Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Article in English | WPRIM | ID: wpr-880866

ABSTRACT

As an important component of the tumor microenvironment, cancer-associated fibroblasts (CAFs) secrete energy metabolites to supply energy for tumor progression. Abnormal regulation of long noncoding RNAs (lncRNAs) is thought to contribute to glucose metabolism, but the role of lncRNAs in glycolysis in oral CAFs has not been systematically examined. In the present study, by using RNA sequencing and bioinformatics analysis, we analyzed the lncRNA/mRNA profiles of normal fibroblasts (NFs) derived from normal tissues and CAFs derived from patients with oral squamous cell carcinoma (OSCC). LncRNA H19 was identified as a key lncRNA in oral CAFs and was synchronously upregulated in both oral cancer cell lines and CAFs. Using small interfering RNA (siRNA) strategies, we determined that lncRNA H19 knockdown affected proliferation, migration, and glycolysis in oral CAFs. We found that knockdown of lncRNA H19 by siRNA suppressed the MAPK signaling pathway, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and miR-675-5p. Furthermore, the lncRNA H19/miR-675-5p/PFKFB3 axis was involved in promoting the glycolysis pathway in oral CAFs, as demonstrated by a luciferase reporter system assay and treatment with a miRNA-specific inhibitor. Our study presents a new way to understand glucose metabolism in oral CAFs, theoretically providing a novel biomarker for OSCC molecular diagnosis and a new target for antitumor therapy.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glycolysis , Head and Neck Neoplasms , Humans , MicroRNAs/metabolism , Mouth Neoplasms/genetics , Phosphofructokinase-2/genetics , RNA, Long Noncoding/genetics , Signal Transduction , Tumor Microenvironment
2.
Braz. j. med. biol. res ; 54(2): e9161, 2021. graf
Article in English | LILACS | ID: biblio-1153511

ABSTRACT

Patients with osteosarcoma (OS) usually have poor overall survival because of frequent metastasis. Long non-coding RNAs (lncRNAs) have been reported to be associated with tumorigenesis and metastasis. In this study, we investigated the expression and roles of lncRNA human histocompatibility leukocyte antigen (HLA) complex P5 (HCP5) in OS, aiming to provide a novel molecular mechanism for OS. HCP5 was up-regulated both in OS tissues and cell lines and high expression of HCP5 was associated to low survival in OS patients. Down-regulation of HCP5 inhibited cell proliferation, migration, and invasion, suggesting its carcinogenic role in OS. miR-101 was targeted by HCP5 and its expression was decreased in OS. The inhibitor of miR-101 reversed the impact of HCP5 down-regulation on cell proliferation, apoptosis, and metastasis in OS. Ephrin receptor 7 (EPHA7) was proved to be a target of miR-101 and had ability to recover the effects of miR-101 inhibitor in OS. In conclusion, lncRNA HCP5 knockdown suppressed cell proliferation, migration, and invasion, and induced apoptosis through depleting the expression of EPHA7 by binding to miR-101, providing a potential therapeutic strategy of HCP5 in OS.


Subject(s)
Humans , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Osteosarcoma/genetics , Osteosarcoma/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Cell Movement , Receptor, EphA7/metabolism , Cell Line, Tumor , Cell Proliferation , Neoplasm Invasiveness
3.
Rev. chil. endocrinol. diabetes ; 14(4): 159-165, 2021. tab, ilus
Article in Spanish | LILACS | ID: biblio-1344801

ABSTRACT

La diabetes Tipo 1 (DT1) es una compleja enfermedad autoinmune con una etiología aún desconocida. La vitamina D ha sido ampliamente estudiada debido a su potencial terapéutico en los potenciales nuevos casos de DT1. Por otra parte, los microARNs (miRs) han sido propuestos como posibles biomarcadores en diversos procesos biológicos como en la apoptosis e inflamación. El objetivo de este estudio fue evaluar el efecto de la suplementación con vitamina D sobre el perfil de expresión del miR-21 y marcadores de apoptosis tales como: BCL2, STAT3, TIPE2 y DAXX, en células mononucleares periféricas provenientes de pacientes con DT1 y sujetos controles. RESULTADOS: El perfil de expresión de miR-21 se encontró disminuido en los pacientes con DT1 en comparación con los controles. La expresión relativa de BCL2 se encontró aumentada en controles al comparar con pacientes DT1 en todas las condiciones experimentales. La expresión relativa de DAXX mostró un perfil de expresión diferencial al comparar pacientes con DT1 versus controles (p=0.006). CONCLUSIÓN: El estímulo con vitamina D parece tener un posible efecto regulador sobre los genes BCL2 y DAXX.


Type 1 diabetes (T1D) is a complex chronic autoimmune disease. Vitamin D has been one of the most studied therapeutic potential outbreaks related to T1D. Specific miRNAs have been proposed as potential biomarkers in several biological processes as apoptosis and inflammation. The aim of this study was to evaluate the effect of vitamin D on the expression profiles of miR-21 and apoptotic markers BCL2, STAT3, TIPE2 and DAXX, in PBMCs from T1D patients and control subjects. RESULTS: miR-21 expression was increased in controls regarding T1D patients. BCL2 was increased in controls compared to T1D patients in all experimental conditions. DAXX showed different expression patterns between T1D patients and controls (p=0.006). CONCLUSION: Vitamin D showed a possible regulation effect on apoptosis markers mainly through the regulation of BCL2 and DAXX


Subject(s)
Humans , Child , Adolescent , Vitamin D/administration & dosage , Apoptosis , Diabetes Mellitus, Type 1/metabolism , Vitamin D/metabolism , Biomarkers , Molecular Chaperones/drug effects , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Proto-Oncogene Proteins c-bcl-2/drug effects , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , MicroRNAs/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Co-Repressor Proteins/drug effects , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Glucose/administration & dosage
4.
Int. j. morphol ; 38(6): 1639-1644, Dec. 2020. graf
Article in English | LILACS | ID: biblio-1134491

ABSTRACT

SUMMARY: Previous studies from our group described the consequences of using ethanol on penile erection. Nevertheless, the molecular mechanisms surrounding microRNAs, apoptosis process and their relationship with erectile dysfunction associated with alcohol consumption are still poorly understood. The objective of this analysis was to evaluate the mechanism of apoptosis by the expression of AIF and PARP, as well as their regulatory microRNAs: miR-145, miR-210 and miR-486, in the corpus cavernosum of rats submitted to a semivoluntary alcoholism model. For this study 24 Wistar rats were divided into two groups: control (C) and treated with 20 % ethanol (A) for seven weeks. The corpus cavernosum samples were prepared for immunohistochemical analysis of AIF and PARP protein expression, and microRNAs miR-145, miR-210, miR-486 gene expression in cavernous tissue was performed by real time PCR. The immunohistochemical analysis showed little nuclear positive labeling for the protein PARP and AIF in the corpus cavernosum of control and ethanol treated animals. After analysis of miR-145, -210 and -486 microRNA expression in the 12 animals studied, no results were found with significant statistical difference between the control and alcoholized groups. The expression of AIF and PARP and their regulatory microRNAs involved in apoptotic process (miR-145, miR-210 and miR-486) were not altered in the corpus cavernosum of rats submitted to semivoluntary alcoholism.


RESUMEN: Estudios previos de nuestro grupo describieron las consecuencias del uso de etanol en la erección del pene. Sin embargo, los mecanismos moleculares que rodean a los microARN, el proceso de apoptosis y su relación con la disfunción eréctil asociada con el consumo de alcohol aún no se conocen bien. El objetivo de este análisis fue evaluar el mecanismo de apoptosis mediante la expresión de AIF y PARP, así como sus microARN reguladores: miR-145, miR-210 y miR-486, en el cuerpo cavernoso de ratas sometidas a un modelo de alcoholismo semivoluntario. Se dividieron 24 ratas Wistar en dos grupos: control (C) grupo de ratas tratadas con etanol al 20 % (A) durante siete semanas. Las muestras del cuerpo cavernoso se prepararon para el análisis inmunohistoquímico de la expresión de la proteína AIF y PARP, y la expresión del gen microRNAs miR-145, miR-210, miR-486 en tejido cavernoso se realizó por PCR en tiempo real. El análisis inmunohistoquímico mostró escaso etiquetado nuclear positivo para la proteína PARP y AIF en el cuerpo cavernoso de los animales de control y tratados con etanol. Después del análisis de la expresión de microARN miR-145, -210 y -486 no se encontraron resultados con diferencias estadísticas significativas entre los grupos control y alcoholizados. La expresión de AIF y PARP y sus microARN reguladores involucrados en el proceso apoptótico (miR-145, miR-210 y miR-486) no se alteraron en el cuerpo cavernoso de las ratas sometidas a alcoholismo semivoluntario.


Subject(s)
Animals , Rats , Apoptosis , Alcoholism/metabolism , Erectile Dysfunction/metabolism , Penis/physiopathology , Penis/chemistry , Immunohistochemistry , Rats, Wistar , MicroRNAs/analysis , MicroRNAs/genetics , MicroRNAs/metabolism , Disease Models, Animal , Alcoholism/physiopathology , Apoptosis Inducing Factor/analysis , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Real-Time Polymerase Chain Reaction , Erectile Dysfunction/physiopathology
5.
Int. j. morphol ; 38(3): 616-621, June 2020. graf
Article in English | LILACS | ID: biblio-1098296

ABSTRACT

The chronic consumption of alcohol causes a worsening of the events that follow the cerebral ischemia. These events are regulated through the expression of several genes and microRNAs. The aimof this work was To analyze and describe the expression profile of PARP and AIF and miRNA-9 proteins in rats submitted to focal cerebral ischemia, associated or not with chronic alcoholism model. Methods: Twenty adult Wistar rats, subdivided into: control; ischemic; alcoholic and ischemic / alcoholized for immunohistochemical analysis and miRNA-9 gene expression. Results: There was a reduction in the protein expression of PARP-1 and a positive marking for AIF in the ischemic / alcoholized group. The miRNA-9 did not obtain significant expression. The association of ischemia with chronic alcohol use promoted a tendency to low expression of miRNA-9, low expression of PARP-1 and high expression of AIF, indicating an interference in the protective effect of miRNA-9 be observed in the other groups.


El consumo crónico de alcohol provoca un empeoramiento de los eventos que siguen a la isquemia cerebral. Estos eventos están regulados a través de la expresión de varios genes y microRNA. El objetivo de este trabajo fue analizar y describir el perfil de expresión de las proteínas PARP y AIF y microRNA-9 en ratas sometidas a isquemia cerebral focal, asociadas o no, con el modelo de alcoholismo crónico. Veinte ratas Wistar adultas se dividieron en: grupo control, isquémico alcohólico, e isquémico / alcoholizado para análisis inmunohistoquímico y expresión de genes microRNA-9. Resultados: Hubo una reducción en la expresión de proteínas de PARP-1 y un marcado positivo para AIF en el grupo isquémico / alcoholizado. No se observó una expresión significativa en el microRNA-9. La asociación de la isquemia con el consumo crónico de alcohol promovió una tendencia a la baja expresión de microRNA-9, baja expresión de PARP1 y alta expresión de AIF, lo que indica una interferencia en el efecto protector de microRNA-9 en los otros grupos.


Subject(s)
Animals , Rats , Brain Ischemia/metabolism , Alcoholism/metabolism , Immunohistochemistry , Brain Ischemia/genetics , Rats, Wistar , MicroRNAs/metabolism , Disease Models, Animal , Alcoholism/genetics , Apoptosis Inducing Factor/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism
6.
Braz. j. med. biol. res ; 53(1): e8883, Jan. 2020. tab, graf
Article in English | LILACS | ID: biblio-1055486

ABSTRACT

Opa-interacting protein 5 antisense transcript 1 (OIP5-AS1) is one kind of cytoplasmic long non-coding RNA (lncRNA), which has been demonstrated to play a critical function in multiple cancers. However, the detailed mechanism of OIP5-AS1 in the regulation of cervical cancer progression is still obscure. Here, we demonstrated that lncRNA OIP5-AS1 was upregulated in cervical cancer and was correlated with poor prognosis by bioinformatics studies. OIP5-AS1 depletion inhibited cell proliferation and promoted cell apoptosis in cervical cancer cells. Furthermore, we clarified that ROCK1 was the downstream effector of OIP5-AS1 and OIP5-AS1 acted as a molecular sponge of miR-143-3p. Finally, we verified that OIP5-AS1 exerted its function in the regulation of cervical cancer progression via interacting with miR-143-3p to regulate ROCK1 expression. Our study revealed novel mechanisms about how lncRNA OIP5-AS1 executed its function in cervical cancer and thus provided potential therapeutic targets for the disease.


Subject(s)
Humans , Female , Uterine Cervical Neoplasms/pathology , Apoptosis/physiology , MicroRNAs/metabolism , Cell Proliferation/physiology , rho-Associated Kinases/metabolism , RNA, Long Noncoding/metabolism , Gene Expression Regulation, Neoplastic , Up-Regulation , Uterine Cervical Neoplasms/metabolism , Blotting, Western , Apoptosis/genetics , Reverse Transcriptase Polymerase Chain Reaction , MicroRNAs/genetics , Cell Line, Tumor , Cell Proliferation/genetics , rho-Associated Kinases/genetics , RNA, Long Noncoding/genetics
7.
Braz. j. med. biol. res ; 53(7): e9029, 2020. graf
Article in English | ColecionaSUS, LILACS, ColecionaSUS | ID: biblio-1132531

ABSTRACT

This study examined the expression and potential mechanism of microRNA (miRNA)-424-5p in nasopharyngeal carcinoma (NPC). NPC tissues were collected from 40 patients who were enrolled in the study, and skin samples were collected from 26 healthy subjects during plastic surgery as controls. We performed various in vitro assays using miR-424-5p to examine its function in primary NPC-1 cells. Bioinformatics was employed to analyze potential target genes and signaling pathways of miR-424-5p. We found that miR-424-5p expression in NPC tissues is downregulated and negatively correlated with lymph node metastasis and clinical staging. Expression of miR-424-5p in NPC cells was also downregulated, and transfection with miR-424-5p mimics inhibited proliferation, migration, and invasion of NPC-1 cells. Bioinformatics identified the AKT3 gene as a potential target of miR-424-5p and dual luciferase assays confirmed this finding. Upregulation of AKT3 expression rescued the inhibitory effect of miR-424-5p on the proliferation, migration, and invasion. Our results suggest that miR-424-5p inhibited the proliferation, migration, and invasion of NPC cells by decreasing AKT3 expression.


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Gene Expression Regulation, Neoplastic , Nasopharyngeal Neoplasms/metabolism , MicroRNAs/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Nasopharyngeal Carcinoma/metabolism , Signal Transduction , Cell Movement , Nasopharyngeal Neoplasms/genetics , Blotting, Western , MicroRNAs/genetics , Cell Line, Tumor , Cell Proliferation , Proto-Oncogene Proteins c-akt/genetics , Real-Time Polymerase Chain Reaction , Nasopharyngeal Carcinoma/genetics , Neoplasm Invasiveness
8.
Braz. j. med. biol. res ; 53(6): e9346, 2020. graf
Article in English | ColecionaSUS, LILACS, ColecionaSUS | ID: biblio-1132516

ABSTRACT

Atherosclerosis (AS) is a common vascular disease, which can cause apoptosis of vascular endothelial cells. Notoginsenoside R1 (NGR1) is considered an anti-AS drug. MicroRNAs (miRNAs) are believed to play a vital role in cell apoptosis and angiogenesis. This study aimed to explore the mechanism of NGR1 for treating AS through miRNAs. Flow cytometry was used to detect the apoptosis rate. The levels of inflammatory cytokines interleukin (IL)-6 and IL-1β were detected using ELISA. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels were measured using corresponding assay kits. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed to detect miR-221-3p expression. Dual-luciferase reporter and RNA immunoprecipitation assays were carried out to examine the relationship between miR-221-3p and toll-like receptors 4 (TLR4). Also, western blot analysis was performed to determine the levels of TLR4 and nuclear factor kappa B (NF-κB) signaling pathway-related proteins. Oxidized low-density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs) apoptosis, inflammation, and oxidative stress. NGR1 alleviated the negative effect of ox-LDL through promoting the expression of miR-221-3p in HUVECs. TLR4 was a target of miR-221-3p, and its overexpression could reverse the inhibition effects of miR-221-3p on apoptosis, inflammation, and oxidative stress. NGR1 improved miR-221-3p expression to inhibit the activation of the TLR4/NF-κB pathway in ox-LDL-treated HUVECs. NGR1 decreased ox-LDL-induced HUVECs apoptosis, inflammation, and oxidative stress through increasing miR-221-3p expression, thereby inhibiting the activation of the TLR4/NF-κB pathway. This study of the mechanism of NGR1 provided a more theoretical basis for the treatment of AS.


Subject(s)
Humans , Apoptosis/drug effects , Oxidative Stress/drug effects , Ginsenosides/pharmacology , MicroRNAs/adverse effects , Human Umbilical Vein Endothelial Cells/drug effects , Inflammation/metabolism , Lipoproteins, LDL/metabolism , Enzyme-Linked Immunosorbent Assay , Signal Transduction , Transcriptional Activation , Up-Regulation , Blotting, Western , NF-kappa B/antagonists & inhibitors , Reactive Oxygen Species , MicroRNAs/metabolism , Immunoprecipitation , Toll-Like Receptor 4/antagonists & inhibitors , Human Umbilical Vein Endothelial Cells/metabolism , Real-Time Polymerase Chain Reaction
9.
Mem. Inst. Oswaldo Cruz ; 115: e200238, 2020. tab, graf
Article in English | SES-SP, LILACS, SES-SP | ID: biblio-1135258

ABSTRACT

BACKGROUND Paracoccidioides spp. causes paracoccidioidomycosis (PCM), an important and frequent systemic mycosis that occurs in Latin America. The infectious process begins with contact between the fungus and lung cells, and the molecular pattern of this interaction is currently poorly understood. MicroRNAs (miRNAs) are small non-coding RNAs that regulate the gene expression in many biological processes, including in the infections. OBJECTIVE This study aimed to analyse the expression of miRNAs in lung cells as response to infection by Paracoccidioides spp. METHODS A quantitative real-time polymerase chain reaction (RT-qPCR) based screening was employed to verify differentially expressed miRNAs in human lung cells infected with three different species; Paracoccidioides lutzii, Paracoccidioides americana, and Paracoccidioides brasiliensis. Furthermore, the in silico predictions of target genes and pathways for miRNAs were obtained. FINDINGS The results showed that miRNAs identified in the lung cells were different according to the species studied. However, based on the predicted targets, the potential signaling pathways regulated by miRNAs are common and related to adhesion, actin cytoskeleton rearrangement, apoptosis, and immune response mediated by T cells and TGF-β. MAIN CONCLUSIONS In summary, this study showed the miRNAs pattern of epithelial cells in response to infection by Paracoccidioides species and the potential role of these molecules in the regulation of key pathogenesis mechanisms of PCM.


Subject(s)
Humans , Paracoccidioides/pathogenicity , Paracoccidioidomycosis , MicroRNAs/metabolism , Real-Time Polymerase Chain Reaction , Latin America , Lung/cytology
11.
Biol. Res ; 53: 09, 2020. graf
Article in English | LILACS | ID: biblio-1100915

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is one of the most common rheumatic diseases of which clinical symptoms includes swelling, synovitis and inflammatory pain, affect patients' daily life. It was reported that non-coding RNAs play vital roles in OA. However, the regulation mechanism of ncRNA in OA pathogenesis has not been fully elucidated. METHODS: The expression of SNHG7, miR-34a-5p and SYVN1 was detected using qRT-PCR in tissues, serum and cells. The protein expression of SYVN1, PCNA, cleavage-caspase 3, beclinl and LC3 were measured using western blot. The RNA immunoprecipitation (RIP), RNA pulldown, and luciferase reporter assays were used to verify the relationship between SNHG7, miR-34a-5p and SYVN1. The MTT and flow cytometry assay was performed to detected cell proliferation and cell apoptosis respectively. RESULTS: In this study, SNHG7 and SYVN1 expression were down-regulated, but miR-34a-5p was up-regulated in OA tissues and IL-1P treated cells compared with normal tissues and chondrocyte. Functional investigation revealed that up-regulated SNHG7 or down-regulated miR-34a-5p could promote cell proliferation and inhibit cell apoptosis and autophagy in OA cells. More than that, RIP, pulldown and luciferase reporter assay was applied to determine that miR-34a-5p was a target miRNA of SNHG7 and SYVN1 was a target mRNA of miR-34-5p. Rescue experiments showed that overexpression of miR-34a reversed high expression of SNHG7-mediated suppression of apoptosis and autophagy as well as promotion of proliferation, while its knockdown inhibited cell apoptosis and autophagy and promoted cell proliferation which could be impaired by silencing SYVN1. In addition, SNHG7 regulated SYVN1 through sponging miR-34a-5p. CONCLUSION: SNHG7 sponged miR-34a-5p to affect cell proliferation, apoptosis and autophagy through targeting SYVN1 which provides a novel sight into the pathogenesis of OA.


Subject(s)
Humans , Osteoarthritis/metabolism , Autophagy/physiology , Apoptosis/physiology , MicroRNAs/metabolism , Ubiquitin-Protein Ligases/metabolism , RNA, Long Noncoding/metabolism , Osteoarthritis/genetics , Autophagy/genetics , Enzyme-Linked Immunosorbent Assay , Down-Regulation , Up-Regulation , Blotting, Western , Apoptosis/genetics , MicroRNAs/genetics , Ubiquitin-Protein Ligases/genetics , Cell Proliferation , Real-Time Polymerase Chain Reaction , RNA, Long Noncoding/genetics
12.
Biol. Res ; 53: 12, 2020. tab, graf
Article in English | LILACS | ID: biblio-1100918

ABSTRACT

BACKGROUND: Mast cells (MCs) have been found to play a critical role during development of inflammatory bowel disease (IBD) that characterized by dysregulation of inflammation and impaired intestinal barrier function. However, the function of MCs in IBD remains to be fully elucidated. RESULTS: In our study, we used exosomes isolated from human mast cells-1 (HMCs-1) to culture with NCM460, HT-29 or CaCO2 of intestinal epithelial cells (lECs) to investigate the communication between MCs and lECs. We found that MCs-derived exosomes significantly increased intestinal epithelial permeability and destroyed intestinal barrier function, which is attributed to exosome-mediated functional miRNAs were transferred from HMCs-1 into lECs, leading to inhibit tight junction-related proteins expression, including tight junction proteins 1 (TJP1, ZO-1), Occludin (OCLN), Claudin 8 (CLDN8). Microarray and bioinformatic analysis have further revealed that a panel of miRNAs target different tight junction-related proteins. Interestingly, miR-223 is enriched in mast cell-derived exosome, which inhibit CLDN8 expression in IECs, while treatment with miR-223 inhibitor in HT-29 cells significantly reversed the inhibitory effect of HMCs-1-derived exosomes on CLDN 8 expression. Most importantly, enrichment of MCs accumulation in intestinal mucosa of patients with IBD compared with those healthy control. CONCLUSIONS: These results indicated that enrichment of exosomal miR-223 from HMCs-1 inhibited CLDN8 expression, leading to destroy intestinal barrier function. These finding provided a novel insight of MCs as a new target for therapeutic treatment of IBD.


Subject(s)
Humans , Animals , Cattle , MicroRNAs/metabolism , Epithelial Cells/metabolism , Intestinal Mucosa/metabolism , Mast Cells/metabolism , Permeability , Inflammatory Bowel Diseases/metabolism , Cells, Cultured , Caco-2 Cells/cytology , Computational Biology , Tissue Array Analysis , Exosomes/metabolism , Claudins/metabolism , Occludin/metabolism , Zonula Occludens-1 Protein/metabolism
13.
Biol. Res ; 53: 14, 2020. graf
Article in English | LILACS | ID: biblio-1100920

ABSTRACT

BACKGROUND: Previous studies have shown that long noncoding RNA (IncRNA) LINC00483 was aberrantly expressed in human cancers, including gastric cancer. However, the regulatory mechanism of this IncRNA in gastric cancer remains largely unknown. The present study aimed to investigate the effect of LINC00483 on gastric cancer development and explore the potential regulatory network of LINC00483/microRNA (miR)-490-3p/mitogen-activated protein kinase 1 (MAPK1). METHODS: Thirty patients with gastric cancer were recruited for tissues collection. The expression levels of LINC00483, miR-490-3p and MAPK1 were detected by quantitative real-time polymerase chain reaction or western blot. Cell viability, apoptosis, migration and invasion were determined by MTT, flow cytometry, transwell assays and western blot, respectively. The target association between miR-490-3p and LINC00483 or MAPK1 was confirmed by luciferase reporter assay. Xenograft model was established to assess the function of LINC00483 in vivo. RESULTS: LINC00483 and MAPK1 levels were increased in gastric cancer tissues and cells. Knockdown of LINC00483 or MAPK1 inhibited cells viability, migration and invasion but promoted apoptosis in gastric cancer cells. Moreover, MAPK1 overexpression attenuated the effect of LINC00483 knockdown on gastric cancer development. LINC00483 could increase MAPK1 expression by competitively sponging miR-490-3p. miR-490-3p overexpression suppressed gastric cancer development, which was abated by introduction of LINC00483. Besides, inhibition of LINC00483 decreased xenograft tumor growth by regulating miR-490-3p/MAPK1 axis. CONCLUSION: Knockdown of LINC00483 inhibited gastric cancer development in vitro and in vivo by increasing miR- 490-3p and decreasing MAPK1, elucidating a novel mechanism for understanding the development of gastric cancer.


Subject(s)
Humans , Animals , Male , Stomach Neoplasms/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Stomach Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Cell Movement , Cell Survival , Apoptosis , Xenograft Model Antitumor Assays , MicroRNAs/genetics , Cell Line, Tumor/metabolism , Epithelial Cells/metabolism , RNA, Long Noncoding/genetics , Carcinogenesis/metabolism , Luciferases/metabolism , Mice, Inbred BALB C
14.
Biol. Res ; 53: 19, 2020. graf
Article in English | LILACS | ID: biblio-1114696

ABSTRACT

BACKGROUND: Breast cancer is the most common cancer types among women. Recent researches have focused on determining the efficiency of alternative molecules and miRNAs in breast cancer treatment. The AIMof this study was to determine the effect of usnic acid response-miR-185-5p on proliferation in the breast cancer cell and to determine its relationship with apoptosis pathway. METHODS: The cell proliferation and cell apoptosis rate were significantly increased following the ectopic expression of miR-185-5p in BT-474 cells. Furthermore, the results of cell cycle assay performed by flow cytometry revealed that the transfection with miR-185-5p induced G1/S phase arrest. The apoptosis-related genes expression analysis was performed by qRT-PCR and the direct target of miR-185-5p in BT-474 cells was identified by western blot and luciferase reporter assay. RESULTS: Our data showed that miR-185-5p can cause significant changes in apoptosis-related genes expression levels, suggesting that cell proliferation was suppressed by miR-185-5p via inducing apoptosis in breast cancer cells. According to western blot results, miR-185-5p lead to decrease BCL2 protein level in BT-474 cells and direct target of miR-185-5p was identified as BCL by luciferase reporter assay. CONCLUSION: This study revealed that miR-185-5p may be an effective agent in the treatment of breast cancer.


Subject(s)
Humans , Female , Benzofurans/metabolism , Breast Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , MicroRNAs/genetics , Breast Neoplasms/metabolism , Transfection , Signal Transduction , Down-Regulation , Gene Expression Regulation, Neoplastic , Apoptosis , Proto-Oncogene Proteins c-bcl-2 , Reverse Transcriptase Polymerase Chain Reaction , MicroRNAs/metabolism , Cell Line, Tumor , Cell Proliferation
15.
Biol. Res ; 53: 49, 2020. tab, graf
Article in English | LILACS | ID: biblio-1142416

ABSTRACT

BACKGROUND: Although OIP5-AS1 has been characterized as an oncogenic lncRNA in many types of cancer, its role and underlying mechanism in ovarian carcinoma (OC) remains unknown. This study aimed to investigate the role of OIP5-AS1 in OC. METHODS: OC tissues and non-tumor tissues (ovary tissues within 3 cm around tumors) were collected from 58 OC patients (age range 36 to 67 years old, mean age 51.4 ± 5.9 years old). The expression of OIP5-AS1 and snail in paired tissues were determined by RT-qPCR. The interaction between OIP5-AS1 and miR-34a was predicted by IntaRNA2.0 and confirmed by dual luciferase reporter assay. The effects of overexpression of OIP5-AS1 and miR-34a on the expression of snail were analyzed by RT-qPCR and Western blotting. Cell invasion and migration were analyzed by Transwell assay. RESULTS: We observed that the expression of OIP5-AS1 and snail was upregulated and positively correlated with each other in OC. RNA-RNA interaction analysis showed that OIP5-AS1 might sponge miR-34a. In OC cells, overexpression of OIP5-AS1 resulted in the upregulated expression of snail, while overexpression of miR-34a downregulated the expression of snail. In addition, overexpression of miR-34a reduced the effects of overexpression of OIP5-AS1 on the expression of snail. In cell invasion and migration assay, overexpression of OIP5-AS1 and snail resulted in increased OC cell invasion and migration, while overexpression of miR-34a decreased OC cell invasion and migration. Moreover, overexpression of miR-34a attenuated the effects of OIP5-AS1 overexpression on OC cell invasion and migration. CONCLUSIONS: Therefore, OIP5-AS1 may upregulate snail expression in OC by sponging miR-34a to promote OC cell invasion and migration.


Subject(s)
Humans , Female , Adult , Middle Aged , Aged , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/physiology , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation , Neoplasm Invasiveness
16.
Braz. j. med. biol. res ; 53(5): e9330, 2020. tab, graf
Article in English | LILACS | ID: biblio-1098112

ABSTRACT

The development of chemotherapy resistance significantly impairs the efficiency of chemotherapy, but the underlying mechanisms of chemotherapy resistance in gastric cancer (GC) are complicated and still need to be further explored. Here, we aimed to reveal the effects of miR-4290/PDK1 (pyruvate dehydrogenase kinase 1) axis on chemotherapy resistance of GC in vitro. The expression patterns of miR-4290 in GC tissues and cell lines were determined by real-time quantitative PCR. Kaplan-Meier was used to assess the relationship between miR-4290 expression levels and patients' overall survival. CCK-8 and flow cytometry technologies were applied to detect cell proliferation and apoptosis. The luciferase gene reporter assay was used to evaluate the interaction between miR-4290 and PDK1. miR-4290 was lowly expressed in GC tissues and cell lines, which was closely associated with the shorter overall survival of GC patients. miR-4290 mimics significantly inhibited cell proliferation and induced cell apoptosis, as well as induced a significant reduction in the expression of PDK1. Moreover, miR-4290 significantly inhibited glycolysis and decreased the IC50 value to cisplatin in SGC7901 cells, whereas these effects were abolished and cell apoptosis was promoted when PDK1 was overexpressed. In conclusion, this study revealed that miR-4290 suppressed PDK1-mediated glycolysis to enhance the sensitivity of GC cells to cisplatin.


Subject(s)
Humans , Stomach Neoplasms/metabolism , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , MicroRNAs/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Glycolysis/genetics , Transfection , Gene Expression Regulation, Neoplastic , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Real-Time Polymerase Chain Reaction , Flow Cytometry , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics
17.
Braz. j. med. biol. res ; 53(5): e9162, 2020. tab, graf
Article in English | LILACS | ID: biblio-1098111

ABSTRACT

In this study, we aimed to explore the relationship among miR-22, deep cerebral microbleeds (CMBs), and post-stroke depression (PSD) 1 month after ischemic stroke. We consecutively recruited 257 patients with first-ever and recurrent acute cerebral infarction and performed PSD diagnosis in accordance with the Diagnostic and Statistical Manual IV criteria for depression. Clinical information, assessments of stroke severity, and imaging data were recorded on admission. We further detected plasma miR-22 using quantitative PCR and analyzed the relationship among miR-22, clinical data, and PSD using SPSS 23.0 software. Logistic regression showed that deep (OR=1.845, 95%CI: 1.006-3.386, P=0.047) and brain stem CMBs (OR=2.652, 95%CI: 1.110-6.921, P=0.040), as well as plasma miR-22 levels (OR=2.094, 95%CI: 1.066-4.115, P=0.032) were independent risk factors for PSD. In addition, there were significant differences in baseline National Institutes of Health Stroke Scale scores (OR=1.881, 95%CI: 1.180-3.011, P=0.007) and Widowhood scores (OR=1.903, 95%CI: 1.182-3.063, P=0.012). Analysis of the receiver operating curve (AUC=0.723, 95%CI: 0.562-0.883, P=0.016) revealed that miR-22 could predict PSD one month after ischemic stroke. Furthermore, plasma miR-22 levels in brainstem and deep CMBs patients showed an upward trend (P=0.028) relative to the others. Patients with acute ischemic stroke, having brainstem and deep cerebral microbleeds, or a higher plasma miR-22 were more likely to develop PSD. These findings indicate that miR-22 might be involved in cerebral microvascular impairment and post-stroke depression.


Subject(s)
Humans , Male , Female , Middle Aged , Aged , Cerebral Hemorrhage/psychology , Brain Infarction/psychology , MicroRNAs/metabolism , Depression/psychology , Brief Psychiatric Rating Scale , Recurrence , Socioeconomic Factors , Severity of Illness Index , Brain Stem/blood supply , Magnetic Resonance Imaging , Biomarkers/metabolism , Cerebral Hemorrhage/metabolism , Acute Disease , Risk Factors , Depression/metabolism
18.
Braz. j. med. biol. res ; 53(4): e9288, 2020. graf
Article in English | LILACS | ID: biblio-1089349

ABSTRACT

Diabetic nephropathy (DN) is one of the leading causes of mortality in diabetic patients. Long non-coding RNA zinc finger E-box binding homeobox 1 antisense 1 (ZEB1-AS1) plays a crucial role in the development of various diseases, including DN. However, the molecular mechanism of ZEB1-AS1 in DN pathogenesis remains elusive. An in vitro DN model was established by treating HK-2 cells with high glucose (HG). Quantitative polymerase chain reaction (qRT-PCR) was utilized to detect the expression levels of ZEB1-AS1, microRNA-216a-5p (miR-216a-5p), and bone morphogenetic protein 7 (BMP7). Western blot assay was used to evaluate the protein levels of BMP7, epithelial-to-mesenchymal transition (EMT)-related proteins, and fibrosis markers. Additionally, the interaction among ZEB1-AS1, miR-216a-5p, and BMP7 was predicted by MiRcode (http://www.mircode.org) and starBase 2.0 (omics_06102, omicX), and confirmed by luciferase reporter assay. ZEB1-AS1 and BMP7 were down-regulated, while miR-216a-5p was highly expressed in kidney tissues of DN patients. Consistently, HG treatment decreased the levels of ZEB1-AS1 and BMP7, whereas HG increased miR-216a-5p expression in HK-2 cells in a time-dependent manner. ZEB1-AS1 upregulation inhibited HG-induced EMT and fibrogenesis. Furthermore, ZEB1-AS1 directly targeted miR-216a-5p, and overexpression of miR-216a-5p restored the inhibitory effects of ZEB1-AS1 overexpression on EMT and fibrogenesis. BMP7 was negatively targeted by miR-216a-5p. In addition, ZEB1-AS1 suppressed HG-induced EMT and fibrogenesis by regulating miR-216a-5p and BMP-7. lncRNA ZEB1-AS1 inhibited high glucose-induced EMT and fibrogenesis via regulating miR-216a-5p/BMP7 axis in diabetic nephropathy, providing a potential target for DN therapy.


Subject(s)
Humans , Diabetic Nephropathies/metabolism , Bone Morphogenetic Protein 7/metabolism , Epithelial-Mesenchymal Transition/physiology , RNA, Long Noncoding/physiology , Zinc Finger E-box-Binding Homeobox 1/metabolism , Down-Regulation , Up-Regulation , Cells, Cultured , MicroRNAs/metabolism , Diabetic Nephropathies/genetics , Real-Time Polymerase Chain Reaction
19.
Braz. oral res. (Online) ; 34: e030, 2020. tab, graf
Article in English | LILACS | ID: biblio-1089389

ABSTRACT

Abstract: The abnormal increase in proliferation rate of human periodontal ligament stem cells (PDLSCs) is considered to be involved in the pathogenesis of periodontitis, a disease in which the IL-10-mediated anti-inflammatory pathway plays a critical role. This study aimed to investigate the involvement of microRNA-466l in periodontitis and to explore the possible interaction between IL-10 and microRNA-466l. PDLSCs were obtained from periodontitis-affected teeth and healthy control teeth. The expression of microRNA-466l and IL-10 mRNA was measured in PDLSCs using RT-qPCR. The proliferation ability of PDLSCs was analyzed using CCK-8 assays. Overexpression of microRNA-466l in a PDLSC cell line was established using two different types of PDLSCs, and the effect of microRNA-466l overexpression on IL-10 expression and cell proliferation were detected by western blot and CCK-8 assays, respectively. We found that expression levels of microRNA-466l and IL-10 mRNA were significantly lower (P < 0.05) in PDLSCs derived from periodontitis-affected teeth compared to those derived from healthy teeth. However, the cell proliferation ability was significantly higher in the PDLSCs derived from periodontitis-affected teeth. Meanwhile microRNA-466l overexpression decreased cell proliferation rates of both types of PDLSCs and upregulated IL-10 expression. Together, these data suggest that microRNA-466l can upregulate IL-10 and reduce the proliferation rate of PDLSCs.


Subject(s)
Humans , Adult , Periodontitis/genetics , Stem Cells/metabolism , Up-Regulation , Interleukin-10/therapeutic use , MicroRNAs/metabolism , Cell Proliferation/physiology , Periodontitis/metabolism , Periodontitis/therapy , Cell Differentiation , Blotting, Western , Interleukin-10/metabolism
20.
Braz. j. med. biol. res ; 53(2): e9106, 2020. graf
Article in English | LILACS | ID: biblio-1055491

ABSTRACT

Reperfusion strategies in acute myocardial infarction (AMI) can cause a series of additional clinical damage, defined as myocardial ischemia/reperfusion (I/R) injury, and thus there is a need for effective therapeutic methods to attenuate I/R injury. miR-26a-5p has been proven to be an essential regulator for biological processes in different cell types. Nevertheless, the role of miR-26a-5p in myocardial I/R injury has not yet been reported. We established an I/R injury model in vitro and in vivo. In vitro, we used cardiomyocytes to simulate I/R injury using hypoxia/reoxygenation (H/R) assay. In vivo, we used C57BL/6 mice to construct I/R injury model. The infarct area was examined by TTC staining. The level of miR-26a-5p and PTEN was determined by bioinformatics methods, qRT-PCR, and western blot. In addition, the viability and apoptosis of cardiomyocytes were separately detected by MTT and flow cytometry. The targeting relationship between miR-26a-5p and PTEN was analyzed by the TargetScan website and luciferase reporter assay. I/R and H/R treatment induced myocardial tissue injury and cardiomyocyte apoptosis, respectively. The results showed that miR-26a-5p was down-regulated in myocardial I/R injury. PTEN was found to be a direct target of miR-26a-5p. Furthermore, miR-26a-5p effectively improved viability and inhibited apoptosis in cardiomyocytes upon I/R injury by inhibiting PTEN expression to activate the PI3K/AKT signaling pathway. miR-26a-5p could protect cardiomyocytes against I/R injury by regulating the PTEN/PI3K/AKT pathway, which offers a potential approach for myocardial I/R injury treatment.


Subject(s)
Animals , Rabbits , Myocardial Reperfusion Injury/metabolism , Myocardial Ischemia/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Myocytes, Cardiac/pathology , MicroRNAs/metabolism , PTEN Phosphohydrolase/metabolism , Signal Transduction , Blotting, Western , Disease Models, Animal , Proto-Oncogene Proteins c-akt/metabolism , Real-Time Polymerase Chain Reaction , Flow Cytometry , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL