Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Int. j. morphol ; 42(1): 154-161, feb. 2024. ilus, tab
Article in English | LILACS | ID: biblio-1528830

ABSTRACT

SUMMARY: Esophageal cancer is one of the most aggressive gastrointestinal cancers. Invasion and metastasis are the main causes of poor prognosis of esophageal cancer. SPRY2 has been reported to exert promoting effects in human cancers, which controls signal pathways including PI3K/AKT and MAPKs. However, the expression of SPRY2 in esophageal squamous cell carcinoma (ESCC) and its underlying mechanism remain unclear. In the present study, we aimed to investigate the detailed role of SPRY2 in the regulation of cell proliferation, invasion and ERK/AKT signaling pathway in ESCC. It was identified that the expression level of SPRY2 in ESCC was remarkably decreased compared with normal tissues, and it was related to clinicopathologic features and prognosis ESCC patients. The upregulation of SPRY2 expression notably inhibited the proliferation, migration and invasion of Eca-109 cells. In addition, the activity of ERK /AKT signaling was also suppressed by the SPRY2 upregulation in Eca-109 cells. Our study suggests that overexpression of SPRY2 suppress cancer cell proliferation and invasion of by through suppression of the ERK/AKT signaling pathways in ESCC. Therefore, SPRY2 may be a promising prognostic marker and therapeutic target for ESCC.


El cáncer de esófago es uno de los cánceres gastrointestinales más agresivos. La invasión y la metástasis son las principales causas de mal pronóstico del cáncer de esófago. Se ha informado que SPRY2 ejerce efectos promotores en los cánceres humanos, que controla las vías de señales, incluidas PI3K/AKT y MAPK. Sin embargo, la expresión de SPRY2 en el carcinoma de células escamosas de esófago (ESCC) y su mecanismo subyacente aún no están claros. En el presente estudio, nuestro objetivo fue investigar el papel detallado de SPRY2 en la regulación de la proliferación celular, la invasión y la vía de señalización ERK/AKT en ESCC. Se identificó que el nivel de expresión de SPRY2 en ESCC estaba notablemente disminuido en comparación con los tejidos normales, y estaba relacionado con las características clínico-patológicas y el pronóstico de los pacientes con ESCC. La regulación positiva de la expresión de SPRY2 inhibió notablemente la proliferación, migración e invasión de células Eca-109. Además, la actividad de la señalización de ERK/AKT también fue suprimida por la regulación positiva de SPRY2 en las células Eca-109. Nuestro estudio sugiere que la sobreexpresión de SPRY2 suprime la proliferación y la invasión de células cancerosas mediante la supresión de las vías de señalización ERK/AKT en ESCC. Por lo tanto, SPRY2 puede ser un marcador de pronóstico prometedor y un objetivo terapéutico para la ESCC.


Subject(s)
Humans , Esophageal Neoplasms/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Membrane Proteins/metabolism , Immunohistochemistry , Biomarkers, Tumor , Blotting, Western , Extracellular Signal-Regulated MAP Kinases , Cell Proliferation , Proto-Oncogene Proteins c-akt
2.
China Journal of Chinese Materia Medica ; (24): 4156-4163, 2023.
Article in Chinese | WPRIM | ID: wpr-1008612

ABSTRACT

This study explored the effects of Buyang Huanwu Decoction(BYHWD) on platelet activation and differential gene expression after acute myocardial infarction(AMI). SD rats were randomly divided into a sham-operated group, a model group, a positive drug(aspirin) group, and a BYHWD group. Pre-treatment was conducted for 14 days with a daily oral dose of 1.6 g·kg~(-1) BYHWD and 0.1 g·kg~(-1) aspirin. The AMI model was established using the high ligation of the left anterior descending coronary artery method. The detection indicators included myocardial infarct size, heart function, myocardial tissue pathology, peripheral blood flow perfusion, platelet aggregation rate, platelet membrane glycoprotein CD62p expression, platelet transcriptomics, and differential gene expression. The results showed that compared with the sham-operated group, the model group showed reduced ejection fraction and cardiac output, decreased peripheral blood flow, and increased platelet aggregation rate and CD62p expression, and activated platelets. At the same time, TXB_2 content increased and 6-keto-PGF1α content decreased in serum. Compared with the model group, BYHWD increased ejection fraction and cardiac output, improved blood circulation in the foot and tail regions and cardiomyocytes arrangement, reduced myocardial infarct size and inflammatory infiltration, down-regulated platelet aggregation rate and CD62p expression, reduced serum TXB_2 content, and increased 6-keto-PGF1α content. Platelet transcriptome sequencing results revealed that BYHWD regulated mTOR-autophagy pathway-related genes in platelets. The differential gene expression levels were detected using real-time quantitative PCR. BYHWD up-regulated mTOR, down-regulated autophagy-related FUNDC1 and PINK genes, and up-regulated p62 gene expression. The results demonstrated that BYHWD could regulate platelet activation, improve blood circulation, and protect ischemic myocardium in AMI rats, and its mechanism is related to the regulation of the mTOR-autophagy pathway in platelets.


Subject(s)
Rats , Animals , Rats, Sprague-Dawley , Drugs, Chinese Herbal/therapeutic use , Myocardial Infarction/genetics , Myocardium/metabolism , Aspirin/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins
3.
Protein & Cell ; (12): 123-136, 2023.
Article in English | WPRIM | ID: wpr-971616

ABSTRACT

NDFIP1 has been previously reported as a tumor suppressor in multiple solid tumors, but the function of NDFIP1 in NSCLC and the underlying mechanism are still unknown. Besides, the WW domain containing proteins can be recognized by NDFIP1, resulted in the loading of the target proteins into exosomes. However, whether WW domain-containing transcription regulator 1 (WWTR1, also known as TAZ) can be packaged into exosomes by NDFIP1 and if so, whether the release of this oncogenic protein via exosomes has an effect on tumor development has not been investigated to any extent. Here, we first found that NDFIP1 was low expressed in NSCLC samples and cell lines, which is associated with shorter OS. Then, we confirmed the interaction between TAZ and NDFIP1, and the existence of TAZ in exosomes, which requires NDFIP1. Critically, knockout of NDFIP1 led to TAZ accumulation with no change in its mRNA level and degradation rate. And the cellular TAZ level could be altered by exosome secretion. Furthermore, NDFIP1 inhibited proliferation in vitro and in vivo, and silencing TAZ eliminated the increase of proliferation caused by NDFIP1 knockout. Moreover, TAZ was negatively correlated with NDFIP1 in subcutaneous xenograft model and clinical samples, and the serum exosomal TAZ level was lower in NSCLC patients. In summary, our data uncover a new tumor suppressor, NDFIP1 in NSCLC, and a new exosome-related regulatory mechanism of TAZ.


Subject(s)
Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Carrier Proteins/metabolism , Cell Line , Cell Proliferation , Exosomes/metabolism , Lung Neoplasms/genetics , Membrane Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism
4.
Journal of Southern Medical University ; (12): 242-250, 2023.
Article in Chinese | WPRIM | ID: wpr-971521

ABSTRACT

OBJECTIVE@#To screen the differentially expressed long non-coding RNAs (lncRNAs) in non-small cell lung cancer (NSCLC) cells with acquired resistance to osimertinib and explore their roles in drug resistance of the cells.@*METHODS@#The cell lines H1975_OR and HCC827_OR with acquired osimertinib resistance were derived from their osimertinib-sensitive parental NSCLC cell lines H1975 and HCC827, respectively, and their sensitivity to osimertinib was assessed with CCK-8 assay, clone formation assay and flow cytometry. RNA sequencing (RNA-seq) and real-time quantitative PCR (qPCR) were used to screen the differentially expressed lncRNAs in osimertinib-resistant cells. The role of the identified lncRNA in osimertinib resistance was explored using CCK-8, clone formation and Transwell assays, and its subcellular localization and downstream targets were analyzed by nucleoplasmic separation, bioinformatics analysis and qPCR.@*RESULTS@#The resistance index of H1975_OR and HCC827_OR cells to osimertinib was 598.70 and 428.82, respectively (P < 0.001), and the two cell lines showed significantly increased proliferation and colony-forming abilities with decreased apoptosis (P < 0.01). RNA-seq identified 34 differentially expressed lncRNAs in osimertinib-resistant cells, and among them lnc-TMEM132D-AS1 showed the highest increase of expression after acquired osimertinib resistance (P < 0.01). Analysis of the TCGA database suggested that the level of lnc-TMEM132D-AS1 was significantly higher in NSCLC than in adjacent tissues (P < 0.001), and its high expression was associated with a poor prognosis of the patients. In osimertinib-sensitive cells, overexpression of Lnc-TMEM132D-AS1 obviously promoted cell proliferation, colony formation and migration (P < 0.05), while Lnc-TMEM132D-AS1 knockdown partially restored osimertinib sensitivity of the resistant cells (P < 0.01). Lnc-TMEM132D-AS1 was localized mainly in the cytoplasm, and bioinformatics analysis suggested that hsa-miR-766-5p was its candidate target, and their expression levels were inversely correlated. The target mRNAs of hsa-miR-766-5p were mainly enriched in the Ras signaling pathway.@*CONCLUSION@#The expression of lnc-TMEM132D-AS1 is significantly upregulated in NSCLC cells with acquired osimertinib resistance, and may serve as a potential biomarker and therapeutic target for osimertinibresistant NSCLC.


Subject(s)
Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/genetics , RNA, Long Noncoding/metabolism , Sincalide/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cell Movement , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic , Membrane Proteins/metabolism
5.
Journal of Southern Medical University ; (12): 166-174, 2023.
Article in Chinese | WPRIM | ID: wpr-971511

ABSTRACT

OBJECTIVE@#To investigate the effects of LASS2/TMSG1 gene overexpression on proliferation and apoptosis of human lung cancer A549 cells and explore the possible mechanism.@*METHODS@#We examined LASS2/TMSG1 expression level in a previously constructed A549 cell line overexpressing LASS2/TMSG1 using Western blotting. The proliferation and apoptosis of the cells were detected using colony-forming assay, CCK-8 assay, Hoechst/PI double staining and flow cytometry. Fourteen nude mice were randomized into 2 groups (n=7) to receive subcutaneous injection of A549 cells with or without LASS2/TMSG1 overexpression on the back of the neck, and the cell proliferation in vivo was observed. The expression levels of p38 MAPK protein and p-p38 MAPK protein in the xenografts were detected with Western blotting. ELISA was used to detect the levels of ceramide and p38 MAPK protein in cultured A549 cell supernatants and the xenografts in nude mice.@*RESULTS@#Compared with the negative control cells, A549 cells with LASS2/TMSG1 overexpression had significantly lowered proliferation ability in vitro with increased early apoptosis rate (P < 0.05), and showed obvious growth inhibition after inoculation in nude mice(P < 0.05). Western blotting showed that in both cultured A549 cells and the xenografts in nude mice, LASS2/TMSG1 gene overexpression significantly increased the expression levels of p38 MAPK protein and p-p38 MAPK protein (P < 0.05); the results of ELISA also revealed significantly increased levels of ceramide and p38 MAPK protein in the cell supernatant andxenografts as well (P < 0.05).@*CONCLUSION@#Overexpression of LASS2/TMSG1 gene can significantly inhibit the proliferation and promote early apoptosis of human lung cancer A549 cells both in vitro and in vivo possibly by upregulating the expressions of ceramide and p38 MAPK protein to activate a signal transduction cascade.


Subject(s)
Animals , Humans , Mice , A549 Cells , Apoptosis , Cell Line, Tumor , Cell Proliferation , Lung Neoplasms , Membrane Proteins/metabolism , Mice, Nude , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Tumor Suppressor Proteins/metabolism
6.
Chinese Journal of Biotechnology ; (12): 4796-4808, 2023.
Article in Chinese | WPRIM | ID: wpr-1008059

ABSTRACT

This study aimed to explore the mechanism of how African swine fever virus (ASFV) I226R protein inhibits the cGAS-STING signaling pathway. We observed that I226R protein (pI226R) significantly inhibited the cGAS-STING-mediated type Ⅰ interferons and the interferon-stimulated genes production by dual-luciferase reporter assay system and real-time quantitative PCR. The results of co-immunoprecipitation assay and confocal microscopy showed that pI226R interacted with cGAS. Furthermore, pI226R promoted cGAS degradation through autophagy-lysosome pathway. Moreover, we found that pI226R decreased the binding of cGAS to E3 ligase tripartite motif protein 56 (TRIM56), resulting in the weakened monoubiquitination of cGAS, thus inhibiting the activation of cGAS and cGAS-STING signaling. In conclusion, ASFV pI226R suppresses the antiviral innate immune response by antagonizing cGAS, which contributes to an in-depth understanding of the immune escape mechanism of ASFV and provides a theoretical basis for the development of vaccines.


Subject(s)
Animals , Swine , African Swine Fever Virus/metabolism , Membrane Proteins/metabolism , Immunity, Innate , Nucleotidyltransferases/metabolism , Signal Transduction/genetics
7.
Chinese Medical Journal ; (24): 2694-2705, 2023.
Article in English | WPRIM | ID: wpr-1007701

ABSTRACT

BACKGROUND@#Previous studies have examined the bulk transcriptome of peripheral blood immune cells in acquired immunodeficiency syndrome patients experiencing immunological non-responsiveness. This study aimed to investigate the characteristics of specific immune cell subtypes in acquired immunodeficiency syndrome patients who exhibit immunological non-responsiveness.@*METHODS@#A single-cell transcriptome sequencing of peripheral blood mononuclear cells obtained from both immunological responders (IRs) (CD4 + T-cell count >500) and immunological non-responders (INRs) (CD4 + T-cell count <300) was conducted. The transcriptomic profiles were used to identify distinct cell subpopulations, marker genes, and differentially expressed genes aiming to uncover potential genetic factors associated with immunological non-responsiveness.@*RESULTS@#Among the cellular subpopulations analyzed, the ratios of monocytes, CD16 + monocytes, and exhausted B cells demonstrated the most substantial differences between INRs and IRs, with fold changes of 39.79, 11.08, and 2.71, respectively. In contrast, the CD4 + T cell ratio was significantly decreased (0.39-fold change) in INRs compared with that in IRs. Similarly, the ratios of natural killer cells and terminal effector CD8 + T cells were also lower (0.37-fold and 0.27-fold, respectively) in the INRs group. In addition to several well-characterized immune cell-specific markers, we identified a set of 181 marker genes that were enriched in biological pathways associated with human immunodeficiency virus (HIV) replication. Notably, ISG15 , IFITM3 , PLSCR1 , HLA-DQB1 , CCL3L1 , and DDX5 , which have been demonstrated to influence HIV replication through their interaction with viral proteins, emerged as significant monocyte marker genes. Furthermore, the differentially expressed genes in natural killer cells were also enriched in biological pathways associated with HIV replication.@*CONCLUSIONS@#We generated an atlas of immune cell transcriptomes in HIV-infected IRs and INRs. Host genes associated with HIV replication were identified as markers of, and were found to be differentially expressed in, different types of immune cells.


Subject(s)
Humans , Acquired Immunodeficiency Syndrome , Transcriptome/genetics , HIV , HIV Infections/genetics , Leukocytes, Mononuclear/metabolism , CD4-Positive T-Lymphocytes/metabolism , Virus Replication , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism
8.
Acta Physiologica Sinica ; (6): 160-170, 2023.
Article in Chinese | WPRIM | ID: wpr-980993

ABSTRACT

This study aimed to investigate the effect of treadmill exercise on neuropathic pain and to determine whether mitophagy of the anterior cingulate cortex (ACC) contributes to exercise-mediated amelioration of neuropathic pain. Chronic constriction injury of the sciatic nerve (CCI) was used to establish a neuropathic pain model in Sprague-Dawley (SD) rats. Von-Frey filaments were used to assess the mechanical paw withdrawal threshold (PWT), and a thermal radiation meter was used to assess the thermal paw withdrawal latency (PWL) in rats. qPCR was used to evaluate the mRNA levels of Pink1, Parkin, Fundc1, and Bnip3. Western blot was used to evaluate the protein levels of PINK1 and PARKIN. To determine the impact of the mitophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP) on pain behaviors in CCI rats, 24 SD rats were randomly divided into CCI drug control group (CCI+Veh group), CCI+CCCP low-dose group (CCI+CCCP0.25), CCI+CCCP medium-dose group (CCI+CCCP2.5), and CCI+CCCP high-dose group (CCI+CCCP5). Pain behaviors were assessed on 0, 1, 3, 5, and 7 days after modeling. To explore whether exercise regulates pain through mitophagy, 24 SD rats were divided into sham, CCI, and CCI+Exercise (CCI+Exe) groups. The rats in the CCI+Exe group underwent 4-week low-moderate treadmill training one week after modeling. The mechanical pain and thermal pain behaviors of the rats in each group were assessed on 0, 7, 14, 21, and 35 days after modeling. Western blot was used to detect the levels of the mitophagy-related proteins PINK1, PARKIN, LC3 II/LC3 I, and P62 in ACC tissues. Transmission electron microscopy was used to observe the ultrastructure of mitochondrial morphology in the ACC. The results showed that: (1) Compared with the sham group, the pain thresholds of the ipsilateral side of the CCI group decreased significantly (P < 0.001). Meanwhile, the mRNA and protein levels of Pink1 were significantly higher, and those of Parkin were lower in the CCI group (P < 0.05). (2) Compared with the CCI+Veh group, each CCCP-dose group showed higher mechanical and thermal pain thresholds, and the levels of PINK1 and LC3 II/LC3 I were elevated significantly (P < 0.05, P < 0.01). (3) The pain thresholds of the CCI+Exe group increased significantly compared with those of the CCI group after treadmill intervention (P < 0.001, P < 0.01). Compared with the CCI group, the protein levels of PINK1 and P62 were decreased (P < 0.001, P < 0.01), and the protein levels of PARKIN and LC3 II/LC3 I were increased in the CCI+Exe group (P < 0.01, P < 0.05). Rod-shaped mitochondria were observed in the ACC of CCI+Exe group, and there were little mitochondrial fragmentation, swelling, or vacuoles. The results suggest that the mitochondrial PINK1/PARKIN autophagy pathway is blocked in the ACC of neuropathic pain model rats. Treadmill exercise could restore mitochondrial homeostasis and relieve neuropathic pain via the PINK1/PARKIN pathway.


Subject(s)
Rats , Animals , Mitophagy/physiology , Rats, Sprague-Dawley , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Gyrus Cinguli , Neuralgia , Ubiquitin-Protein Ligases/metabolism , Protein Kinases , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism
9.
Chinese Journal of Hepatology ; (12): 56-64, 2023.
Article in Chinese | WPRIM | ID: wpr-970952

ABSTRACT

Objective: To investigate the efficacy of chitinase-3-like protein 1 (CHI3L1) and Golgi protein 73 (GP73) in the diagnosis of cirrhosis and the dynamic changes of CHI3L1 and GP73 after HCV clearance in patients with chronic hepatitis C (CHC) treated with direct-acting antiviral drugs (DAAs). The comparison of continuous variables of normal distribution were statistically analyzed by ANOVA and t-test. The comparison of continuous variables of non-normal distribution were statistically analyzed by rank sum test. The categorical variables were statistically analyzed by Fisher's exact test and χ(2) test. Correlation analysis was performed using Spearman correlation analysis. Methods: Data of 105 patients with CHC diagnosed from January 2017 to December 2019 were collected. The receiver operating characteristic curve (ROC curve) was plotted to study the efficacy of serum CHI3L1 and GP73 for the diagnosis of cirrhosis. Friedman test was used to compare CHI3L1 and GP73 change characteristics. Results: The areas under the ROC curve for CHI3L1 and GP73 in the diagnosis of cirrhosis at baseline were 0.939 and 0.839, respectively. Serum levels of CHI3L1 and GP73 in the DAAs group decreased significantly at the end of treatment compared with baseline [123.79 (60.25, 178.80) ng/ml vs. 118.20 (47.68, 151.36) ng/ml, P = 0.001; 105.73 (85.05, 130.69) ng/ml vs. 95.52 (69.52, 118.97) ng/ml, P = 0.001]. Serum CHI3L1 and GP73 in the pegylated interferon combined with ribavirin (PR) group were significantly lower at the end of 24 weeks of treatment than the baseline [89.15 (39.15, 149.74) ng/ml vs. 69.98 (20.52, 71.96) ng/ml, P < 0.05; 85.07 (60.07, 121) ng/ml vs. 54.17 (29.17, 78.65) ng/ml, P < 0.05]. Conclusion: CHI3L1 and GP73 are sensitive serological markers that can be used to monitor the fibrosis prognosis in CHC patients during treatment and after obtaining a sustained virological response. Serum CHI3L1 and GP73 levels in the DAAs group decreased earlier than those in the PR group, and the serum CHI3L1 levels in the untreated group increased compared with the baseline at about two years of follow-up.


Subject(s)
Humans , Hepatitis C, Chronic/drug therapy , Antiviral Agents/therapeutic use , Membrane Proteins/metabolism , Liver Cirrhosis/diagnosis , Fibrosis , Biomarkers
10.
Chinese Journal of Lung Cancer ; (12): 452-459, 2022.
Article in Chinese | WPRIM | ID: wpr-939731

ABSTRACT

Mucin16 (MUC16), also known as carbohydrate antigen 125 (CA125), is a glycoprotein antigen that can be recognized by the monoclonal antibody OC125 detected from epithelial ovarian carcinoma antigen by Bast et al in 1981. CA125 is not present in normal ovarian tissue but is usually elevated in the serum of epithelial ovarian carcinoma patients. CA125 is the most commonly used serologic biomarker for the diagnosis and recurrence monitoring of epithelial ovarian carcinoma. MUC16 is highly expressed in varieties of tumors. MUC16 can interact with galectin-1/3, mesothelin, sialic acid-binding immunoglobulin-type lectins-9 (Siglec-9), and other ligands. MUC16 plays an important role in tumor genesis, proliferation, migration, invasion, and tumor immunity through various signaling pathways. Besides, therapies targeting MUC16 have some significant achievements. Related preclinical studies and clinical trials are in progress. MUC16 may be a potential novel target for tumor therapy. This article will review the mechanism of MUC16 in tumor genesis and progression, and focus on the research actuality of MUC16 in tumor therapy. This article also provides references for subsequent tumor therapy studies targeting MUC16.
.


Subject(s)
Female , Humans , CA-125 Antigen/metabolism , Carcinoma, Ovarian Epithelial , Lung Neoplasms , Membrane Proteins/metabolism , Ovarian Neoplasms/pathology
11.
Chinese Journal of Lung Cancer ; (12): 385-395, 2022.
Article in Chinese | WPRIM | ID: wpr-939722

ABSTRACT

BACKGROUND@#Reticulosome family gene 1 (RTN1) is a reticulosome-encoding gene associated with the endoplasmic reticulum. RTN1 plays a key role in membrane trafficking or neuroendocrine secretion of neuroendocrine cells, while RTN1 serves as a potential diagnostic/therapeutic marker for neurological diseases and cancer. However, the expression of RTN1 and its effect on the immune microenvironment in patients with lung adenocarcinoma have not been reported. In this study, we aimed to investigate the expression of RTN1 in lung adenocarcinoma and its correlation with immune infiltration and survival in lung adenocarcinoma using public databases and bioinformatics network tools.@*METHODS@#Expression levels of RTN1 mRNA in tumor and normal tissues were analyzed using Tumor Immune Estimation Resource 2.0 (TIMER 2.0) and Gene Expression Profiling Interactive Analysis 2 (GEPIA 2). RTN1 protein expression was examined using the Human Protein Atlas. The clinical prognostic significance of RTN1 was analyzed using the GEPIA2 plotter database. To further confirm the potential function of RTN1, the data were analyzed using gene set enrichment analysis. In addition, We performed dimensionality-reduced clustering analysis at the single-cell sequencing level on two datasets from the Tumor Immune Single-cell Hub (TISCH) database to observe the cellular clustering of RTN1 in different types of immune cells. Using the TIMER online tool to analyze and predict the infiltration abundance of different types of immune cells in the immune microenvironment of lung adenocarcinoma patients in the TCGA cohort; TIMER and CIBERSORT were used to study the relationship between genes co-expressed with RTN1 and its associated tumor-infiltrating immune cells; finally, TIMER was used to analyze the relationship between RTN1 and immune correlations between immune checkpoints.@*RESULTS@#We found that RTN1 expression was decreased in patients with lung adenocarcinoma and was closely related to patient prognosis. RTN1 is involved in the process of phagosome formation, hematopoietic cell formation and cell adhesion, and plays an important role in T cell activation. Using cBioPortal and TCGA data to analyze, it is found that RTN1 is significantly associated with BTK, CD4, ECSF1R, MNDA, NCKAP1L and SNX20. High expression of the above genes may cause significant upregulation of CD4+ T cells, mast cells, monocytes, myeloid dendritic cells and M1 macrophages. The expression of RTN1 is closely related to the common immune checkpoints CD274, CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT and SIGLEC15 immune checkpoints.@*CONCLUSIONS@#RTN1 may act as a tumor suppressor gene and indicate better prognosis. Furthermore, RTN1 is associated with immune infiltration that may be involved in the immunotherapy response in LUAD. However, the related mechanism needs further research.


Subject(s)
Humans , Adenocarcinoma of Lung/pathology , Biomarkers, Tumor/metabolism , Gene Expression Profiling , Lung Neoplasms/pathology , Mast Cells/pathology , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Prognosis , Sorting Nexins/metabolism , Tumor Microenvironment/genetics
12.
Journal of Experimental Hematology ; (6): 688-694, 2022.
Article in Chinese | WPRIM | ID: wpr-939676

ABSTRACT

OBJECTIVE@#To express matrix remodeling associated 7 (MXRA7) in the human acute myeloid leukemia SHI-1 cell line and to assess the role of MXRA7 in the biological function of SHI-1 cells.@*METHODS@#The full-length cDNA sequence of human MXRA7 was synthesized and subcloned into the lentivirus shuttle vector pRRL-Venus. SHI-1 cells were transfected with the lentivirus which was packaged with 293T cells. The YFP-positive cells were sorted by flow cytometry and the stable cell lines were obtained by expanded culture. The expression and distribution of MXRA7 in SHI-1 cells were verified by real-time qPCR, Western blot and laser confocal techniques. Cell proliferation and cell cycle were measured by flow cytometry, and apoptosis was determined by Annexin V and 7-AAD staining. The expression of apoptosis related proteins were detected by Western blot.@*RESULTS@#The stable SHI-1 cell line overexpressing MXRA7 was established successfully. Laser confocal analysis confirmed that MXRA7 was expressed in the cytoplasm of SHI-1 cells. Compared with the control cell line, the overexpression of MXRA7 showed no effect on the cell proliferation and cell cycle, but reduced the percentage of apoptosis cells induced by methotrexate. Moreover, the expression of BCL-2 protein was increased by overexpression of MXRA7, which can inhibit cell apoptosis.@*CONCLUSION@#The SHI-1 stable cell line overexpressing MXRA7 was established successfully, and MXRA7 could inhibit drug-induced apoptosis through increasing the expression of BCL-2 protein.


Subject(s)
Humans , Apoptosis , Apoptosis Regulatory Proteins , Cell Line, Tumor , Cell Movement , Cell Proliferation , Membrane Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism
13.
Journal of Southern Medical University ; (12): 330-337, 2022.
Article in Chinese | WPRIM | ID: wpr-936320

ABSTRACT

OBJECTIVE@#To investigate the effects of Bax inhibitor 1 (BI- 1) and optic atrophy protein 1 (OPA1) on vascular calcification (VC).@*METHODS@#Mouse models of VC were established in ApoE-deficient (ApoE-/-) diabetic mice by high-fat diet feeding for 12 weeks followed by intraperitoneal injections with Nε-carboxymethyl-lysine for 16 weeks. ApoE-/- mice (control group), ApoE-/- diabetic mice (VC group), ApoE-/- diabetic mice with BI-1 overexpression (VC + BI-1TG group), and ApoE-/- diabetic mice with BI-1 overexpression and OPA1 knockout (VC+BI-1TG+OPA1-/- group) were obtained for examination of the degree of aortic calcification using von Kossa staining. The changes in calcium content in the aorta were analyzed using ELISA. The expressions of Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein 2 (BMP-2) were detected using immunohistochemistry, and the expression of cleaved caspase-3 was determined using Western blotting. Cultured mouse aortic smooth muscle cells were treated with 10 mmol/L β-glycerophosphate for 14 days to induce calcification, and the changes in BI-1 and OPA1 protein expressions were examined using Western blotting and cell apoptosis was detected using TUNEL staining.@*RESULTS@#ApoE-/- mice with VC showed significantly decreased expressions of BI-1 and OPA1 proteins in the aorta (P=0.0044) with obviously increased calcium deposition and expressions of RUNX2, BMP-2 and cleaved caspase-3 (P= 0.0041). Overexpression of BI-1 significantly promoted OPA1 protein expression and reduced calcium deposition and expressions of RUNX2, BMP-2 and cleaved caspase-3 (P=0.0006). OPA1 knockdown significantly increased calcium deposition and expressions of RUNX2, BMP-2 and cleaved caspase-3 in the aorta (P=0.0007).@*CONCLUSION@#BI-1 inhibits VC possibly by promoting the expression of OPA1, reducing calcium deposition and inhibiting osteogenic differentiation and apoptosis of the vascular smooth muscle cells.


Subject(s)
Animals , Mice , Apolipoproteins E/metabolism , Calcium/metabolism , Caspase 3/metabolism , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Diabetes Mellitus, Experimental/pathology , GTP Phosphohydrolases/metabolism , Membrane Proteins/metabolism , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Optic Atrophy, Autosomal Dominant/pathology , Osteogenesis , Vascular Calcification/pathology , bcl-2-Associated X Protein/metabolism
14.
Biol. Res ; 55: 22-22, 2022. ilus, graf
Article in English | LILACS | ID: biblio-1383923

ABSTRACT

BACKGROUND: Retinal neurodegeneration is induced by a variety of environmental insults and stresses, but the exact mechanisms are unclear. In the present study, we explored the involvement of cytosolic mitochondrial DNA (mtDNA), resulting in the cGAS-STING dependent inflammatory response and apoptosis in retinal damage in vivo. METHODS: Retinal injury was induced with white light or intravitreal injection of lipopolysaccharide (LPS). After light-or LPS-induced injury, the amount of cytosolic mtDNA in the retina was detected by PCR. The mtDNA was isolated and used to transfect retinas in vivo. WB and real-time PCR were used to evaluate the activation of cGAS-STING path-way and the levels of apoptosis-associated protein at different times after mtDNA injection. Retinal cell apoptosis rate was detected by TUNEL staining. Full-field electroretinography (ERG) was used to assess the retinal function. RESULTS: Light injury and the intravitreal injection of LPS both caused the leakage of mtDNA into the cytoplasm in retinal tissue. After the transfection of mtDNA in vivo, the levels of cGAS, STING, and IFN-ß mRNAs and the protein levels of STING, phosph-TBK1, phospho-IRF3, and IFN-ß were upregulated. mtDNA injection also induced the activation of caspase 3 and caspase 9. BAX and BAK were increased at both the mRNA and protein levels. The release of cytochrome c from the mitochondria to the cytosol was increased after mtDNA injection. The wave amplitudes on ERG decreased and retinal cell apoptosis was detected after mtDNA injection. CONCLUSIONS: Cytosolic mtDNA triggers an inflammatory response. It also promotes apoptosis and the dysfunction of the retina.


Subject(s)
Animals , Rats , DNA, Mitochondrial/genetics , Lipopolysaccharides , Intravitreal Injections , Membrane Proteins/metabolism , Mitochondria , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism
15.
Chinese Journal of Biotechnology ; (12): 3300-3309, 2021.
Article in Chinese | WPRIM | ID: wpr-921426

ABSTRACT

In Gram-negative bacteria, lipopolysaccharide transport (Lpt) protein LptA and LptC form a complex to transport LPS from the inner membrane (IM) to the outer membrane (OM). Blocking the interaction between LptA and LptC will lead to the defect of OM and cell death. Therefore, Lpt protein interaction could be used as a target to screen new drugs for killing Gram-negative bacteria. Here we used biolayer interferometry (BLI) assay to detect the interaction between LptA and LptC, with the aim to develop a method for screening the LptA/LptC interaction blockers in vitro. Firstly, LptC and LptA with or without signal peptide (LptAfull or LptAno signal) were expressed in E. coli BL21(DE3). The purified proteins were then labeled with biotin and the super streptavidin (SSA) biosensor was blocked with diluent. The biotin labeled protein sample was mixed with the sensor, and then the binding of the protein with a series of diluted non biotinylated protein was detected. At the same time, non-biotinylated protein was used as a control. The binding of biotinylated protein to a small molecule IMB-881 and the blocking of interaction were also detected by the same method. In the blank control, the biosensor without biotinylated protein was used to detect the serially diluted samples. The signal response constant was calculated by using steady analysis. The results showed that biotinylated LptC had a good binding activity with LptAfull and LptAno signal with KD value 2.9e⁻⁷±7.9e⁻⁸ and 6.0e⁻⁷±2.8e⁻⁸, respectively; biotinylated LptAno signal had a good binding activity with LptC, with a KD value of 9.6e⁻⁷±7.2e⁻⁸. All binding curves showed obvious fast binding and fast dissociation morphology. The small molecule compound IMB-881 can bind to LptA to block the interaction between LptA and LptC, but has no binding activity with LptC. In summary, we developed a method for detecting the LptA/LptC interaction based on the BLI technology, and confirmed that this method can be used to evaluate the blocking activity of small molecule blockers, providing a new approach for the screening of LptA/LptC interaction blockers.


Subject(s)
Carrier Proteins , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Interferometry , Membrane Proteins/metabolism
16.
Chinese Journal of Biotechnology ; (12): 3201-3210, 2021.
Article in Chinese | WPRIM | ID: wpr-921417

ABSTRACT

In order to study the signal pathway secreting type Ⅰ interferon in porcine alveolar macrophages (PAMs) infected with porcine circovirus type 2 (PCV2), the protein and the mRNA expression levels of cGAS/STING pathways were analyzed by ELISA, Western blotting and quantitative reverse transcriptase PCR in PAMs infected with PCV2. In addition, the roles of cGAS, STING, TBK1 and NF-κB/P65 in the generation of type I interferon (IFN-I) from PAMs were analyzed by using the cGAS and STING specific siRNA, inhibitors BX795 and BAY 11-7082. The results showed that the expression levels of IFN-I increased significantly at 48 h after infection with PCV2 (P<0.05), the mRNA expression levels of cGAS increased significantly at 48 h and 72 h after infection (P<0.01), the mRNA expression levels of STING increased significantly at 72 h after infection (P<0.01), and the mRNA expression levels of TBK1 and IRF3 increased at 48 h after infection (P<0.01). The protein expression levels of STING, TBK1 and IRF3 in PAMs infected with PCV2 were increased, the content of NF-κB/p65 was decreased, and the nuclear entry of NF-κB/p65 and IRF3 was promoted. After knocking down cGAS or STING expression by siRNA, the expression level of IFN-I was significantly decreased after PCV2 infection for 48 h (P<0.01). BX795 and BAY 11-7082 inhibitors were used to inhibit the expression of IRF3 and NF-κB, the concentration of IFN-I in BX795-treated group was significantly reduced than that of the PCV2 group (P<0.01), while no significant difference was observed between the BAY 11-7028 group and the PCV2 group. The results showed that PAMs infected with PCV2 induced IFN-I secretion through the cGAS/STING/TBK1/IRF3 signaling pathway.


Subject(s)
Animals , Cells, Cultured , Circovirus , Interferon Type I/genetics , Macrophages, Alveolar/virology , Membrane Proteins/metabolism , Nucleotidyltransferases/metabolism , Signal Transduction , Swine
17.
Braz. dent. j ; 31(2): 122-126, Mar.-Apr. 2020. tab, graf
Article in English | LILACS, BBO | ID: biblio-1132280

ABSTRACT

Abstract Although periodontitis is one of the commonest infectious inflammatory diseases in humans, the mechanisms involved with its immunopathology remain ill understood. Numerous molecules may induce inflammation and lead to bone resorption, secondary to activation of monocytes into osteoclasts. TACE (TNF-α converting enzyme) and DC-STAMP (dendritic cell-specific transmembrane protein) appear to play a role on bone resorption since TACE induces the release of sRANKL (soluble receptor activator of nuclear factor kappa-β ligand) whereas DC-STAMP is a key factor in osteoclast induction. The present study evaluated the levels of TACE and DC-STAMP in patients with and without periodontitis. Twenty individuals were selected: 10 periodontally healthy participants undergoing gingivectomy for esthetic reasons and 10 diagnosed with periodontitis. Protein levels of such molecules in gingival tissue were established using Western blotting. Protein levels of both TACE and DC-STAMP were higher in the periodontitis group than in the control group (p<0.05; Student t-test). In conclusion, TACE and DC-STAMP protein levels are elevated in patients with periodontitis, favoring progression of bone resorption.


Resumo Apesar de a periodontite ser uma das doenças infecto inflamatórias humanas mais comuns, os mecanismos que conduzem à imunopatologia não estão bem definidos. Inúmeras moléculas induzem atividade inflamatória que levam à perda óssea. Para que haja a reabsorção óssea, células monocíticas são ativadas e se transformam em osteoclastos. As moléculas TACE (Enzima conversora de TNF-α) e DC-STAMP (Proteína transmembrana específica de célula dendrítica) parecem atuar no processo de reabsorção óssea uma vez que a TACE induz a liberação de sRANKL (ativador do receptor do fator nuclear kappa-β ligante solúvel), enquanto a DC-STAMP é um fator chave na indução dos osteoclastos. Diante disso, o presente estudo avaliou a expressão gênica das moléculas TACE e DC-STAMP em pacientes com e sem periodontite uma vez que o papel destas moléculas no curso do desenvolvimento da periodontite ainda é pouco explorado. Foram selecionados 20 indivíduos, sendo 10 com saúde periodontal e com indicação para remoção de tecido gengival por motivos estéticos e 10 pacientes com periodontite. As análises da expressão das moléculas no tecido gengival foram realizadas por meio de western blotting. Os níveis proteicos tanto de TACE quanto de DC-STAMP, foram maiores nos tecidos do grupo com periodontite em comparação aos do grupo controle (p<0.05; Student' t-test). Portanto, os dados demonstram que a expressão protéica das moléculas TACE e DC-STAMP estão elevados em pacientes com periodontite, favorecendo a progressão da reabsorção óssea nesta patologia.


Subject(s)
Humans , Periodontitis , Bone Resorption , Adaptor Proteins, Signal Transducing/metabolism , ADAM17 Protein/metabolism , Membrane Proteins/metabolism , Osteoclasts , Cell Differentiation
18.
Arch. endocrinol. metab. (Online) ; 63(4): 438-444, July-Aug. 2019. tab, graf
Article in English | LILACS | ID: biblio-1019366

ABSTRACT

ABSTRACT Pubertal timing in humans is determined by complex interactions including hormonal, metabolic, environmental, ethnic, and genetic factors. Central precocious puberty (CPP) is defined as the premature reactivation of the hypothalamic-pituitary-gonadal axis, starting before the ages of 8 and 9 years in girls and boys, respectively; familial CPP is defined by the occurrence of CPP in two or more family members. Pioneering studies have evidenced the participation of genetic factors in pubertal timing, mainly identifying genetic causes of CPP in sporadic and familial cases. In this context, rare activating mutations were identified in genes of the kisspeptin excitatory pathway (KISS1R and KISS1 mutations). More recently, loss-of-function mutations in two imprinted genes (MKRN3 and DLK1) have been identified as important causes of familial CPP, describing novel players in the modulation of the hypothalamic-pituitary-gonadal axis in physiological and pathological conditions. MKRN3 mutations are the most common cause of familial CPP, and patients with MKRN3 mutations present clinical features indistinguishable from idiopathic CPP. Meanwhile, adult patients with DLK1 mutations present high frequency of metabolic alterations (overweight/obesity, early onset type 2 diabetes and hyperlipidemia), indicating that DLK1 may be a novel link between reproduction and metabolism. Arch Endocrinol Metab. 2019;63(4):438-44


Subject(s)
Humans , Puberty, Precocious/genetics , Phenotype , Puberty, Precocious/etiology , Ribonucleoproteins/genetics , Calcium-Binding Proteins , Gene Silencing , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Kisspeptins/genetics , Receptors, Kisspeptin-1/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Methylation , Mutation
19.
Rev. chil. cardiol ; 38(1): 29-36, abr. 2019. graf
Article in Spanish | LILACS | ID: biblio-1003635

ABSTRACT

Resumen: Antecedentes: La muerte de los cardiomiocitos es determinante en el desarrollo de patologías cardiacas posteriores al infarto del miocardio y la insuficiencia cardiaca. Las variaciones en la expresión de la familia de proteínas BCL-2 regulan vías, tanto de muerte, como de sobrevida celular. Así, BCL-2 es una proteína anti- apoptótica y NIX una proteína que induce la necrosis y/o la apoptosis celular. La Policistina-1 (PC1) es un mecanosensor vital para la función contráctil cardiaca; sin embargo, se desconoce su papel en la sobrevida de los cardiomiocitos durante el estrés mecánico. Objetivo: Determinar si PC-1 previene la muerte de los cardiomiocitos inducida por estrés mecánico y las proteínas BCL-2 y NIX. Métodos: Se utilizó cultivo de cardiomiocitos de ratas neonatas controles o deficientes en la expresión de PC1, estimulados con solución hiposmótica (HS), como modelo de estrés mecánico. Se midió la muerte por necrosis y apoptosis y los niveles de BCL-2 y NIX. Resultados: La deficiencia de la PC1 en los cardiomiocitos induce un aumento de la necrosis y los niveles proteicos de NIX en las células estimuladas con HS. El estrés mecánico induce la apoptosis basal relacionada a una disminución de BCL- 2, independiente de la expresión de la PC1. Conclusiones: La PC1 protege a los cardiomiocitos de la necrosis por estrés mecánico, lo que podría deberse en parte a su papel en la regulación de los niveles de las proteínas NIX.


Abstracts: Background: Cardiomyocytes death is a determining factor in the development of cardiac dysfunction after myocardial infarction and heart failure. The change in BCL-2 family protein expression regulates both cell death and survival pathways, whereas BCL-2 is an anti-apoptotic protein and NIX induces necrosis and/or apoptosis. Polycystin-1 (PC1) is a crucial mechanosensor for cardiac contractile function. However, its role in cardiomyocyte survival during mechanical stress is unknown. Aim: To study the relationship of PC1 with mechanical stretch-death in cardiomyocytes and the BCL-2, and NIX proteins. Methods. Controls or deficient expression of PC1 neonatal rat ventricular myocytes were stimulated with hypoosmotic solution (HS) and used as a model of mechanical stress. Necrosis or apoptosis cell death, BCL-2 and NIX protein levels were measured. Results: Deficient expression of PC1 increases cardiomyocyte necrosis and NIX protein levels in cells stimulated with HS. Mechanical stress induces basal apoptosis related to a decrease in BCL-2, independent of PC1 expression. Conclusion: PC1 protects cardiomyocytes from mechanical stress necrosis, at least in part, by regulating NIX protein levels.


Subject(s)
Animals , Male , Rats , Proto-Oncogene Proteins c-bcl-2/metabolism , Myocytes, Cardiac/metabolism , TRPP Cation Channels/metabolism , Necrosis/prevention & control , Stress, Mechanical , Blotting, Western , Rats, Sprague-Dawley , Apoptosis , Flow Cytometry , Membrane Proteins/metabolism
20.
Journal of Zhejiang University. Science. B ; (12): 776-780, 2019.
Article in English | WPRIM | ID: wpr-1010484

ABSTRACT

Laryngeal squamous cell carcinoma (LSCC) is the most common type of head and neck squamous cell carcinoma (HNSCC) worldwide. Protein phosphatase 2A (PP2A) dysfunction has been widely reported in a broad range of malignancies due to its distinctive role in miscellaneous cellular processes. However, it is poorly understood whether aberrant alterations of PP2A are involved in the network of oncogenic events in LSCC. Here, we detected a panel of PP2A-associated proteins using western blot in both laryngeal squamous cell carcinoma tissues and paired adjacent normal tissues from patients (Data S1). We found that phospho-PP2A/C (Y307), α4, cancerous inhibitor of protein phosphatase 2A (CIP2A), Akt, ezrin, phospho-ezrin (T567), 14-3-3, and focal adhesion kinase (FAK) showed increased expression levels in carcinoma tissues relative to normal tissues, while phospho-Akt (T308) showed decreased levels. Our study, thus, provides a rationale for targeting PP2A to develop novel therapies and proposes a combination of interrelated biomarkers for the diagnostic evaluation and prognosis prediction in LSCC.


Subject(s)
Humans , Autoantigens/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/metabolism , Case-Control Studies , Cytoskeletal Proteins/metabolism , Focal Adhesion Kinase 1/metabolism , Gene Expression Profiling , Gene Expression Regulation , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/metabolism , Laryngeal Neoplasms/metabolism , Larynx/metabolism , Membrane Proteins/metabolism , Phosphorylation , Protein Phosphatase 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL