spectral genetic disorder linked to mutations along the MVK gene leading to impaired cholesterol synthesis, clinically observed as systemic inflammation with fever, adenopathy, abdominal manifestations, and other clinical findings. While on mild forms recurrent fever with lymphadenopathy is commonly observed, severe forms add to that neurological (aseptic meningitis, vasculitis, and neuropsychomotor developmental delay) and hematopoietic involvement (macrophage activation syndrome). Despite of several therapeutic approaches, blocking interleukin-1 is the only effective method to control the disease and prevent the development of systemic amyloidosis. Ongoing studies aim to test new treatments, such as hematopoietic stem cell transplantation and gene therapy.

Humans , Immunoglobulin D , Therapeutic Approaches , Mevalonate Kinase Deficiency , Signs and Symptoms , Therapeutics , Vasculitis , Genetic Therapy , Central Nervous System , Interleukin-1 , Hematopoietic Stem Cell Transplantation , PubMed , Fever , Lymphadenopathy , Hematopoietic System , Genetic Diseases, Inborn , Amyloidosis , Inflammation , Meningitis, Aseptic
Rev. colomb. cardiol ; 27(4): 294-302, jul.-ago. 2020. tab, graf
Article in Spanish | LILACS, COLNAL | ID: biblio-1289228


Resumen Objetivo: describir el estado del arte del marcapasos biológico y las perspectivas para crear tejido cardíaco de marcapasos utilizando modernas tecnologías genéticas y de ingeniería de tejidos. Métodos: revisión sistemática de la literatura. Resultados: los marcapasos se han convertido en el tratamiento primordial para cierto tipo de arritmias o bloqueos avanzados sintomáticos. Somos testigos de mejoras continuas en la tecnología del dispositivo, con avances en el diseño del cable, el tamaño del generador, la longevidad de la batería y los algoritmos de software que se han traducido en dispositivos más pequeños con funcionalidad mejorada. En la actualidad existen muchos sistemas implantables de cardioestimulación capaces de reemplazar la función de los marcapasos fisiológicos (seno y nódulos aurículo-ventriculares) que incluyen los recientemente desarrollados marcapasos secuenciales y autoprogramables. En la última década la investigación ha confirmado que el marcapasos biológico se puede crear mediante la terapia génica y la terapia celular. Hoy existen dos enfoques para construir marcapasos biológicos: uno es para introducir genes de marcapasos en células madre mesenquimales, y el otro es para inducir células madre pluripotentes en las células del nódulo sinoauricular. Conclusiones: los marcapasos biológicos, actualmente en la etapa preclínica, podrían ser una alternativa a los dispositivos electrónicos para pacientes seleccionados en el futuro.

Abstract Objective: To describe the state of the art of biological pacemakers and the perspectives for creating cardiac pacing tissue using modern genetic and tissue engineering technologies. Methods: A systematic review of the literature. Results: Pacemakers have become the first line treatment for certain types of arrhythmias and advanced symptomatic blocks. We are witnessing continuous improvements in the technology of the device, with advances in the design of the cable, the size of the generator, the longevity of the battery, as well as the software algorithms that have led to smaller devices with improved functions. There are currently many cardiac stimulation implantable systems capable of replacing the function of physiological pacemakers systems (sinus and atrial-ventricular nodes) that include the recently developed sequential and self-programmable pacemakers. In the last ten years or so, studies have confirmed that biological pacemakers can be created using gene therapy and cell therapy. There are currently to main efforts to construct biological pacemakers. One is to introduce pacemaker genes in mesenchymal stem cells, and the other is to introduce pluripotent stem cells in cells of the sinoatrial node. Conclusions: Biological pacemakers, currently in the pre-clinical stage, could be an alternative to the electronic devices for selected patients in the future.

Humans , Pacemaker, Artificial , Stem Cells , Cell- and Tissue-Based Therapy , Genetic Therapy , Tissue Engineering
Braz. j. med. biol. res ; 53(3): e8876, 2020. graf
Article in English | LILACS | ID: biblio-1089338


The immune stimulatory and anti-neoplastic functions of type I interferon have long been applied for the treatment of melanoma. However, the systemic application of high levels of this recombinant protein is often met with toxicity. An approach that provides localized, yet transient, production of type I interferon may overcome this limitation. We propose that the use of mesenchymal stem cells (MSCs) as delivery vehicles for the production of interferon-β (IFNβ) may be beneficial when applied together with our cancer gene therapy approach. In our previous studies, we have shown that adenovirus-mediated gene therapy with IFNβ was especially effective in combination with p19Arf gene transfer, resulting in immunogenic cell death. Here we showed that MSCs derived from mouse adipose tissue were susceptible to transduction with adenovirus, expressed the transgene reliably, and yet were not especially sensitive to IFNβ production. MSCs used to produce IFNβ inhibited B16 mouse melanoma cells in a co-culture assay. Moreover, the presence of p19Arf in the B16 cells sensitizes them to the IFNβ produced by the MSCs. These data represent a critical demonstration of the use of MSCs as carriers of adenovirus encoding IFNβ and applied as an anti-cancer strategy in combination with p19Arf gene therapy.

Animals , Male , Rabbits , Melanoma, Experimental/therapy , Interferon-beta/metabolism , Cyclin-Dependent Kinase Inhibitor p16/administration & dosage , Mesenchymal Stem Cells/metabolism , Transduction, Genetic , Melanoma, Experimental/metabolism , Genetic Therapy , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Mice, Inbred C57BL
Clinics ; 75: e1530, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089607


OBJECTIVE: Heart failure is a progressive and debilitating disease. Intracoronary sarcoplasmic reticulum calcium-ATPase gene therapy may improve the function of cardiac muscle cells. This study aimed to test the hypothesis that intracoronary sarcoplasmic reticulum calcium-ATPase gene therapy can improve outcomes and reduce the number of recurrent and terminal events in advanced heart failure patients with reduced ejection fraction. METHODS: A total of 768 heart failure patients with reduced ejection fraction and New York Heart Association classification II to IV were included in this prospective cohort study. Patients either underwent intracoronary sarcoplasmic reticulum calcium-ATPase gene therapy (CA group, n=384) or received oral placebo (PA group; n=384). Data regarding recurrent and terminal event(s), treatment-emergent adverse effects, and outcome measures were collected and analyzed. RESULTS: After a follow-up period of 18 months, intracoronary sarcoplasmic reticulum calcium-ATPase gene therapy reduced the number of hospital admissions (p=0.001), ambulatory treatments (p=0.0004), and deaths (p=0.024). Additionally, intracoronary sarcoplasmic reticulum calcium-ATPase gene therapy improved the left ventricular ejection fraction (p<0.0001) and Kansas City Cardiomyopathy Questionnaire score (p<0.0001). The number of recurrent and terminal events/patients were higher in the PA group than in the CA group after the follow-up period of 18 months (p=0.015). The effect of the intracoronary sarcoplasmic reticulum calcium-ATPase gene therapy was independent of the confounding variables. No new arrhythmias were reported in the CA group. CONCLUSIONS: Intracoronary sarcoplasmic reticulum calcium-ATPase gene therapy reduces the number of recurrent and terminal events and improves the clinical course of advanced heart failure patients with reduced ejection fraction.

Humans , Male , Female , Sarcoplasmic Reticulum , Heart Failure , Stroke Volume , Genetic Therapy , Calcium , Prospective Studies , Ventricular Function, Left , Sarcoplasmic Reticulum Calcium-Transporting ATPases
J. vasc. bras ; 19: e20190059, 2020. tab, graf
Article in Portuguese | LILACS | ID: biblio-1135128


Resumo O conceito de terapia angiogênica surgiu no início da década de 90, o que pode ser feito com genes que codificam fatores de crescimento para promover a formação de novos vasos e o remodelamento de vasos colaterais. Como o procedimento dessa terapia geralmente consiste em apenas injeções locais de vetores, esse processo é pouco invasivo, rápido e de simples realização. Entretanto, desde as primeiras evidências clínicas do efeito de terapia gênica com o fator de crescimento de endotélio vascular (vascular endothelial growth factor, VEGF) vistos nos pacientes com doença arterial obstrutiva periférica até hoje, apenas dois fármacos de terapia angiogênica foram aprovados, um na Rússia e outro no Japão, o que parece um número muito pequeno diante do grande número de investimentos feitos por meio de estudos pré-clínicos e clínicos. Afinal, podemos considerar que a terapia angiogênica já é uma realidade?

Abstract The concept of angiogenic therapy emerged in the early 1990s. The method employs genes that encode growth factors to promote formation of new vessels and remodeling of collateral vessels. Since the procedure involved in this therapy usually only consists of local injections of vectors, the process is minimally invasive, quick, and simple to perform. However, since the first clinical evidence of the effects of gene therapy with vascular endothelial growth factor (VEGF) was observed in patients with peripheral artery disease, to date only two angiogenic therapy drugs have been approved, one in Russia and another in Japan, which seem a very small number, in view of the large volume of investment made in pre-clinical and clinical studies. After all, can we conclude that angiogenic therapy is a reality?

Humans , Genetic Therapy , Angiogenesis Inducing Agents , Peripheral Arterial Disease/therapy , Vascular Endothelial Growth Factor A/genetics , Extremities , Peripheral Arterial Disease/genetics , Chronic Limb-Threatening Ischemia/therapy
Protein & Cell ; (12): 707-722, 2020.
Article in English | WPRIM | ID: wpr-828750


The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.

Adoptive Transfer , Alveolar Epithelial Cells , Pathology , Animals , Apoptosis , Betacoronavirus , Body Fluids , Metabolism , CD4-Positive T-Lymphocytes , Allergy and Immunology , Clinical Trials as Topic , Coinfection , Therapeutics , Coronavirus Infections , Allergy and Immunology , Disease Models, Animal , Endothelial Cells , Pathology , Extracorporeal Membrane Oxygenation , Genetic Therapy , Methods , Genetic Vectors , Therapeutic Uses , Humans , Immunity, Innate , Inflammation Mediators , Metabolism , Lung , Pathology , Mesenchymal Stem Cell Transplantation , Methods , Mesenchymal Stem Cells , Physiology , Multiple Organ Failure , Pandemics , Pneumonia, Viral , Allergy and Immunology , Respiratory Distress Syndrome , Allergy and Immunology , Pathology , Therapeutics , Translational Research, Biomedical