Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Article in English | WPRIM | ID: wpr-939784

ABSTRACT

OBJECTIVE@#To determine whether Schisandrin B (Sch B) attenuates early brain injury (EBI) in rats with subarachnoid hemorrhage (SAH).@*METHODS@#Sprague-Dawley rats were divided into sham (sham operation), SAH, SAH+vehicle, and SAH+Sch B groups using a random number table. Rats underwent SAH by endovascular perforation and received Sch B (100 mg/kg) or normal saline after 2 and 12 h of SAH. SAH grading, neurological scores, brain water content, Evan's blue extravasation, and terminal transferase-mediated dUTP nick end-labeling (TUNEL) staining were carried out 24 h after SAH. Immunofluorescent staining was performed to detect the expressions of ionized calcium binding adapter molecule 1 (Iba-1) and myeloperoxidase (MPO) in the rat brain, while the expressions of B-cell lymphoma 2 (Bcl-2), Bax, Caspase-3, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis-associated specklike protein containing the caspase-1 activator domain (ASC), Caspase-1, interleukin (IL)-1β, and IL-18 in the rat brains were detected by Western blot.@*RESULTS@#Compared with the SAH group, Sch B significantly improved the neurological function, reduced brain water content, Evan's blue content, and apoptotic cells number in the brain of rats (P<0.05 or P<0.01). Moreover, Sch B decreased SAH-induced expressions of Iba-1 and MPO (P<0.01). SAH caused the elevated expressions of Bax, Caspase-3, NLRP3, ASC, Caspase-1, IL-1β, and IL-18 in the rat brain (P<0.01), all of which were inhibited by Sch B (P<0.01). In addition, Sch B increased the Bcl-2 expression (P<0.01).@*CONCLUSION@#Sch B attenuated SAH-induced EBI, which might be associated with the inhibition of neuroinflammation, neuronal apoptosis, and the NLRP3 inflammatory signaling pathway.


Subject(s)
Animals , Apoptosis , Brain/pathology , Brain Injuries/pathology , Caspase 3/metabolism , Cyclooctanes , Evans Blue , Inflammasomes/metabolism , Interleukin-18/metabolism , Lignans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Polycyclic Compounds , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/drug therapy , Water , bcl-2-Associated X Protein/metabolism
2.
Article in Chinese | WPRIM | ID: wpr-935785

ABSTRACT

Objective: To explore the mechanism of reactive oxygen species/thioredoxin-interacting protein/nucleotide-binding oligomerization domain-like receptor 3 (ROS/TXNIP/NLRP3) pathway in the skin injury of trichloroethylene (TCE) sensitized mice. Methods: In August 2020, 40 female BALB/c mice were randomly divided into control group (n=5) , solvent control group (n=5) , TCE treatment group (n=15) and TCE+(2-(2, 2, 6, 6-Tetrameyhylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (Mito TEMPO) treatment group (n=15) . The TCE sensitization model was established. Mice in the TCE treatment group and TCE+Mito TEMPO treatment group were divided into the sensitized positive group and the sensitized negative group according to the skin erythema and edema reactions on the back of the mice 24 h after the last stimulation. The mice were sacrificed 72 h after the last stimulation, the back skin of the mice was taken, and the skin lesions were observed. Immunohistochemistry (IHC) was used to detect the expression level of NLRP3, and the Western Blot was performed to detect the expression levels of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC) , cysteinyl aspartate specific proteinase 1 (Caspase 1) , Interleukin-1β (IL-1β) and TXNIP proteins in the skin of the mice, the reactive oxygen species (ROS) kit was used to detect the level of intracellular ROS in the back skin tissue. Results: The sensitization rates of TCE treatment group and TCE+Mito TEMPO treatment group were 40.0% (6/15) and 33.3% (5/15) , respectively, and there was no significant difference between the two groups (P>0.05) . The back skin of the mice in the TCE sensitized positive group was thickened and infiltrated by a large number of inflammatory cells. The number of mitochondria in the epidermis cells was significantly reduced, the mitochondrial crest disappeared and vacuolar degeneration occurred. TCE+Mito TEMPO sensitized positive group had less damage, more mitochondria and relatively normal cell structure. Compared with the solvent control group and corresponding sensitized negative groups, the expression levels of NLRP3, ASC, Caspase 1, IL-1β, TXNIP proteins and the content of ROS in the TCE sensitized positive group and TCE+Mito TEMPO sensitized positive group were significantly increased (P<0.05) . Compared with TCE sensitized positive group, the expression levels of NLRP3, ASC, Caspase 1, IL-1β, TXNIP proteins and the content of ROS in the TCE+Mito TEMPO sensitized positive group were significantly decreased (P<0.05) . Conclusion: ROS/TXNIP/NLRP3 pathway was activated and then encouraged the release of IL-1β, finally aggravated the TCE-induced skin injury.


Subject(s)
Animals , Carrier Proteins , Caspase 1/metabolism , Female , Inflammasomes/metabolism , Mice , Mice, Inbred BALB C , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Solvents , Thioredoxins/metabolism , Trichloroethylene/toxicity
3.
Article in Chinese | WPRIM | ID: wpr-928131

ABSTRACT

This study aims to explore the effect of butyl alcohol extract of Baitouweng Decoction(BAEB) on vulvovaginal candidiasis(VVC) in mice and to clarify the mechanism from Toll-like receptors(TLRs)/MyD88 and Dectin-1/Syk signal pathways and NLRP3 inflammasome. To be specific, female KM mice were randomized into control group(i.g., normal saline), model group, fluco-nazole group(i.g., 20 mg·kg~(-1)), and low-dose, medium-dose, and high-dose BAEB groups(i.g., 20, 40, and 80 mg·kg~(-1), respectively). VVC was induced in mice except the control group. After the modeling, administration began and lasted 7 days. The ge-neral conditions and body weight of mice were recorded every day. On the 1 st, 3 rd, 7 th, and 14 th after vaginal infection by Candida albicans, the fungal load in the vaginal lavage fluid of the mice was measured with the plate method, and the morphology of C. albicans in vaginal lavage fluid was observed based on Gram staining. After the mice were killed, vaginal tissues were subjected to hematoxylin-eosin(HE) staining and periodic acid-Schiff(PAS) staining for vaginal histopathological analysis. The content of cytokines in vaginal lavage fluid, such as interleukin(IL)-1β, IL-18, tumor necrosis factor-α(TNF-α), IL-6, and S100 a8, was determined by enzyme-linked immunosorbent assay(ELISA), and content of reactive oxygen species(ROS) in vaginal tissues by tissue ROS detection kit. The protein expression of NLRP3, ASC, caspase-1, Dectin-1, Syk, MyD88, TLR2, TLR4, and nuclear factor-κB(NF-κB) in vaginal tissues was detected by Western blot, and the levels and distribution of NLRP3, Dectin-1, Syk, MyD88, TLR2, and TLR4 in vaginal tissues were determined with the immunohistochemical method. The results show that BAEB can improve the general conditions of VVC mice, reduce the fungal load and C. albicans hyphae in vaginal secretion, decrease ROS content in vaginal tissues and content of cytokines in vaginal lavage fluid, and down-regulate the expression of NLRP3, ASC, caspase-1, Dectin-1, Syk, MyD88, TLR2, TLR4, and NF-κB in vaginal tissues. The above results indicate that BAEB exerts therapeutic effect on VVC mice by down-regulating the key proteins in the TLRs/MyD88 and Dectin-1/Syk signal pathways and NLRP3 inflammasome.


Subject(s)
1-Butanol/therapeutic use , Animals , Candida albicans , Candidiasis, Vulvovaginal/drug therapy , Caspase 1/metabolism , Cytokines/metabolism , Female , Humans , Inflammasomes/metabolism , Mice , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Extracts/therapeutic use , Reactive Oxygen Species/metabolism , Signal Transduction , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Article in Chinese | WPRIM | ID: wpr-928120

ABSTRACT

In recent years, liver fibrosis has become a hotspot in the field of liver diseases. MicroRNA(miRNA)-mediated Nod-like receptor pyrin domain containing 3(NLRP3) inflammasome activation is pivotal in the pathogenesis of liver fibrosis. The present study mainly discussed the role of miRNA-mediated NLRP3 inflammasome activation in the pathogenesis of liver fibrosis. Different miRNA molecules regulated liver fibrosis by mediating NLRP3 inflammasome activation, including miRNA-350-3 p(miR-350-3 p)/interleukin-6(IL-6)-mediated signal transducer and activator of transcription 3(STAT3)/c-myc signaling pathway, miR-148 a-induced autophagy and apoptosis of hepatic stellate cells via hedgehog signaling pathway, miR-155-mediated NLRP3 inflammasome by the negative feedback of the suppressor of cytokine signaling-1(SOCS-1), miR-181 a-mediated downstream NLRP3 inflammatory pathway activation through mitogen-activated protein kinase kinase(MEK)/extracellular signal-regulated kinase(ERK)/nuclear transcription factor κB(NF-κB) inflammatory pathway, miR-21-promoted expression of NF-κB and NLRP3 of RAW264.7 cells in mice by inhibiting tumor necrosis factor-α inducible protein 3(A20), and miR-20 b-promoted expression of IL-1β and IL-18 by activating NLRP3 signaling pathway. Additionally, the anti-liver fibrosis mechanism of different active components in Chinese medicines(such as Curcumae Rhizoma, Glycyrrhizae Radix et Rhizoma, Aurantii Fructus, Polygoni Cuspidati Rhizoma et Radix, Moutan Cortex, Paeoniae Radix Alba, Epimedii Folium, and Cinnamomi Cortex) was also explored based on the anti-liver fibrosis effect of miRNA-mediated NLRP3 inflammasome activation.


Subject(s)
Animals , Hedgehog Proteins , Inflammasomes/metabolism , Interleukin-6 , Liver Cirrhosis/metabolism , Medicine, Chinese Traditional , Mice , MicroRNAs/genetics , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction
5.
Article in Chinese | WPRIM | ID: wpr-927992

ABSTRACT

Ginsenoside Rg_1, one of the main active components of precious traditional Chinese medicine Ginseng Radix et Rhizoma, has the anti-oxidative stress, anti-inflammation, anti-aging, neuroprotection, and other pharmacological effects. Diabetic retinopathy(DR), the most common complication of diabetes, is also the main cause of impaired vision and blindness in the middle-aged and the elderly. The latest research shows that ginsenoside Rg_1 can protect patients against DR, but the protection and the mechanism are rarely studied. This study mainly explored the protective effect of ginsenoside Rg_1 against DR in type 2 diabetic mice and the mechanism. High fat diet(HFD) and streptozotocin(STZ) were used to induce type 2 diabetes in mice, and hematoxylin-eosin(HE) staining was employed to observe pathological changes in the retina of mice. The immunohistochemistry was applied to study the localization and expression of nucleotide-binding oligomerization domain-like receptors 3(NLRP3) and vascular endothelial growth factor(VEGF) in retina, and Western blot was used to detect the expression of nuclear factor-kappa B(NF-κB), p-NF-κB, NLRP3, caspase-1, interleukin-1β(IL-1β), transient receptor potential channel protein 6(TRPC6), nuclear factor of activated T-cell 2(NFAT2), and VEGF in retina. The results showed that ginsenoside Rg_1 significantly alleviated the pathological injury of retina in type 2 diabetic mice. Immunohistochemistry results demonstrated that ginsenoside Rg_1 significantly decreased the expression of NLRP3 and VEGF in retinal ganglion cells, middle plexiform layer, and outer plexiform layer in type 2 diabetic mice. According to the Western blot results, ginsenoside Rg_1 significantly lowered the expression of p-NF-κB, NLRP3, caspase-1, IL-1β, TRPC6, NFAT2, and VEGF in retina of type 2 diabetic mice. These findings suggest that ginsenoside Rg_1 can significantly alleviate DR in type 2 diabetic mice, which may be related to inhibition of NLRP3 inflammasome and VEGF. This study provides experimental evidence for the clinical application of ginsenoside Rg_1 in the treatment of DR.


Subject(s)
Aged , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetic Retinopathy/genetics , Ginsenosides/pharmacology , Humans , Inflammasomes/metabolism , Mice , Middle Aged , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/genetics
6.
Article in Chinese | WPRIM | ID: wpr-927890

ABSTRACT

Objective: To investigate the effects of the pyrin domain-containing protein 3 (NLRP3) inflammasome inhibitor MCC950 on nerve injury in rats with intracerebral hemorrhage(ICH). Methods: Seventy-two SD rats were randomly divided into three groups (n=24): Sham group, ICH group and MCC950 group. ICH group and MCC950 group rats were injected with autogenous non-anticoagulant blood to establish ICH model, and then the rats in MCC950 group were intraperitoneally injected with MCC950 at the dose of 10 mg/kg(2 mg/ml) for 3 days after ICH model was established. Seventy-two hours after the establishment of the model, the forelimb placement test, the corner test and mNSS score were performed to observe the neurological function of the rats with ICH. The volume of hematoma was observed in fresh brain tissue sections. HE staining was used to observe the pathological changes of brain tissue. The dry-wet weight ratio was calculated to evaluate the changes of brain tissue edema. The degeneration of neurons was observed by FJC staining. The neuronal apoptosis was observed by TUNEL staining. The protein expression and activation levels of NLRP3, ASC, caspase-1, IL-1β, IL-18 and GSDMD were determined by Western blot. Results: Compared with sham group, the percentage of successful placement of left forelimb and left turn was decreased significantly (P<0.01, P<0.05), mNSS score was increased significantly (P<0.01) in ICH group. Hematoma volume was increased significantly, the number of microglial cells around the hematoma was increased, the number of neurons was decreased, nerve cell swelled, some cells showed pyknotic necrosis, and the staining was deepened. The water content of the right base was increased significantly (P<0.05). The number of FJC positive and TUNEL positive cells around the hematoma was increased significantly (P<0.05). The levels of NLRP3, ASC, caspase-1, pro-caspase-1, caspase-1/pro-caspase-1 ratio, GSDMD-N, GSDMD, GSDMD-N/GSDMD ratio, IL-1β and IL-18 were increased significantly (P<0.01, P< 0.05). Compared with ICH group, the percentage of successful placement of left forelimb and left turn was increased significantly in MCC950 group (P<0.05), while the mNSS score and the volume of hematoma were decreased significantly (P<0.01), the swelling degree of nerve cells around the hematoma was reduced significantly, and the number of pyrotic necrotic cells was decreased. The water content of the right base was decreased significantly (P<0.05), and the number of FJC positive and TUNEL positive cells around the hematoma was decreased significantly (P<0.05). The levels of NLRP3, ASC, caspase-1, pro-caspase-1, caspase-1/pro-caspase-1 ratio, GSDMD-N, GSDMD, GSDMD-N/GSDMD ratio, IL-1β and IL-18 were decreased significantly (P<0.05). Conclusion: MCC950 can ameliorate nerve injury after ICH by inhibiting NLRP3 inflammasome mediated inflammation and pyroptosis.


Subject(s)
Animals , Caspase 1/metabolism , Cerebral Hemorrhage/pathology , Furans , Hematoma , Indenes , Inflammasomes/metabolism , Interleukin-18 , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats , Rats, Sprague-Dawley , Sulfonamides , Water
7.
Mem. Inst. Oswaldo Cruz ; 115: e190324, 2020. tab, graf
Article in English | LILACS | ID: biblio-1091245

ABSTRACT

BACKGROUND Leprosy is an infectious-contagious disease caused by Mycobacterium leprae that remain endemic in 105 countries. This neglected disease has a wide range of clinical and histopathological manifestations that are related to the host inflammatory and immune responses. More recently, the inflammasome has assumed a relevant role in the inflammatory response against microbiological agents. However, the involvement of inflammasome in leprosy remains poorly understood. OBJECTIVES The aim is to associate biomarkers of inflammasome with the different immunopathological forms of leprosy. METHODS We performed an observational, cross-sectional, and comparative study of the immunophenotypic expression of inflammasome-associated proteins in immunopathological forms of leprosy of 99 skin lesion samples by immunohistochemistry. The intensity and percentage of NLRP3, Caspase-1, Caspases-4/5, interleukin-1β and interleukin-18 immunoreactivities in the inflammatory infiltrate of skin biopsies were evaluated. FINDINGS Strong expression of NLRP3 and inflammatory Caspases-4/5 were observed in lepromatous leprosy (lepromatous pole). In addition, were observed low expression of caspase-1, interleukin-1β, and interleukin-18 in tuberculoid and lepromatous leprosy. The interpolar or borderline form showed immunophenotype predominantly similar to the lepromatous pole. MAIN CONCLUSIONS Our results demonstrate that the NLRP3 inflammasome is inactive in leprosy, suggesting immune evasion of M. leprae.


Subject(s)
Humans , Immune Evasion/immunology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Leprosy/immunology , Leprosy/metabolism , Mycobacterium leprae/immunology , Immunohistochemistry , Cross-Sectional Studies , Leprosy/pathology
8.
Rev. chil. endocrinol. diabetes ; 7(2): 56-59, abr.2014.
Article in Spanish | LILACS | ID: lil-779319

ABSTRACT

Obesity is a condition in which there is excessive accumulation of subcutaneous and abdominal adipose tissue. This adipose tissue is no longer considered inert and dedicated solely to energy storage. For more than a decade is considered in an active tissue in the regulation of physiological and pathological processes, including immunity and inflammation. Adipose tissue produces and releases a variety of adipokines (leptin, adiponectin, resistin, and visfatin) and cytokine pro - and anti -inflammatory (TNF - alpha 945;, IL-4, IL-6, etc.). Adipose tissue is also implicated in the development of chronic metabolic diseases such as type 2 diabetes or cardiovascular disease. Obesity is therefore an under lying condition for the appearance of inflammatory and metabolic diseases. These adipokines, behave, according to each physiological state, such as a metabolic disrupter. The environment (diet and sedentary lifestyle) have significantly changed the constitution of this adipose tissue, so that patterns of good nutrition and lifestyle play a critical role in the growth of the adipose tissue...


Subject(s)
Humans , Adipocytes/metabolism , Adipokines/metabolism , Inflammasomes/metabolism , Adipose Tissue/metabolism
9.
Article in Korean | WPRIM | ID: wpr-78290

ABSTRACT

Inflammatory bowel disease (IBD), the most important entities being ulcerative colitis and Crohn's disease, are chronic, relapsing and remitting inflammatory conditions that result from chronic dysregulation of the mucosal immune system in the intestinal tract. Although the precise pathogenesis of IBD is still incompletely understood, increased levels of proinflammatory cytokines, including interleukin (IL)-1beta, IL-18 and tumor necrosis factor-alpha, are detected in active IBD and correlate with the severity of inflammation, indicating that these cytokines may play a key role in the development of IBD. Recently, the intracellular nucleotide-binding oligomerization domain-like receptor (NLR) family members, including NLRP1, NLRP3, NLRC4 and NLRP6, are emerging as important regulators of intestinal homeostasis. Together, one of those aforementioned molecules or the DNA sensor absent in melanoma 2 (AIM2), apoptosis-associated speck-like protein containing 'a caspase recruitment domain (CARD)' (ASC) and caspase-1 form a large (>700 kDa) multi-protein complex called the inflammasome. Stimulation with specific microbial and endogenous molecules triggers inflammasome assembly and caspase-1 activation. Activated caspase-1 leads to the secretion of proinflammatory cytokines, including IL-1beta and IL-18, and the promotion of pyroptosis, a form of phagocyte cell death induced by bacterial pathogens, in an inflamed tissue. Therefore, inflammasomes are assumed to mediate host defense against microbial pathogens and gut homeostasis, so that their dysregulation might contribute to IBD pathogenesis. This review focuses on recent advances of the role of NLRP3 inflammasome signaling in IBD pathogenesis. Improving knowledge of the inflammasome could provide insights into potential therapeutic targets for patients with IBD.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , Carrier Proteins/metabolism , Caspase 1/metabolism , Humans , Inflammasomes/metabolism , Inflammatory Bowel Diseases/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL