Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 436
Filter
1.
Frontiers of Medicine ; (4): 240-250, 2022.
Article in English | WPRIM | ID: wpr-929208

ABSTRACT

The continuing discoveries of novel classes of RNA modifications in various organisms have raised the need for improving sensitive, convenient, and reliable methods for quantifying RNA modifications. In particular, a subset of small RNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), are modified at their 3'-terminal nucleotides via 2'-O-methylation. However, quantifying the levels of these small RNAs is difficult because 2'-O-methylation at the RNA 3'-terminus inhibits the activity of polyadenylate polymerase and T4 RNA ligase. These two enzymes are indispensable for RNA labeling or ligation in conventional miRNA quantification assays. In this study, we profiled 3'-terminal 2'-O-methyl plant miRNAs in the livers of rice-fed mice by oxidative deep sequencing and detected increasing amounts of plant miRNAs with prolonged oxidation treatment. We further compared the efficiency of stem-loop and poly(A)-tailed RT-qPCR in quantifying plant miRNAs in animal tissues and identified stem-loop RT-qPCR as the only suitable approach. Likewise, stem-loop RT-qPCR was superior to poly(A)-tailed RT-qPCR in quantifying 3'-terminal 2'-O-methyl piRNAs in human seminal plasma. In summary, this study established a standard procedure for quantifying the levels of 3'-terminal 2'-O-methyl miRNAs in plants and piRNAs. Accurate measurement of the 3'-terminal 2'-O-methylation of small RNAs has profound implications for understanding their pathophysiologic roles in biological systems.


Subject(s)
Animals , High-Throughput Nucleotide Sequencing , Humans , Methylation , Mice , MicroRNAs/genetics , Oxidative Stress , RNA, Small Interfering/metabolism , Real-Time Polymerase Chain Reaction
2.
Article in English | WPRIM | ID: wpr-929154

ABSTRACT

The dorsal lingual epithelium, which is composed of taste buds and keratinocytes differentiated from K14+ basal cells, discriminates taste compounds and maintains the epithelial barrier. N6-methyladenosine (m6A) is the most abundant mRNA modification in eukaryotic cells. How METTL3-mediated m6A modification regulates K14+ basal cell fate during dorsal lingual epithelium formation and regeneration remains unclear. Here we show knockout of Mettl3 in K14+ cells reduced the taste buds and enhanced keratinocytes. Deletion of Mettl3 led to increased basal cell proliferation and decreased cell division in taste buds. Conditional Mettl3 knock-in mice showed little impact on taste buds or keratinization, but displayed increased proliferation of cells around taste buds in a protective manner during post-irradiation recovery. Mechanically, we revealed that the most frequent m6A modifications were enriched in Hippo and Wnt signaling, and specific peaks were observed near the stop codons of Lats1 and FZD7. Our study elucidates that METTL3 is essential for taste bud formation and could promote the quantity recovery of taste bud after radiation.


Subject(s)
Animals , Epithelium/metabolism , Homeostasis , Methylation , Methyltransferases/metabolism , Mice , RNA , Taste Buds/metabolism
3.
Article in English | WPRIM | ID: wpr-929012

ABSTRACT

N6-methyladenosine (m6A) methylation modification is one of the most common epigenetic modifications for eukaryotic mRNA. Under the catalytic regulation of relevant enzymes, m6A participates in the body's pathophysiological processes via mediating RNA transcription, splicing, translation, and decay. In the past, we mainly focused on the regulation of m6A in tumors such as hematological tumors, cervical cancer, breast cancer. In recent years, it has been found that m6A is enriched in mRNAs of neurogenesis, cell cycle, and neuron differentiation. Its regulation in the nervous system is gradually being recognized. When the level of m6A modification and the expression levels of relevant enzyme proteins are changed, it will cause neurological dysfunction and participate in the occurrence and conversion of neurological diseases. Recent studies have found that the m6A modification and its associated enzymes were involved in major depressive disorder, Parkinson's disease, Alzheimer's disease, Fragile X syndrome, amyotrophic lateral sclerosis, and traumatic brain injury, and they also play a key role in the development of neurological diseases and many other neurological diseases. This paper mainly reviewed the recent progress of m6A modification-related enzymes, focusing on the impact of m6A modification and related enzyme-mediated regulation of gene expression on the central nervous system diseases, so as to provide potential targets for the prevention of neurological diseases.


Subject(s)
Adenosine/metabolism , Depressive Disorder, Major , Epigenesis, Genetic , Humans , Methylation , RNA, Messenger/metabolism
4.
Article in Chinese | WPRIM | ID: wpr-941028

ABSTRACT

OBJECTIVE@#To explore the transcriptional regulation mechanism and biological function of low expression of vasoactive intestinal peptide receptor 1 (VIPR1) in hepatocellular carcinoma (HCC).@*METHODS@#We constructed plasmids carrying wild-type VIPR1 promoter or two mutant VIPR1 promoter sequences for transfection of the HCC cell lines Hep3B and Huh7, and examined the effect of AP-2α expression on VIPR1 promoter activity using dual-luciferase reporter assay. Pyrosequencing was performed to detect the changes in VIPR1 promoter methylation level in HCC cells treated with a DNA methyltransferase inhibitor (DAC). Chromatin immunoprecipitation was used to evaluate the binding ability of AP-2α to VIPR1 promoter. Western blotting was used to assess the effect of AP-2α knockdown on VIPR1 expression and examine the differential expression of VIPR1 in the two cell lines. The effects of VIPR1 overexpression and knockdown on the proliferation, cell cycle and apoptosis of HCC cells were analyzed using CCK8 assay and flow cytometry. We also observed the growth of HCC xenograft with lentivirus-mediated over-expression of VIPR1 in nude mice.@*RESULTS@#Compared with the wild-type VIPR1 promoter group, co-transfection with the vector carrying two promoter mutations and the AP-2α-over-expressing plasmid obviously restored the luciferase activity in HCC cells (P < 0.05). DAC treatment of the cells significantly decreased the methylation level of VIPR1 promoter and inhibited the binding of AP-2α to VIPR1 promoter (P < 0.01). The HCC cells with AP-2α knockdown showed increased VIPR1 expression, which was lower in Huh7 cells than in Hep3B cells. VIPR1 overexpression in HCC cells caused significant cell cycle arrest in G2/M phase (P < 0.01), promoted cell apoptosis (P < 0.001), and inhibited cell proliferation (P < 0.001), while VIPR1 knockdown produced the opposite effects. In the tumor-bearing nude mice, VIPR1 overexpression in the HCC cells significantly suppressed the increase of tumor volume (P < 0.001) and weight (P < 0.05).@*CONCLUSION@#VIPR1 promoter methylation in HCC promotes the binding of AP-2α and inhibits VIPR1 expression, while VIPR1 overexpression causes cell cycle arrest, promotes cell apoptosis, and inhibits cell proliferation and tumor growth.


Subject(s)
Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/pathology , Luciferases/genetics , Methylation , Mice , Mice, Nude , Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism , Transcription Factor AP-2/metabolism
5.
Acta Physiologica Sinica ; (6): 461-468, 2022.
Article in Chinese | WPRIM | ID: wpr-939580

ABSTRACT

Histone methylation is one of the key post-translational modifications that plays a critical role in various heart diseases, including diabetic cardiomyopathy. A great deal of evidence has shown that histone methylation is closely related to hyperglycemia, insulin resistance, lipid and advanced glycation end products deposition, inflammatory and oxidative stress, endoplasmic reticulum stress and cell apoptosis, and these pathological factors play an important role in the pathogenesis of diabetic cardiomyopathy. In order to provide a novel theoretical basis and potential targets for the treatment of diabetic cardiomyopathy from the perspective of epigenetics, this review discussed and elucidated the association between histone methylation and the pathogenesis of diabetic cardiomyopathy in details.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies/pathology , Histones , Humans , Methylation , Oxidative Stress , Protein Processing, Post-Translational
6.
Chinese Journal of Lung Cancer ; (12): 311-322, 2022.
Article in Chinese | WPRIM | ID: wpr-928814

ABSTRACT

BACKGROUND@#m6A RNA methylation modification plays an important role in the occurrence and progression of lung cancer and regulates tumor immunity. Current studies mostly focus on the differential expression of some specific m6A effectors and infiltrating immune cell. m6A methylation modification is the result of mutual adjustment and balance between effectors, and changes in the expression of one or two effectors are far from enough to reflect the panorama of m6A methylation. The role of m6A in the immune microenvironment of lung adenocarcinoma (LUAD) is still poorly understood. The aim of this study is to investigate the effect of different m6A modification patterns in immune microenvironment of LUAD.@*METHODS@#LUAD data was obtained from The Cancer Genome Atlas (TCGA), University of California Santa Cruz Xena (UCSC Xena) and Gene Expression Omnibus (GEO) databases. Gene mutation, differential expression and survival analysis were performed for 24 m6A effectors. The m6A modification pattern was constructed by unsupervised clustering method, and the m6A clusters survival analysis, gene set variation analysis, immune score and immune cell infiltration analysis were performed. The association between LRPPRC protein expression levels and infiltration of CD8+ cytotoxic T lymphocytes and CD68+ macrophages in the tumor microenvironment was validated by immunohistochemistry in LUAD tissue microarray with 68 cases.@*RESULTS@#The mutations of m6A effector were found in 150 of 567 LUAD cases with a frequency of 26.46%. 6 readers and 3 writers were significantly up regulated in LUAD tissues compared with normal tissues. IGF2BP1 and HNRNPC are the independent risk factors for prognosis of LUAD. Abundant cross-talks among writers, erasers and readers were demonstrated. Three m6A modification patterns with different immune cell infiltration characteristics and clinical prognosis were established. Among m6A effectors, LRPPRC was found to be inversely associated with the infiltration of CD8+ cytotoxic T lymphocytes and CD68+ macrophages, and was validated in 68 LUAD tissues.@*CONCLUSIONS@#m6A modification patterns play non-negligible roles in regulating the immune microenvironment. LRPPRC has potential to be a new biomarker for checkpoint inhibitor immunotherapy.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma of Lung/pathology , Adenosine/metabolism , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/pathology , Methylation , Tumor Microenvironment/genetics
7.
Article in English | WPRIM | ID: wpr-928247

ABSTRACT

Objective This study was designed to determine the methylation profile of four CpGs and the genotypes of two CpG-SNPs located in promoter region of DIO2 in patients with Kashin-Beck disease (KBD). We also analyzed the interaction between the CpGs methylations and CpG-SNPs. Methods Whole blood specimens were collected from 16 KBD patients and 16 healthy subjects. Four CpGs and two CpG-SNPs in the promoter regions of DIO2 were detected using matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). The CpGs methylation levels were compared between samples from KBD patients and healthy subjects. The methylation levels were also analyzed in KBD patients with different CpG-SNP genotypes. Results The mRNA expression of DIO2 in whole blood of KBD patients was significnatly lower than in healthy controls (P <0.05). The methylation levels of DIO2-1_CpG_3 in KBD patients were significantly higher than those in healthy controls (P <0.05). The methylation levels of four CpGs were not significantly different between KBD patients and healthy controls. The methylation level of DIO2-1_CpG_3 in the promoter region of DIO2 in KBD patients with GA/AA genotype was significantly higher than that of KBD patients with GG genotype (P <0.05). Conclusion The methylation level of DIO2 increases in KBD patients. Similar trends exist in KBD carriers of variant genotypes of CpG-SNPs DIO2 rs955849187.


Subject(s)
Case-Control Studies , Humans , Iodide Peroxidase/genetics , Kashin-Beck Disease/genetics , Methylation , Polymorphism, Single Nucleotide , Promoter Regions, Genetic
8.
Article in Chinese | WPRIM | ID: wpr-878987

ABSTRACT

To investigate the effect of Gegen Qinlian Decoction(GQD) on enzyme activity, gene expression and methylation level of fatty acid synthase(FASN) in adipose tissue from rats with insulin resistance induced by high-fat diet. The 60% fat-powered high-fat diet was continuously given to male SD rats to induce the insulin resistance model. Then, they were divided into five groups randomly and administrated by gavage every day for 16 weeks with following drugs respectively: 10 mL·kg~(-1)water for control group(C) and insulin resistance model control group(IR), 1.65 g·kg~(-1)GQD per day for low-dose group(GQDL), 4.95 g·kg~(-1)GQD per day for medium-dose group(GQDM), 14.85 g·kg~(-1)GQD per day for high-dose group(GQDH), and 5 mg·kg~(-1) rosiglitazone per day for rosiglitazone group(RGN). Epididymal adipose tissue was taken to determine enzyme activity of FASN by colorimetric method, mRNA expression level of Fasn by quantitative Real-time PCR(Q-PCR) and CpGs methylation level between +313 and +582 by bisulfite sequencing PCR(BSP). These results showed that Fasn expression was significantly lowered in IR model rats compared with the control rats(P<0.01). Enzymatic activity and CpGs methylation level of Fasn in IR group showed downward trends. Low and medium-dose GQD can increase enzyme activity of FASN(P<0.05). Moreover, low-dose GQD increased the total CpGs methylation level of Fasn fragment between +313 and +582 in insulin resistance rats(P<0.05). For GQDM group, the methylation frequency of CpGs at positions +506 and +508(P<0.01) as well as the methylation frequency of CpGs on the binding sites of transcription factorzinc finger protein 161(P<0.05) were significantly increased. The methylation frequency of CpG at +442 position was positively correlated with Fasn expression(P<0.01, r=0.735), and methylation frequencies of CpGs at +345 and +366 positions were positively associated to enzyme activity of FASN respectively(P<0.05, r=0.479; P<0.01, r=0.640). In conclusion, GQD can reverse enzyme activity of FASN and methylation level of Fasn in adipose tissue of insulin resistant rats, and CpG sites at positions +506 and +508 may be the targets of GQD. The methylation level of CpGs at + 345 and + 366 sites were possibly related to FASN activity, while methylation of CpG at + 442 site may be closely correlated with mRNA level of Fasn. In addition, GQD did not significantly change mRNA expression level of Fasn, but effectively reversed enzymatic activity, suggesting that GQD may regulate the post transcriptional expression of Fasn.


Subject(s)
Adipose Tissue , Animals , Drugs, Chinese Herbal , Fatty Acid Synthases/genetics , Gene Expression , Insulin Resistance/genetics , Male , Methylation , Rats , Rats, Sprague-Dawley
9.
Journal of Experimental Hematology ; (6): 1972-1976, 2021.
Article in Chinese | WPRIM | ID: wpr-922234

ABSTRACT

There are more than 150 types of chemical modifications in RNA, mainly methylation, which are widely distributed in all kinds of RNA, including messenger RNA, transfer RNA, ribosomal RNA, non-coding small RNA and long non-coding RNA. In recent years, the identification of RNA methylation modification enzymes and the development of high-throughput sequencing technology at transcriptome level laid a foundation for revealing the expression and function of genes regulated by chemical modification of RNA. In this review, the most recent advances of RNA methylation, especially N6-methyladenosine (m


Subject(s)
Adenosine/metabolism , Hematopoiesis , Humans , Methylation , RNA/metabolism
10.
Article in Chinese | WPRIM | ID: wpr-921986

ABSTRACT

OBJECTIVE@#To analyze the correlation of methylation status of dachshund homolog 1 (DACH1) gene in tumor tissues with clinicopathological characteristics and prognosis of patients of esophageal cancer.@*METHODS@#Tumor tissue, paracancerous tissue and normal esophageal mucosal specimens of 104 patients with esophageal cancer were collected. Methylation-specific PCR was used to determine the methylation status of the DACH1 gene. Univariate analysis and multivariate Logistic regression model were used to analyze the correlation between DACH1 methylation status and clinical pathological characteristics of the patients. Kaplan-Meier survival curve was used to analyze the relationship between DACH1 methylation status and prognostic survival of patients.@*RESULTS@#The methylation rate of the DACH1 gene in esophageal cancer tumor tissue was 30.77% (32/104), which was higher than those in adjacent tissues (1.92%) and normal esophageal mucosa (0%) (P 0.05) but tumor differentiation, TNM staging, and lymph node metastasis(P< 0.05). The degree of tumor differentiation, TNM stage, and lymph node metastasis of patients are independent risk factors for the methylation status of the DACH1 gene. By March 2020, 89 of the 104 patients had died. Among them, the median survival foresophageal cancer patients with DACH1 gene methylation was 22 months, which was lower than 34 months of those without DACH1 methylation (P< 0.05).@*CONCLUSION@#Methylation of the DACH1 gene may be involved in the occurrence and progress of esophageal cancer. The degree of tumor differentiation, TNM stage, and lymph node metastasis of patients are independent risk factors for the methylation status of the DACH1 gene. Patients with esophageal cancer but unmethylated DACH1 gene have a longer prognostic survival.


Subject(s)
Esophageal Neoplasms/pathology , Eye Proteins/genetics , Humans , Lymphatic Metastasis , Methylation , Neoplasm Staging , Prognosis , Transcription Factors
11.
Chinese Journal of Biotechnology ; (12): 1869-1886, 2021.
Article in Chinese | WPRIM | ID: wpr-887769

ABSTRACT

Methyltransferases (MTs) constitute a large group of enzymes that catalyze the transfer of a methyl moiety, most frequently from S-adenosyl-L-methionine, to their substrates. It plays an essential role in regulation of gene expression and synthesis of many natural compounds. Owing to its broad substrate spectrum, MTs make important contributions to diversify the spectrum of products through methylation modifications. Recently, great progress has been made in application of MTs for the biosynthesis of various natural products including phenylpropane compounds, fragrances, hormones and antibiotics, which is summarized in this review. Moreover, we highlighted the strategies of using MTs for efficient production and for expanding the diversity of these methylated natural products, and discussed the current challenges and future prospects in this area.


Subject(s)
Biological Products , Methylation , Methyltransferases/metabolism
12.
Article in English | WPRIM | ID: wpr-880692

ABSTRACT

RNA methylation is of great significance in the regulation of gene expression, among which the more important methylation modifiers are N6-methyladenosine (m6A) and 5-methylcytosine (m5C). The methylation process is mainly regulated by 3 kinds of proteins: methyltransferase, demethylase, and reader. m6A, m5C, and their related proteins have high abundance in the brain, and they have important roles in the development of the nervous system and the repair and remodeling of the vascular system. The neurovascular unit (NVU) is a unit of brain structure and function composed of neurons, capillaries, astrocytes, supporting cells, and extracellular matrix. The local microenvironment for NVU has an important role in nerve cell function repair, and the remodeling of NVU is of great significance in the prognosis of various neurological diseases.


Subject(s)
5-Methylcytosine , Adenosine/metabolism , Methylation , Methyltransferases/metabolism , RNA
13.
Electron. j. biotechnol ; 45: 19-29, May 15, 2020. tab, ilus, graf
Article in English | LILACS | ID: biblio-1177401

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs), as post-transcriptional regulators, were thought to function in the inductive property of dermal papilla cells (DPCs) in cashmere goat. Previously, lncRNA-599554 was identified in secondary hair follicle (SHF) of cashmere goat, but its functional significance is unknown. RESULTS: In the present investigation, we verified that lncRNA-599554 had significantly higher expression at the anagen dermal papilla of cashmere goat SHF than that at telogen. Based on overexpression and knockdown techniques, we found that lncRNA-599554 contributes the inductive property of DPCs of cashmere goat, which was assessed by detecting the changes in the expression of several typical indictor genes in DPCs including ET-1, SCF, Versican, ALP, Lef1 and Ptc-1. Based on RNA pull-down assay, we verified that lncRNA-599554 directly interacted with chi-miR-15a-5p. Also, we showed that lncRNA-599554 positively regulated the Wnt3a expression in DPCs but which did not appear to involve its modulating of promoter methylation. Based on the use of Dual-luciferase reporter assays, our data indicated that lncRNA-599554 regulated the Wnt3a expression through chi-miR-15a-5p-mediated post-transcriptional level. CONCLUSIONS: We showed that lncRNA-599554 contributes the inductive property of DPCs in cashmere goat which might be achieved through sponging chi-miR-15b-5p to promote the Wnt3a expression. The results from the present investigation provided a novel insight into the functional mechanism of lncRNA-599554 in the SHF regeneration of cashmere goat along with the formation and growth of cashmere fiber.


Subject(s)
Animals , Hair Follicle/cytology , Hair Follicle/metabolism , Dermis/cytology , Wnt3A Protein/metabolism , RNA, Long Noncoding/metabolism , Biological Assay/methods , Goats , RNA, Long Noncoding/genetics , Luciferases , Methylation
15.
Yonsei Medical Journal ; : 186-191, 2020.
Article in English | WPRIM | ID: wpr-782192

ABSTRACT

0.2 and p<0.05. NOTCH1 was identified as a candidate network hub gene in cases. NOTCH1 transcripts significantly increased in lung tissues from HDLI cases compared to unexposed controls (p=0.05). NOTCH1 may play an important role in pulmonary fibrosis of HDLI.


Subject(s)
Child , DNA Methylation , Gene Expression Profiling , Humans , Humidifiers , Korea , Lung Injury , Lung , Methylation , Pulmonary Fibrosis
16.
Annals of Dermatology ; : 122-129, 2020.
Article in English | WPRIM | ID: wpr-811086

ABSTRACT

BACKGROUND: Loss-of-function mutations in the filaggrin gene (FLG), which encodes an epidermal protein crucial for the formation of a functional skin barrier, have been identified as a major predisposing factor in the etiopathogenesis of atopic dermatitis (AD). Recent reports of relatively low frequencies of FLG-null mutations among specific ethnic groups with AD necessitated analysis of the epigenetic regulation which may control FLG expression without altering its DNA sequence.OBJECTIVE: The study aimed to identify DNA methylation-dependent regulation of FLG expression.METHODS: Quantitative polymerase chain reaction was performed to determine the restoration of FLG mRNA expression in normal human epidermal keratinocyte (NHEK) cells after treatment with epigenetic modulating agents. Bisulfite genomic sequencing and pyrosequencing analyses of the FLG promoter region were conducted to identify the citical CpG sites relevant to FLG expression. We performed small-scale pilot study for epidermal tissues obtained from Korean patients with severe AD.RESULTS: We here show that DNA methylation in the FLG with non-CpG island promoter is responsible for the transcriptional regulation of FLG in undifferentiated NHEK cells. The methylation frequencies in a single CpG site of the FLG promoter were significantly higher in lesional epidermis than those in matched nonlesional epidermis of subjects with severe AD.CONCLUSION: Our in vitro and clinical studies point to this unique CpG site as a potential DNA methylation marker of FLG, which can be a promising therapeutic target in the complications of filaggrin-related skin barrier dysfunction as well as in AD.


Subject(s)
Base Sequence , Causality , Dermatitis, Atopic , DNA , DNA Methylation , Epidermis , Epigenomics , Ethnicity , Gene Expression , Humans , In Vitro Techniques , Keratinocytes , Methylation , Pilot Projects , Polymerase Chain Reaction , Promoter Regions, Genetic , RNA, Messenger , Skin
17.
Article in Chinese | WPRIM | ID: wpr-828630

ABSTRACT

OBJECTIVE@#To study the clinical screening and genetic diagnosis of children suspected of Prader-Willi syndrome (PWS), as well as the differences in the scores of clinical diagnostic criteria among the children with a confirmed diagnosis of PWS.@*METHODS@#A total of 94 children suspected of PWS who were admitted from July 2016 to December 2018 were enrolled as subjects. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) was performed to confirm the diagnosis. For the children with a confirmed diagnosis of PWS, the scores of clinical diagnostic criteria were determined, and the perinatal characteristics were analyzed.@*RESULTS@#A total of 11 children with PWS were confirmed by MS-MLPA, with a detection rate of 12%, among whom there were 7 boys and 4 girls, with a median age of 3 years and 4 months (range 25 days to 6 years and 8 months) at the time of confirmed diagnosis. Among the 11 children with PWS, only 5 children (45%) met the criteria for clinical diagnosis. The main perinatal characteristics of the children with PWS were decreased fetal movement (9 cases, 82%), cesarean section birth (11 cases, 100%), hypotonia (11 cases, 100%), feeding difficulties (11 cases, 100%), and weak crying (11 cases, 100%).@*CONCLUSIONS@#Gene testing should be performed as early as possible for children suspected of PWS by clinical screening. PWS may be missed if only based on the scores of clinical diagnostic criteria.


Subject(s)
Cesarean Section , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Methylation , Muscle Hypotonia , Prader-Willi Syndrome , Pregnancy
18.
Blood Research ; : 17-26, 2020.
Article in English | WPRIM | ID: wpr-820807

ABSTRACT

BACKGROUND: DNMT3A mutations occur in approximately 20% of AML cases and are associated with changes in DNA methylation. CDKN2B plays an important role in the regulation of hematopoietic progenitor cells and DNMT3A mutation is associated with CDKN2B promoter methylation. We analyzed the characteristics of DNMT3A mutations including their clinical significance in AML and their influence on promoter methylation and CDKN2B expression.METHODS: A total of 142 adults, recently diagnosed with de novo AML, were enrolled in the study. Mutations in DNMT3A, CEBPA, and NPM1 were analyzed by bidirectional Sanger sequencing. We evaluated CDKN2B promoter methylation and expression using pyrosequencing and RT-qPCR.RESULTS: We identified DNMT3A mutations in 19.7% (N=28) of enrolled patients with AML, which increased to 29.5% when analysis was restricted to cytogenetically normal-AML. Mutations were located on exons from 8–23, and the majority, including R882, were found to be present on exon 23. We also identified a novel frameshift mutation, c.1590delC, in AML with biallelic mutation of CEBPA. There was no significant difference in CDKN2B promoter methylation according to the presence or type of DNMT3A mutations. CDKN2B expression inversely correlated with CDKN2B promoter methylation and was significantly higher in AML with R882H mutation in DNMT3A. We demonstrated that DNMT3A mutation was associated with poor AML outcomes, especially in cytogenetically normal-AML. The DNMT3A mutation remained as the independent unfavorable prognostic factor after multivariate analysis.CONCLUSION: We characterized DNMT3A mutations in AML and revealed the association between the DNMT3A mutation and CDKN2B expression and clinical outcome.


Subject(s)
Adult , DNA Methylation , Exons , Frameshift Mutation , Hematopoietic Stem Cells , Humans , Leukemia, Myeloid, Acute , Methylation , Multivariate Analysis
19.
Article in Chinese | WPRIM | ID: wpr-879490

ABSTRACT

With the in-depth exploration of all stages in early-stage embryos, in particular zygotic genome activation and first cell lineage differentiation, researchers have found that early embryonic epigenetics follows a strict pattern of temporal and spatial modification. Previous studies have determined the inhibitory effect of H3K9me3 and H3K27me3 on genomic expression, and found that they are involved in many core biological events in the genome such as chromatin reprogramming, genomic imprinting, maintenance of embryonic stem cell pluripotency and somatic cell nuclear transfer, though the detailed molecular mechanism has remained elusive. From the point of developmental biology and epigenetics, this article has expounded the research progress on the methylation of H3K9 and H3K27 histones in early-stage embryos, which may provide a clue for the complex mechanism of embryonic development and improvement of culture method for embryos in vitro.


Subject(s)
Chromatin , Embryonic Development , Epigenesis, Genetic , Female , Gene Expression Regulation, Developmental , Histones/metabolism , Humans , Methylation , Pregnancy
20.
Arch. endocrinol. metab. (Online) ; 63(4): 438-444, July-Aug. 2019. tab, graf
Article in English | LILACS | ID: biblio-1019366

ABSTRACT

ABSTRACT Pubertal timing in humans is determined by complex interactions including hormonal, metabolic, environmental, ethnic, and genetic factors. Central precocious puberty (CPP) is defined as the premature reactivation of the hypothalamic-pituitary-gonadal axis, starting before the ages of 8 and 9 years in girls and boys, respectively; familial CPP is defined by the occurrence of CPP in two or more family members. Pioneering studies have evidenced the participation of genetic factors in pubertal timing, mainly identifying genetic causes of CPP in sporadic and familial cases. In this context, rare activating mutations were identified in genes of the kisspeptin excitatory pathway (KISS1R and KISS1 mutations). More recently, loss-of-function mutations in two imprinted genes (MKRN3 and DLK1) have been identified as important causes of familial CPP, describing novel players in the modulation of the hypothalamic-pituitary-gonadal axis in physiological and pathological conditions. MKRN3 mutations are the most common cause of familial CPP, and patients with MKRN3 mutations present clinical features indistinguishable from idiopathic CPP. Meanwhile, adult patients with DLK1 mutations present high frequency of metabolic alterations (overweight/obesity, early onset type 2 diabetes and hyperlipidemia), indicating that DLK1 may be a novel link between reproduction and metabolism. Arch Endocrinol Metab. 2019;63(4):438-44


Subject(s)
Humans , Puberty, Precocious/genetics , Phenotype , Puberty, Precocious/etiology , Ribonucleoproteins/genetics , Calcium-Binding Proteins , Gene Silencing , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Kisspeptins/genetics , Receptors, Kisspeptin-1/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Methylation , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL