Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 390
Filter
1.
J. venom. anim. toxins incl. trop. dis ; 27: e20210026, 2021. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1351023

ABSTRACT

Pain is a common symptom induced during envenomation by spiders and scorpions. Toxins isolated from their venom have become essential tools for studying the functioning and physiopathological role of ion channels, as they modulate their activity. In particular, toxins that induce pain relief effects can serve as a molecular basis for the development of future analgesics in humans. This review provides a summary of the different scorpion and spider toxins that directly interact with pain-related ion channels, with inhibitory or stimulatory effects. Some of these toxins were shown to affect pain modalities in different animal models providing information on the role played by these channels in the pain process. The close interaction of certain gating-modifier toxins with membrane phospholipids close to ion channels is examined along with molecular approaches to improve selectivity, affinity or bioavailability in vivo for therapeutic purposes.(AU)


Subject(s)
Animals , Pain , Scorpions , Spider Venoms , Models, Animal , Ion Channels , Phospholipids , Analgesics
2.
Article in Chinese | WPRIM | ID: wpr-921971

ABSTRACT

OBJECTIVE@#To explore the genetic basis of three families with recurrence of non-immune hydrops fetalis (NIHF) but negative result by copy number variation sequencing (CNV-seq).@*METHODS@#Amniotic fluid sample and/or abortive tissues of the fetuses were collected and subjected to CNV-seq analysis. Peripheral blood samples of the parents were also taken for trio whole exome sequencing (trio WES).@*RESULTS@#Fetus 1 was found to harbor heterozygous c.976G>T(p.Glu326*) variant of the SOX18 gene in addition with compound heterozygous variants c.844C>T(p.Arg282Trp) and c.9472+1G>A of the RYR1 gene. The three variants were all inherited from its parents and have been associated with the etiology of NIHF. Based on the American College of Medical Genetics and Genomics (ACMG) standards and guidelines, the c.976G>T variant of SOX18 gene and c.9472+1G>A of RYR1 gene were predicted to be pathogenic (PVS1+PM2+PP3+PP4, PVS1+PM2+PP3), and c.844C>T variant of RYR1 gene to be likely pathogenic (PM1+PM2+PP3). Fetus 2 was found to harbor compound heterozygous variants c.6682C>T(p.Gln2228*) and c.4373_4383del(p.Val1458Alafs*63) of the PIEZO1 gene. Both variants were also inherited from its parents and are associated with the etiology of NIHF. Based on ACMG standards and guidelines, both c.6682C>T and c.4373_4383del variants of PIEZO1 gene were predicted to be pathogenic (PVS1+PM2+PP4, PVS1+PM2). Fetus 3 was found to harbor compound heterozygous variants of the TTN gene c.29860G>C(p.Asp9954His) and c.21107A>T(p.Asp7036Val), which were respectively inherited from its parents. Both variants have been strongly associated with the phenotype, though the connection between the etiology of NIHF and variants of the TTN gene remains elusive. Based on ACMG standards and guidelines, the c.29860G>C and c.21107A>T variants of TTN gene were predicted to be likely pathogenic (PM1+PM2+PP3).@*CONCLUSION@#Trio WES can improve the diagnosis rate of NIHF with a negative result by CNV-seq. Considering the urgency of prenatal diagnosis, CNV-seq and trio WES should be carried out at the same time for fetuses with NIHF.


Subject(s)
Female , Humans , Pregnancy , DNA Copy Number Variations , Genomics , Heterozygote , Hydrops Fetalis/genetics , Ion Channels , SOXF Transcription Factors , United States , Exome Sequencing
3.
Acta Physiologica Sinica ; (6): 488-498, 2020.
Article in Chinese | WPRIM | ID: wpr-827038

ABSTRACT

Primary cilium, widely distributed in mammalian central nervous system, is an important extracellular organelle of cells. The primary cilia contain a variety of ion channels, G-protein coupled receptors and different kinds of kinases, which indicates that primary cilia can detect extracellular signals and transduce them into cells to regulate various cellular and physiological processes. In humans, mutations of genes related to structure and function of primary cilia always cause various monogenetic diseases. Moreover, a series of neuropsychiatric diseases and neurodevelopmental dysplasia are caused by abnormal functions of G-protein coupled receptors, kinases and ion channels in primary cilia. This article reviews recent research progress on the role of primary cilia in related neurological diseases.


Subject(s)
Animals , Humans , Central Nervous System , Cilia , Ion Channels , Nervous System Diseases , Receptors, G-Protein-Coupled
4.
Article in Chinese | WPRIM | ID: wpr-878385

ABSTRACT

OBJECTIVE@#To explore the mechanism of Piezo1 protein in mediating the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) via the Notch signaling pathway.@*METHODS@#In this study, young permanent teeth extracted from impacted teeth of 8-14-year-
old children from January 1, 2016 to January 1, 2018 in the Department of Orthodontic, Beijing Children's Hospital were selected as cell sources. hPDLSCs were extracted by enzymatic digestion. Immunohistochemical staining was used to detect the expression of keratin and vimentin, and flow cytometry was used to identify the markers (CD146 and STRO-1) of hPDLSCs. The construction and screening of Piezo1 siRNA gene interference vector and Piezo1 gene overexpression plasmid were completed. Flexcell 4000T mechanical distraction stress instrument was used to construct hPDLSC cell model in vitro. According to the preliminary results, the experiment was divided into five groups: siRNA interference group, overexpression group, blank control group, stretch stress group, and negative control group. Real time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of Piezo1, Notch1, alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and bone sialoprotein (BSP). Western blot was used to detect the expression of ALP and Runx2. Fluo-3 AM probe was used to detect intracellular calcium content.@*RESULTS@#Vimentin staining of hPDLSCs was positive, and keratin staining was negative. Flow cytometry was used to detect the expression of STRO-1 and CD146, markers of hPDLSC. Empty viral vectors, siRNA-Piezo1 interference sequence, and Piezo1 overexpression vector sequence could be transfected into hPDLSC by lentivirus, and the transfection efficiency was high (approximately 90%). The reverse transcription-polymerase chain reaction (RT-PCR) results showed that there were significant differences in Piezo1 gene levels among the siRNA interference group, overexpression group, blank control group, stretch stress group, and negative control group (F=9.573, P<0.05). The level of Piezo1 in the overexpression group was significantly higher than that in the siRNA interference group (q=3.893, P<0.05). The level of Piezo1 in the stretch stress group was significantly higher than that in the blank control group (q=2.006, P<0.05). The expression of Notch1 and osteogenic genes ALP, Runx2, OCN, and BSP had the same trend. Western blot results showed that there were significant differences in the expression of ALP in the siRNA interference group, overexpression group, blank control group, stretch stress group, and negative control group (F=11.207, P<0.001). The expression level of ALP in the overexpression group was significantly higher than that in the siRNA interference group (q=2.991, P<0.05). The expression of ALP in the stretch stress group was significantly higher than that in the blank control group (q=3.007, P<0.05). The expression of Runx2 protein showed the same trend. The intracellular calcium fluorescence intensity of the overexpression group was significantly higher than that of the siRNA interference group, and the intracellular calcium fluorescence intensity of the stretch stress group was significantly higher than that of the siRNA interference group.@*CONCLUSIONS@#Mechanical stretch stress can promote the expression of Piezo1 protein. Ca2+ is the second messenger, activates the Notch1 signaling pathway and the expression of ALP, Runx2, OCN, and BSP; and promotes the osteogenic differentiation of hPDLSC. The siRNA-Piezo1 interfering plasmid can block this process. On the contrary, the overexpression plasmid of Piezo1 can promote the osteogenic differentiation of PDLSCs.


Subject(s)
Child , Humans , Alkaline Phosphatase , Cell Differentiation , Cells, Cultured , Ion Channels , Osteogenesis , Periodontal Ligament , Signal Transduction , Stem Cells
5.
Campinas; s.n; 2019. ilus, graf, tab.
Thesis in Portuguese | LILACS | ID: biblio-1118162

ABSTRACT

Resumo: O veneno da aranha Phoneutria nigriventer (PNV) contém neuropeptídeos que afetam canais iônicos e a neurotransmissão, induzindo a quebra da barreira hematoencefálica (BHE) no hipocampo de ratos, o que ocorre paralelamente ao aumento do fator de crescimento endotelial vascular (VEGF). Sabe-se que a resposta biológica do VEGF é desencadeada através da regulação transcricional promovida pelo domínio tirosina-quinase de receptores transmembranares do VEGF, dos quais o VEGFR-2 (Flk-1) é considerado o principal mediador e ativador de várias vias de sinalização. O trabalho propõe investigar o possível papel neuroprotetor do VEGF após inibir sua ligação ao receptor Flk-1 pelo itraconazol (ITZ). Para isso, examinamos o status bioquímico do hipocampo por espectroscopia no Infravermelho com Transformada de Fourier (FT-IR), bem como avaliamos as proteínas envolvidas nas rotas paracelular e transcelular da BHE e quais vias de sinalização, relacionadas à neuroproteção do VEGF, foram ativadas. Os ratos receberam PNV ou foram pré-tratados com ITZ (30 min) seguido de PNV pela veia da cauda e depois sacrificados em 1 e 2 h (intervalos com maiores sinais de intoxicação), 5 h (intervalo com sinais incipientes de recuperação) e 24 h (intervalo sem sinal visual detectável de envenenamento), sendo comparados aos controles, salina e ITZ. O pré-tratamento com o antifúngico agravou os efeitos do veneno e aumentou danos à BHE. Os espectros FT-IR do veneno, hipocampo dos controles, PNV e ITZ-PNV mostraram as bandas de 1400 cm-1 (carboxilato) e de 1467 cm-1 (flexão de CH2: principalmente lipídios), que foram considerados bandas biomarcadora e referência, respectivamente. A inibição da ligação VEGF/Flk-1 produziu mudanças marcantes na estabilidade lipídios/proteínas em 1-2 h. As maiores diferenças ocorreram nas regiões espectrais atribuídas à lípides simétricos (2852 cm-1) e assimétricos (2924 e 2968 cm-1). As análises quantitativas mostraram maiores aumentos na razão 1400 cm-1/1467 cm-1 no período de intoxicação grave (1 h), e referem-se à região espectral de 3106 cm-1 a 687 cm-1. Ademais, a desativação da ligação VEGF/Flk-1 pelo itraconazol (ITZ) aumentou o fator indutor de hipóxia (H1F1-?), VEGF, Flk-1, Flt-1, Neu-N e caspase-3 às 5 horas após a injeção do PNV. No mesmo intervalo, a permeabilidade transcelular da BHE aumentou (caveolina-1?, dinamina-2 e família Src de não receptores tirosina-quinase (SKFs)), enquanto laminina e a via paracelular (occludina, ?-catenina) foram reforçadas e a proteína de efluxo glicoproteína-P (P-gp) aumentou. Ao mesmo tempo (5 h), ocorreu auto-fosforilação da via pró-proliferação celular (p38-fosforilada). Às 24 h, apesar da ausência de sinais de intoxicação, a via pró-sobrevivência celular (Akt-fosforilada) diminuiu nos animais pré-tratados com ITZ, enquanto aumentou nos tratados com PNV apenas. Os dados indicam ativação de mecanismos de neuroproteção relacionados ao VEGF envolvendo o receptor Flk-1 e principalmente à serina-treonina-quinase Akt, provavelmente via PI3K. ERK-fosforilada (2 h) e p38-fosforilada (5 h) sugerem interação entre as vias de sinalização com o objetivo de restabelecer a homeostase do hipocampo. O intervalo de 5 h parece ser o ponto de virada orquestrando respostas biológicas variadas. Os dados permitem concluir sobre o papel neuroprotetor do VEGF e que o mesmo pode ser explorado como possível alvo terapêutico no envenenamento por P. nigriventer.(AU)


Abstract: Phoneutria nigriventer spider venom (PNV) contains ion channels-acting neuropeptides that affect neurotransmission and induces transitory blood-brain barrier (BBB) breakdown in rat¿s hippocampus, which run in parallel with (vascular endothelial growth factor) VEGF upregulation. It is known that VEGF biological response is triggered through transcriptional regulation promoted by transmembrane tyrosine kinase receptors, being VEGFR-2 (Flk-1) considered the major mediator of VEGF effect through activation of a number of signaling pathways. The purpose of this work is to investigate a putative neuroprotective role of VEGF by inhibiting its binding to receptor Flk-1 by itraconazole (ITZ). To do this, we examined the biochemical status of the hippocampus by Infrared Spectroscopy and Fourier Transform (FT-IR), as well as evaluated the proteins involved in the BBB paracellular and transcellular routes and which signaling pathways related to VEGF neuroprotection were activated. Rats were administered PNV alone or were pre-treated with ITZ (30 min) followed by PNV through the tail vein, and then euthanized at 1 and 2 h (intervals with greatest signs of intoxication), 5 h (interval with incipient signs of animals¿ recovery) and 24 h (interval with no visually detectable envenomation sign) and compared to saline and ITZ controls. The antifungal pre-treatment aggravated PNV toxic effects and increased BBB damage. FT-IR spectra of venom and from hippocampi of controls, PNV and ITZ-PNV showed a 1400 cm-1 band linked to symmetric stretch of carboxylate and 1467 cm-1 band (CH2 bending: mainly lipids), which were considered biomarker and reference bands, respectively. Inhibition of VEGF/Flk-1 binding produced marked changes in lipid/protein stability at 1-2 h. The largest differences were observed in spectra regions assigned to lipids, both symmetric (2852 cm-1) and asymmetric (2924 and 2968 cm-1). Quantitative analyses showed greatest increases in the 1400 cm-1/1467 cm-1 ratio also at 1 h. Such changes at period of rats¿ severe intoxication referred to wavenumber region from 3106 cm-1 to 687 cm-1. Furthermore, the deactivation of Flk-1 receptor by VEGF through itraconazole (ITZ) showed increased hypoxia inducible factor (H1F-1?), VEGF, Flk-1, Flt-1, Neu-N and caspase-3 at 5 h after PNV injection. At same interval, BBB transcellular permeability increased (caveolin-1?, dynamin-2 and Src family of non-receptor tyrosine kinases (SKFs)), while laminin and paracellular route (occludin, ?-catenin) were reinforced and P-glycoprotein (P-gp) efflux protein was increased. Such effects were timely followed by upregulation of auto-phosphorylation of the pro-proliferation (phosphorylated-p38) pathway. At 24 h, despite absence of intoxication signs, the pro-survival (p-Akt) pathway was downregulated in animals underwent inhibition of VEGF-Flk-1 binding, whereas it was upregulated in PNV rats non-treated with ITZ. The data indicate triggering of VEGF-related mechanisms involving Flk-1 receptor and serine-threonine kinase Akt, probably via PI3K, as the main mechanism of neuroprotection. Phosphorylated ERK (2 h) and p-p38 (5 h) indicates interplay among transduction pathways likely aiming at re-establishment of hippocampal homeostasis. The findings suggest 5 h interval as the turning point that orchestrates varied biological responses. Taking together the data of the present study allow concluding that VEGF expression exerts neuroprotective role and can be explored as a possible therapeutic target in P. nigriventer envenomation.(AU)


Subject(s)
Rats , Spider Venoms , Blood-Brain Barrier , Vascular Endothelial Growth Factor A , Poisoning , Poisons/administration & dosage , Central Nervous System , Itraconazole , Neuroprotection , Ion Channels
6.
Article in English | WPRIM | ID: wpr-763018

ABSTRACT

Technological advances of mankind, through the development of electrical and communication technologies, have resulted in the exposure to artificial electromagnetic fields (EMF). Technological growth is expected to continue; as such, the amount of EMF exposure will continue to increase steadily. In particular, the use-time of smart phones, that have become a necessity for modern people, is steadily increasing. Social concerns and interest in the impact on the cranial nervous system are increased when considering the area where the mobile phone is used. However, before discussing possible effects of radiofrequency-electromagnetic field (RF-EMF) on the human body, several factors must be investigated about the influence of EMFs at the level of research using in vitro or animal models. Scientific studies on the mechanism of biological effects are also required. It has been found that RF-EMF can induce changes in central nervous system nerve cells, including neuronal cell apoptosis, changes in the function of the nerve myelin and ion channels; furthermore, RF-EMF act as a stress source in living creatures. The possible biological effects of RF-EMF exposure have not yet been proven, and there are insufficient data on biological hazards to provide a clear answer to possible health risks. Therefore, it is necessary to study the biological response to RF-EMF in consideration of the comprehensive exposure with regard to the use of various devices by individuals. In this review, we summarize the possible biological effects of RF-EMF exposure.


Subject(s)
Apoptosis , Brain , Cell Phone , Central Nervous System , Electromagnetic Fields , Human Body , In Vitro Techniques , Ion Channels , Magnets , Models, Animal , Myelin Sheath , Nervous System , Neurons , Smartphone
7.
Acta Physiologica Sinica ; (6): 894-904, 2019.
Article in Chinese | WPRIM | ID: wpr-781385

ABSTRACT

Ion channels are a widespread class of membrane proteins that help establish and control cell membrane potential by allowing the passive diffusion of inorganic ions with high specificity through cell membrane. They are widely distributed in various cells and tissues, and their normal structure and function are of fundamental importance for all living organisms. The rapid advances in molecular cloning, protein structure analysis, patch clamp recordings and other technologies have greatly promoted the research on the biophysical and molecular properties of ion channels, and made significant progress in the study of the relationship between ion channels and pathophysiology as well. The immune system is made up of immune cells and organs that work together to protect the body and respond to infection and disease. Remarkably, recent basic and clinical research has revealed that ion channels are frequently and abundantly expressed in immune cells and have crucial roles in immune cell development and immune response. This review summarized recent progress in the roles of ion channels in immune cells, including the expression and regulation of ion channels in immune cells, the effects of ion flux mediated by ion channels on lymphocyte development, and functional roles of ion channels in both innate and adaptive immune responses. We also discussed some unresolved and insufficiently addressed issues in the current research, so as to provide an informative reference for better understanding the functional roles of ion channels in the immune system and further elucidation of their function from a physiological and pathological point of view.


Subject(s)
Cell Membrane , Immunity , Physiology , Ion Channels , Allergy and Immunology , Membrane Proteins , Research
8.
Article in English | WPRIM | ID: wpr-764077

ABSTRACT

BACKGROUND AND OBJECTIVES: Human amniotic fluid-derived mesenchymal stem cells (AF-MSCs) may be a valuable source for cardiovascular tissue engineering and cell therapy. The aim of this study is to verify angiotensin II and transforming growth factor-beta 1 (TGF-β1) as potential cardiomyogenic differentiation inducers of AF-MSCs. METHODS AND RESULTS: AF-MSCs were obtained from amniocentesis samples from second-trimester pregnant women, isolated and characterized by the expression of cell surface markers (CD44, CD90, CD105 positive; CD34 negative) and pluripotency genes (OCT4, SOX2, NANOG, REX1). Cardiomyogenic differentiation was induced using different concentrations of angiotensin II and TGF-β1. Successful initiation of differentiation was confirmed by alterations in cell morphology, upregulation of cardiac genes-markers NKX2-5, TBX5, GATA4, MYH6, TNNT2, DES and main cardiac ion channels genes (sodium, calcium, potassium) as determined by RT-qPCR. Western blot and immunofluorescence analysis revealed the increased expression of Connexin43, the main component of gap junctions, and Nkx2.5, the early cardiac transcription factor. Induced AF-MSCs switched their phenotype towards more energetic and started utilizing oxidative phosphorylation more than glycolysis for energy production as assessed using Agilent Seahorse XF analyzer. The immune analysis of chromatin-modifying enzymes DNMT1, HDAC1/2 and Polycomb repressive complex 1 and 2 (PRC1/2) proteins BMI1, EZH2 and SUZ12 as well as of modified histones H3 and H4 indicated global chromatin remodeling during the induced differentiation. CONCLUSIONS: Angiotensin II and TGF-β1 are efficient cardiomyogenic inducers of human AF-MSCs; they initiate alterations at the gene and protein expression, metabolic and epigenetic levels in stem cells leading towards cardiomyocyte-like phenotype formation.


Subject(s)
Female , Humans , Amniocentesis , Amniotic Fluid , Angiotensin II , Angiotensins , Blotting, Western , Calcium , Cell Differentiation , Cell- and Tissue-Based Therapy , Chromatin , Chromatin Assembly and Disassembly , Connexin 43 , Epigenomics , Fluorescent Antibody Technique , Gap Junctions , Glycolysis , Histones , Ion Channels , Mesenchymal Stem Cells , Muscle Cells , Oxidative Phosphorylation , Phenotype , Polycomb Repressive Complex 1 , Pregnant Women , Smegmamorpha , Stem Cells , Tissue Engineering , Transcription Factors , Up-Regulation
9.
Article in English | WPRIM | ID: wpr-764049

ABSTRACT

Dentin hypersensitivity is an abrupt intense pain caused by innocuous stimuli to exposed dentinal tubules. Mechanosensitive ion channels have been assessed in dental primary afferent neurons and odontoblasts to explain dentin hypersensitivity. Dentinal fluid dynamics evoked by various stimuli to exposed dentin cause mechanical stress to the structures underlying dentin. This review briefly discusses three hypotheses regarding dentin hypersensitivity and introduces recent findings on mechanosensitive ion channels expressed in the dental sensory system and discusses how the activation of these ion channels is involved in dentin hypersensitivity.


Subject(s)
Dental Physiological Phenomena , Dentin Sensitivity , Dentin , Dentinal Fluid , Hydrodynamics , Ion Channels , Mechanoreceptors , Neurons, Afferent , Odontoblasts , Stress, Mechanical
10.
Neuroscience Bulletin ; (6): 98-112, 2019.
Article in English | WPRIM | ID: wpr-775484

ABSTRACT

Clinical trials and animal experimental studies have demonstrated an association of arterial baroreflex impairment with the prognosis and mortality of cardiovascular diseases and diabetes. As a primary part of the arterial baroreflex arc, the pressure sensitivity of arterial baroreceptors is blunted and involved in arterial baroreflex dysfunction in cardiovascular diseases and diabetes. Changes in the arterial vascular walls, mechanosensitive ion channels, and voltage-gated ion channels contribute to the attenuation of arterial baroreceptor sensitivity. Some endogenous substances (such as angiotensin II and superoxide anion) can modulate these morphological and functional alterations through intracellular signaling pathways in impaired arterial baroreceptors. Arterial baroreceptors can be considered as a potential therapeutic target to improve the prognosis of patients with cardiovascular diseases and diabetes.


Subject(s)
Animals , Humans , Baroreflex , Physiology , Blood Pressure , Physiology , Cardiovascular Diseases , Metabolism , Diabetes Mellitus , Metabolism , Ion Channels , Metabolism , Pressoreceptors , Metabolism
11.
Article in Chinese | WPRIM | ID: wpr-775258

ABSTRACT

Ion channels mediate ion transport across membranes, and play vital roles in processes of matter exchange, energy transfer and signal transduction in living organisms. Recently, structural studies of ion channels have greatly advanced our understanding of their ion selectivity and gating mechanisms. Structural studies of voltage-gated potassium channels elucidate the structural basis for potassium selectivity and voltage-gating mechanism; structural studies of voltage-gated sodium channels reveal their slow and fast inactivation mechanisms; and structural studies of transient receptor potential (TRP) channels provide complex and diverse structures of TRP channels, and their ligand gating mechanisms. In the article we summarize recent progress on ion channel structural biology, and outlook the prospect of ion channel structural biology in the future.


Subject(s)
Ion Channel Gating , Physiology , Ion Channels , Voltage-Gated Sodium Channels , Chemistry , Metabolism
12.
Article in Chinese | WPRIM | ID: wpr-775257

ABSTRACT

As a non-invasive approach, sonogenetics is applied to control neuronal activity. The mechanosensitive channel(MSC), which has low threshold of responding to ultrasound, may be the alternative solution. Sonogenetics is the technique that activates the MSC expressed in targeted neurons by low intensity ultrasound, thus achieve the neuromodulation. In this review, we introduce the mechanosensitive channel of large conductance, transient receptor potential, channels of the two-pore-domain potassium family, Piezo and the recent progress on their application in sonogenetics.


Subject(s)
Biomechanical Phenomena , Ion Channels , Metabolism , Neurons , Ultrasonic Waves
13.
Article in English | WPRIM | ID: wpr-761810

ABSTRACT

Lung cancer is the most common cause of cancer deaths worldwide and several molecular signatures have been developed to predict survival in lung cancer. Increasing evidence suggests that proliferation and migration to promote tumor growth are associated with dysregulated ion channel expression. In this study, by analyzing high-throughput gene expression data, we identify the differentially expressed K⁺ channel genes in lung cancer. In total, we prioritize ten dysregulated K⁺ channel genes (5 up-regulated and 5 down-regulated genes, which were designated as K-10) in lung tumor tissue compared with normal tissue. A risk scoring system combined with the K-10 signature accurately predicts clinical outcome in lung cancer, which is independent of standard clinical and pathological prognostic factors including patient age, lymph node involvement, tumor size, and tumor grade. We further indicate that the K-10 potentially predicts clinical outcome in breast and colon cancers. Molecular signature discovered through K⁺ gene expression profiling may serve as a novel biomarker to assess the risk in lung cancer.


Subject(s)
Humans , Breast , Colonic Neoplasms , Gene Expression , Gene Expression Profiling , Ion Channels , Lung Neoplasms , Lung , Lymph Nodes , Potassium Channels , Potassium
14.
Article in English | WPRIM | ID: wpr-761807

ABSTRACT

A heart simulator, UT-Heart, is a finite element model of the human heart that can reproduce all the fundamental activities of the working heart, including propagation of excitation, contraction, and relaxation and generation of blood pressure and blood flow, based on the molecular aspects of the cardiac electrophysiology and excitation-contraction coupling. In this paper, we present a brief review of the practical use of UT-Heart. As an example, we focus on its application for predicting the effect of cardiac resynchronization therapy (CRT) and evaluating the proarrhythmic risk of drugs. Patient-specific, multiscale heart simulation successfully predicted the response to CRT by reproducing the complex pathophysiology of the heart. A proarrhythmic risk assessment system combining in vitro channel assays and in silico simulation of cardiac electrophysiology using UT-Heart successfully predicted druginduced arrhythmogenic risk. The assessment system was found to be reliable and efficient. We also developed a comprehensive hazard map on the various combinations of ion channel inhibitors. This in silico electrocardiogram database (now freely available at http://ut-heart.com/) can facilitate proarrhythmic risk assessment without the need to perform computationally expensive heart simulation. Based on these results, we conclude that the heart simulator, UT-Heart, could be a useful tool in clinical medicine and drug discovery.


Subject(s)
Humans , Blood Pressure , Cardiac Electrophysiology , Cardiac Resynchronization Therapy , Cardiotoxicity , Clinical Medicine , Computer Simulation , Drug Discovery , Drug Evaluation, Preclinical , Electrocardiography , Heart , In Vitro Techniques , Ion Channels , Models, Cardiovascular , Relaxation , Risk Assessment
15.
Article in English | WPRIM | ID: wpr-761797

ABSTRACT

Aurora kinases inhibitors, including ZM447439 (ZM), which suppress cell division, have attracted a great deal of attention as potential novel anti-cancer drugs. Several recent studies have confirmed the anti-cancer effects of ZM in various cancer cell lines. However, there have been no studies regarding the cardiac safety of this agent. We performed several cytotoxicity, invasion and migration assays to examine the anti-cancer effects of ZM. To evaluate the potential effects of ZM on cardiac repolarisation, whole-cell patch-clamp experiments were performed with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and cells with heterogeneous cardiac ion channel expression. We also conducted a contractility assay with rat ventricular myocytes to determine the effects of ZM on myocardial contraction and/or relaxation. In tests to determine in vitro efficacy, ZM inhibited the proliferation of A549, H1299 (lung cancer), MCF-7 (breast cancer) and HepG2 (hepatoma) cell lines with IC₅₀ in the submicromolar range, and attenuated the invasive and metastatic capacity of A549 cells. In cardiac toxicity testing, ZM did not significantly affect I(Na), I(Ks) or I(K1), but decreased I(hERG) in a dose-dependent manner (IC₅₀: 6.53 µM). In action potential (AP) assay using hiPSC-CMs, ZM did not induce any changes in AP parameters up to 3 µM, but it at 10 µM induced prolongation of AP duration. In summary, ZM showed potent broad-spectrum anti-tumor activity, but relatively low levels of cardiac side effects compared to the effective doses to tumor. Therefore, ZM has a potential to be a candidate as an anti-cancer with low cardiac toxicity.


Subject(s)
Animals , Humans , Rats , Action Potentials , Antineoplastic Agents , Aurora Kinases , Cardiotoxicity , Cell Division , Cell Line , In Vitro Techniques , Ion Channels , Muscle Cells , Myocardial Contraction , Myocytes, Cardiac , Phosphotransferases , Relaxation
16.
Article in English | WPRIM | ID: wpr-761784

ABSTRACT

The transient receptor potential canonical (TRPC) 5 channel, known as a nonselective cation channel, has a crucial role in calcium influx. TRPC5 has been reported to be activated by muscarinic receptor activation and extracellular pH change and inhibited by the protein kinase C pathway. Recent studies have also suggested that TRPC5 is extracellularly activated by englerin A (EA), but the mechanism remains unclear. The purpose of this study is to identify the EA-interaction sites in TRPC5 and thereby clarify the mechanism of TRPC5 activation. TRPC5 channels are over-expressed in human embryonic kidney (HEK293) cells. TRPC5 mutants were generated by site-directed mutagenesis. The whole-cell patch-clamp configuration was used to record TRPC5 currents. Western analysis was also performed to observe the expression of TRPC5 mutants. To identify the EA-interaction site in TRPC5, we first generated pore mutants. When screening the mutants with EA, we observed the EA-induced current increases of TRPC5 abolished in K554N, H594N, and E598Q mutants. The current increases of other mutants were reduced in different levels. We also examined the functional intactness of the mutants that had no effect by EA with TRPC5 agonists, such as carbachol or GTPγS. Our results suggest that the three residues, Lys-554, His-594, and Glu-598, in TRPC5 might be responsible for direct interaction with EA, inducing the channel activation. We also suggest that although other pore residues are not critical, they could partly contribute to the EA-induced channel activation.


Subject(s)
Humans , Calcium , Carbachol , Hydrogen-Ion Concentration , Ion Channels , Kidney , Mass Screening , Mutagenesis, Site-Directed , Mutant Proteins , Protein Kinase C , Receptors, Muscarinic
17.
Article in English | WPRIM | ID: wpr-761782

ABSTRACT

Polycystic kidney disease 2-like-1 (PKD2L1), polycystin-L or transient receptor potential polycystin 3 (TRPP3) is a TRP superfamily member. It is a calcium-permeable non-selective cation channel that regulates intracellular calcium concentration and thereby calcium signaling. Although the calmodulin (CaM) inhibitor, calmidazolium, is an activator of the PKD2L1 channel, the activating mechanism remains unclear. The purpose of this study is to clarify whether CaM takes part in the regulation of the PKD2L1 channel, and if so, how. With patch clamp techniques, we observed the current amplitudes of PKD2L1 significantly reduced when coexpressed with CaM and CaMΔN. This result suggests that the N-lobe of CaM carries a more crucial role in regulating PKD2L1 and guides us into our next question on the different functions of two lobes of CaM. We also identified the predicted CaM binding site, and generated deletion and truncation mutants. The mutants showed significant reduction in currents losing PKD2L1 current-voltage curve, suggesting that the C-terminal region from 590 to 600 is crucial for maintaining the functionality of the PKD2L1 channel. With PKD2L1608Stop mutant showing increased current amplitudes, we further examined the functional importance of EF-hand domain. Along with co-expression of CaM, ΔEF-hand mutant also showed significant changes in current amplitudes and potentiation time. Our findings suggest that there is a constitutive inhibition of EF-hand and binding of CaM C-lobe on the channel in low calcium concentration. At higher calcium concentration, calcium ions occupy the N-lobe as well as the EF-hand domain, allowing the two to compete to bind to the channel.


Subject(s)
Binding Sites , Calcium , Calcium Signaling , Calmodulin , Ion Channels , Ions , Patch-Clamp Techniques , Polycystic Kidney Diseases , Transient Receptor Potential Channels
18.
Article in English | WPRIM | ID: wpr-727936

ABSTRACT

In patients with epilepsy, depression is a common comorbidity but difficult to be treated because many antidepressants cause pro-convulsive effects. Thus, it is important to identify the risk of seizures associated with antidepressants. To determine whether paroxetine, a very potent selective serotonin reuptake inhibitor (SSRI), interacts with ion channels that modulate neuronal excitability, we examined the effects of paroxetine on Kv3.1 potassium channels, which contribute to highfrequency firing of interneurons, using the whole-cell patch-clamp technique. Kv3.1 channels were cloned from rat neurons and expressed in Chinese hamster ovary cells. Paroxetine reversibly reduced the amplitude of Kv3.1 current, with an IC₅₀ value of 9.43 µM and a Hill coefficient of 1.43, and also accelerated the decay of Kv3.1 current. The paroxetine-induced inhibition of Kv3.1 channels was voltage-dependent even when the channels were fully open. The binding (k₊₁) and unbinding (k₋₁) rate constants for the paroxetine effect were 4.5 µM⁻¹s⁻¹ and 35.8 s⁻¹, respectively, yielding a calculated K(D) value of 7.9 µM. The analyses of Kv3.1 tail current indicated that paroxetine did not affect ion selectivity and slowed its deactivation time course, resulting in a tail crossover phenomenon. Paroxetine inhibited Kv3.1 channels in a usedependent manner. Taken together, these results suggest that paroxetine blocks the open state of Kv3.1 channels. Given the role of Kv3.1 in fast spiking of interneurons, our data imply that the blockade of Kv3.1 by paroxetine might elevate epileptic activity of neural networks by interfering with repetitive firing of inhibitory neurons.


Subject(s)
Animals , Cricetinae , Female , Humans , Rats , Antidepressive Agents , Clone Cells , Comorbidity , Cricetulus , Depression , Epilepsy , Fires , Interneurons , Ion Channels , Neurons , Ovary , Paroxetine , Patch-Clamp Techniques , Seizures , Serotonin , Shaw Potassium Channels , Tail
19.
Article in English | WPRIM | ID: wpr-727855

ABSTRACT

Myoblast fusion depends on mitochondrial integrity and intracellular Ca²⁺ signaling regulated by various ion channels. In this study, we investigated the ionic currents associated with [Ca²⁺]i regulation in normal and mitochondrial DNA-depleted (ρ0) L6 myoblasts. The ρ0 myoblasts showed impaired myotube formation. The inwardly rectifying K⁺ current (I(Kir)) was largely decreased with reduced expression of KIR2.1, whereas the voltage-operated Ca²⁺ channel and Ca²⁺-activated K⁺ channel currents were intact. Sustained inhibition of mitochondrial electron transport by antimycin A treatment (24 h) also decreased the I(Kir). The ρ0 myoblasts showed depolarized resting membrane potential and higher basal [Ca²⁺]ᵢ. Our results demonstrated the specific downregulation of I(Kir) by dysfunctional mitochondria. The resultant depolarization and altered Ca²⁺ signaling might be associated with impaired myoblast fusion in ρ0 myoblasts.


Subject(s)
Antimycin A , Down-Regulation , Electron Transport , Ion Channels , Membrane Potentials , Mitochondria , Muscle Development , Muscle Fibers, Skeletal , Myoblasts , Oxidative Phosphorylation
20.
Article in Chinese | WPRIM | ID: wpr-775806

ABSTRACT

Genetic generalized epilepsies (GGEs) are a group of epilepsy syndromes caused by genetic factors. A few of GGEs conform to the Mendelian patterns, while most of them show polygene inheritance. Researchers initially found that most of the genes associated with GGEs are related to ion channels including voltage-gated sodium channels, potassium channels, calcium channels and chloride channels, and ligand-gated gamma-aminobutyric acid receptor channels. Further researches have shown that certain non-ion channel genes are also related to GGEs, and that de novo mutations and copy number variants also play an important role in the pathogenesis of GGEs. Application of next- and third-generation sequencing promoted delineation of the molecular genetics of the GGEs, but also brought more challenges. Genetic findings have provided an important basis for the elucidation of the pathogenesis, clinical diagnosis and precise treatment of GGEs. This paper provided a review for recent progress made in molecular genetics of GGEs.


Subject(s)
Humans , Epilepsy, Generalized , Genetics , Genetic Research , Ion Channels , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL