Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
1.
Neuroscience Bulletin ; (6): 1157-1172, 2023.
Article in English | WPRIM | ID: wpr-982467

ABSTRACT

Hv1 is the only voltage-gated proton-selective channel in mammalian cells. It contains a conserved voltage-sensor domain, shared by a large class of voltage-gated ion channels, but lacks a pore domain. Its primary role is to extrude protons from the cytoplasm upon pH reduction and membrane depolarization. The best-known function of Hv1 is the regulation of cytosolic pH and the nicotinamide adenine dinucleotide phosphate oxidase-dependent production of reactive oxygen species. Accumulating evidence indicates that Hv1 is expressed in nervous systems, in addition to immune cells and others. Here, we summarize the molecular properties, distribution, and physiological functions of Hv1 in the peripheral and central nervous systems. We describe the recently discovered functions of Hv1 in various neurological diseases, including brain or spinal cord injury, ischemic stroke, demyelinating diseases, and pain. We also summarize the current advances in the discovery and application of Hv1-targeted small molecules in neurological diseases. Finally, we discuss the current limitations of our understanding of Hv1 and suggest future research directions.


Subject(s)
Animals , Protons , Ion Channels/metabolism , Reactive Oxygen Species/metabolism , Brain/metabolism , NADPH Oxidases , Mammals/metabolism
2.
Arq. Asma, Alerg. Imunol ; 6(1): 134-140, jan.mar.2022. ilus
Article in English, Portuguese | LILACS | ID: biblio-1400123

ABSTRACT

A doença granulomatosa crônica (DGC) é um erro inato da imunidade de fagócitos, e ocorre em decorrência de mutações que afetam componentes da enzima NADPH oxidase. Os pacientes são suceptíveis a infecções graves e letais por fungos e bactérias. O objetivo deste trabalho é relatar o caso de um lactente com DGC que apresentou manifestação clínica de tuberculose (TB) intratorácica na forma pseudotumoral e óssea iniciada no período neonatal. O diagnóstico de DGC foi realizado através do teste de DHR e, após o início da profilaxia com sulfametoxazoltrimetroprima e itraconazol, o paciente manteve-se estável clinicamente. A mãe e a irmã também apresentaram DHR alterados, a análise genética revelou uma mutação ligada ao X no exon 2 do gene CYBB c.58G>A, levando uma alteração em G20R. É fundamental que o diagnóstico seja realizado o mais precocemente possível, a fim de instituir as orientações aos familiares e tratamento adequado, reduzindo assim complicações infecciosas e melhorando prognóstico.


Chronic granulomatous disease (CGD) is an inborn error of phagocyte immunity and occurs as a resulto f mutations that affect components of the NADPH oxidase enzyme. Patients are susceptible to serious and lethal fungal and bacterial infections. The aim of this paper is to report a case an infant with CGD who presented clinical manifestations of intrathoracic tuberculosis (TB) in the pseudotumoral and bone form, which started in the neonatal period. The diagnosis of CGD was performed using the DHR test and, after starting prophylaxis with sulfamethoxazole-trimethoprim and itraconazole, the patient remained clinically stable. The mother and sister also had altered DHR, genetic analysis revealed an X-linked mutation in exon 2 of the CYBB gene c.58G>A, leading to an alteration in G20R. It is essential that the diagnosis is made as early as possible, in order to establish guidelines for Family members and adequate treatment, thus reducing infectious complications and improving prognosis.


Subject(s)
Humans , Male , Infant , Tuberculosis , Bone and Bones , Granulomatous Disease, Chronic , Phagocytes , Prognosis , Sulfamethoxazole , Therapeutics , Bacteria , Bacterial Infections , NADPH Oxidases , Diagnosis , Fungi , Genetics , Infections
3.
Journal of Peking University(Health Sciences) ; (6): 18-22, 2022.
Article in Chinese | WPRIM | ID: wpr-936107

ABSTRACT

OBJECTIVE@#To explore the correlation of cytochrome B-245 alpha chain (CYBA) rs4673 and cholesteryl ester transfer protein (CETP) rs12720922 polymorphisms with the susceptibility of gene-ralized aggressive periodontitis (GAgP).@*METHODS@#The study was a case-control trial. A total of 372 GAgP patients and 133 periodontally healthy controls were recruited. The CYBA rs4673 and CETP rs12720922 polymorphisms were detected by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Logistic regression models were used to analyze the correlation of CYBA rs4673 and CETP rs12720922 variants with the susceptibility of GAgP. The interaction between the two gene polymorphisms to the susceptibility of GAgP was analyzed by the likelihood ratio test. The interaction model adopted was the multiplication model.@*RESULTS@#The mean age of GAgP group and control group was (27.5±5.2) years and (28.8±7.1) years respectively. There was significant difference in age between the two groups (P < 0.05). The gender distribution (male/female) was 152/220 and 53/80 respectively, and there was no significant difference between GAgP group and controls (P>0.05). For CYBA rs4673, the frequency of CT/TT genotype in the GAgP group was significantly higher than that in the controls [18.0% (66/366) vs. 10.6% (14/132), P < 0.05]. After adjusting age and gender, the individuals with CT/TT genotype had a higher risk of GAgP (OR=1.86, 95%CI: 1.01-3.45, P < 0.05), compared with CC genotype. There was no statistically significant difference in distributions of the CETP rs12720922 genotypes (GG, AA/AG) between GAgP patients and healthy controls (P>0.05). A significant interaction between CYBA rs4673 and CETP rs12720922 in the susceptibility to GAgP was observed. The GAgP risk of the individuals with CYBA rs4673 CT/TT and CETP rs12720922 GG genotypes was significantly increased (OR=3.25, 95%CI: 1.36-7.75, P < 0.01), compared with those carrying CC and AA/AG genotypes.@*CONCLUSION@#CYBA rs4673 CT/TT genotype is associated with GAgP susceptibility. There is a significant interaction between CYBA rs4673 CT/TT genotype and CETP rs12720922 GG genotype in the susceptibility of GAgP.


Subject(s)
Adult , Female , Humans , Male , Young Adult , Aggressive Periodontitis/genetics , Case-Control Studies , Cholesterol Ester Transfer Proteins/genetics , Cytochrome b Group , Gene Frequency , Genetic Predisposition to Disease , Genotype , NADPH Oxidases/genetics , Polymorphism, Single Nucleotide
4.
Hematol., Transfus. Cell Ther. (Impr.) ; 43(4): 430-436, Oct.-Dec. 2021. graf, ilus
Article in English | LILACS | ID: biblio-1350823

ABSTRACT

ABSTRACT Background: In Philadelphia chromosome-negative myeloproliferative neoplasm (MPN) models, reactive oxygen species (ROS) are elevated and have been implicated in genomic instability, JAK2/STAT signaling amplification, and disease progression. Although the potential effects of ROS on the MPN phenotype, the effects of ruxolitinib treatment on ROS regulation have been poorly explored. Herein, we have reported the impact of ruxolitinib on redox signaling transcriptional network, and the effects of diphenyleneiodonium (DPI), a pan NOX inhibitor, in JAK2V617F-driven cellular models. Method: Redox signaling-related genes were investigated in SET2 cells upon ruxolitinib treatment by RNA-seq (GEO accession GSE69827). SET2 and HEL cells, which represent JAK2V617F-positive MPN cellular models with distinct sensitivity to apoptosis induced by ruxolitinib, were used. Cell viability was evaluated by MTT, apoptosis by annexin V/PI and flow cytometry, and cell signaling by quantitative PCR and Western blot. Main results: Ruxolitinib impacted on a network composed of redox signaling-related genes, and DUOX1 and DUOX2 were identified as potential modulators of ruxolitinib response. In SET2 and HEL cells, DPI reduced cell viability and, at low doses, it significantly potentiated ruxolitinib-induced apoptosis. In the molecular scenario, DPI inhibited STAT3, STAT5 and S6 ribosomal protein phosphorylation and induced PARP1 cleavage in JAK2V617F-positive cells. DPI combined with ruxolitinib increased PARP1 cleavage in SET2 cells and potentiated ruxolitinib-reduced STAT3, STAT5 and S6 ribosomal protein in HEL cells. Conclusion: Our study reveals a potential adaptation mechanism for resistance against ruxolitinib by transcriptionally reprogramming redox signaling in JAK2V617F cells and exposes redox vulnerabilities with therapeutic value in MPN cellular models.


Subject(s)
Janus Kinase 2 , Myelodysplastic-Myeloproliferative Diseases/drug therapy , Oxidation-Reduction , NADPH Oxidases , Dual Oxidases , Myeloproliferative Disorders
5.
J. venom. anim. toxins incl. trop. dis ; 27: e20200179, 2021. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1279402

ABSTRACT

Neutrophils play a pivotal role in innate immunity and in the inflammatory response. Neutrophils are very motile cells that are rapidly recruited to the inflammatory site as the body first line of defense. Their bactericidal activity is due to the release into the phagocytic vacuole, called phagosome, of several toxic molecules directed against microbes. Neutrophil stimulation induces release of this arsenal into the phagosome and induces the assembly at the membrane of subunits of the NAPDH oxidase, the enzyme responsible for the production of superoxide anion that gives rise to other reactive oxygen species (ROS), a process called respiratory burst. Altogether, they are responsible for the bactericidal activity of the neutrophils. Excessive activation of neutrophils can lead to extensive release of these toxic agents, inducing tissue injury and the inflammatory reaction. Envenomation, caused by different animal species (bees, wasps, scorpions, snakes etc.), is well known to induce a local and acute inflammatory reaction, characterized by recruitment and activation of leukocytes and the release of several inflammatory mediators, including prostaglandins and cytokines. Venoms contain several molecules such as enzymes (phospholipase A2, L-amino acid oxidase and proteases, among others) and peptides (disintegrins, mastoporan, parabutoporin etc.). These molecules are able to stimulate or inhibit ROS production by neutrophils. The present review article gives a general overview of the main neutrophil functions focusing on ROS production and summarizes how venoms and venom molecules can affect this function.(AU)


Subject(s)
Animals , Poisons/administration & dosage , Reactive Oxygen Species , NADPH Oxidases , L-Amino Acid Oxidase , Neutrophils , Anti-Inflammatory Agents
6.
Braz. j. biol ; 80(4): 948-956, Oct.-Dec. 2020. graf
Article in English | LILACS | ID: biblio-1142528

ABSTRACT

Abstract Mucosal epithelial cells act as the first immunologic barrier of organisms, and contact directly with pathogens. Therefore, hosts must have differential strategies to combat pathogens efficiently. Reactive oxygen species (ROS), as a kind of oxidizing agents, participates in the early stage of killing pathogens quickly. Recent reports have revealed that dual oxidase (DUOX) plays a key role in mucosal immunity. And the DUOX is a transmembrane protein which produces ROS as their primary enzymatic products. This process is an important pattern for eliminating pathogens. In this review, we highlight the DUOX immunologic functions in the respiratory and digestive tract of vertebrates.


Resumo As células epiteliais da mucosa atuam como a primeira barreira imunológica dos organismos e entram em contato direto com os patógenos. Portanto, os hospedeiros devem ter estratégias diferenciadas para combater os patógenos de forma eficiente. Trabalhos recentes revelaram que a oxidase dupla (DUOX) desempenha um papel fundamental para a imunidade da mucosa. A DUOX é uma proteína transmembrana geradora de espécies reativas de oxigênio (EROs) como seus principais produtos enzimáticos. Nesta revisão, apresentaremos as funções imunológicas da DUOX no trato respiratório e digestivo dos vertebrados.


Subject(s)
Animals , Vertebrates , NADPH Oxidases , Reactive Oxygen Species , Dual Oxidases
7.
Rev. cuba. hematol. inmunol. hemoter ; 36(2): e1102, abr.-jun. 2020. tab, graf
Article in Spanish | LILACS, CUMED | ID: biblio-1149897

ABSTRACT

Introducción: La enfermedad granulomatosa crónica es una inmunodeficiencia primaria causada por mutaciones en la enzima NADPH oxidasa. Esta compromete la producción de especies reactivas del oxígeno, que son importantes contra patógenos. La prueba de la oxidación de la dihidrorodamina es un método eficaz para diagnosticar la enfermedad. Objetivo: Demostrar la utilidad de la prueba de la oxidación de la dihidrorodamina y del patrón de herencia en la confirmación del diagnóstico de la enfermedad granulomatosa crónica de un paciente. Métodos: Estudio de caso de una familia con diagnóstico de enfermedad granulomatosa crónica. Se tomó muestra de sangre periférica para citometría de flujo a tres individuos. Se realizó la prueba de la oxidación de la dihidrorodamina bajo estímulo con acetato de forbolmiristato y se evaluaron las subpoblaciones linfocitarias. Las muestras se leyeron en un citómetro GALLIOS, Beckman Coulter. Los datos obtenidos se analizaron en el programa informático Kaluza. Resultados: El paciente masculino tuvo un valor de oxidación de la dihidrorodamina positiva de 0,87 por ciento, que confirmó un patrón de herencia ligado al cromosoma X; mientras que la madre y hermana gemela portadoras tuvieron valores de 46,76 por ciento y 37,32 por ciento, respectivamente. Se encontraron alteraciones en las subpoblaciones linfocitarias. Conclusiones: La prueba de la oxidación de la dihidrorodamina es un método muy efectivo, rápido y sencillo que confirma el diagnóstico de la enfermedad granulomatosa crónica y determina el patrón de herencia y fenotipo de la enfermedad. Además, permite identificar a las mujeres portadoras según la distribución de los neutrófilos normales y los que tienen el gen CYBB mutado(AU)


Introduction: Chronic granulomatous disease is a primary immunodeficiency caused by mutations in the NADPH oxidase enzymes. This compromises the production of oxygen reactive species, which are important against pathogens. The dihydrorhodamine oxidation test is an effective method for diagnosing the disease. Objective: To demonstrate the usefulness of the dihydrorhodamine oxidation test and the inheritance pattern in confirming the diagnosis of chronic granulomatous disease in a patient. Methods: A case study of a family with a diagnosis of chronic granulomatous disease. A peripheral blood sample was taken from three individuals and by flow cytometry. The dihydrorhodamine oxidation test was performed under stimulation with phorbolmyristate acetate, and lymphocyte subpopulations were evaluated. The samples were read on a GALLIOS, Beckman Coulter cytometer. The data obtained were analyzed using the computer program Kaluza. Results: The male patient had a positive dihydrorhodamine oxidation value of 0.87 percent, which confirmed an inheritance pattern linked to the X chromosome; while the carrier mother and twin sister had values 8203;8203;of 46.76 percent and 37.32 percent, respectively. Alterations were found in the lymphocyte subpopulations. Conclusions: The dihydrorhodamine oxidation test is a very effective, fast and simple method that confirms the diagnosis of chronic granulomatous disease and determines the inheritance pattern and phenotype of the disease. In addition, it allows the identification of female carriers according to the distribution of normal neutrophils and those with the CYBB mutation(AU)


Subject(s)
Humans , Male , Female , Carrier State/congenital , NADPH Oxidases/analysis , Inheritance Patterns/genetics , Granulomatous Disease, Chronic/diagnosis , Case Reports , Cuba , Genetic Carrier Screening/methods , Medical History Taking/methods
8.
International Journal of Stem Cells ; : 63-72, 2019.
Article in English | WPRIM | ID: wpr-764060

ABSTRACT

BACKGROUND AND OBJECTIVES: Patients suffer from long-term diabetes can result in severe complications in multiple organs through induction of vascular dysfunctions. However, the effects of chronic hyperglycemic conditions on hematopoiesis and the microenvironment in the bone marrow (BM) are not yet well understood. METHODS: BM cells were harvested from femurs of mice and analyzed using flow cytometry. Human PVCs were cultured in serum-free α-MEM. After 24hrs, PVC-CM was collected and filtered through a 0.22 μm filter. RESULTS: In this study, we showed that hyperglycemia alters hematopoietic composition in the BM, which can partially be restored via paracrine mechanisms, including perivascular cells (PVCs) and NADPH oxidase (NOX) inhibition in mice with streptozotocin-induced diabetes. Prolonged hyperglycemic conditions resulted in an increase in the frequency and number of long-term hematopoietic stem cells as well as the number of total BM cells. The altered hematopoiesis in the BM was partially recovered by treatment with PVC-derived conditioned medium (CM). Long-term diabetes also increased the number of myeloid-derived suppressor cells in the BM, which was partially restored by the administration of PVC-CM and diphenyleneiodonium (DPI), a NOX inhibitor. We further showed the downregulation of ERK and p38 phosphorylation in BM cells of diabetic mice treated with PVC-CM and DPI. This may be associated with dysfunction of hematopoietic cells and promotion of subsequent diabetic complications. CONCLUSIONS: Our data suggested that alterations in BM hematopoietic composition due to prolonged hyperglycemic conditions might be restored by improvement of the hematopoietic microenvironment and modulation of NOX activity.


Subject(s)
Animals , Humans , Mice , Bone Marrow , Culture Media, Conditioned , Diabetes Complications , Down-Regulation , Femur , Flow Cytometry , Hematopoiesis , Hematopoietic Stem Cells , Hyperglycemia , NADP , NADPH Oxidases , Phosphorylation
9.
Korean Circulation Journal ; : 866-876, 2019.
Article in English | WPRIM | ID: wpr-759469

ABSTRACT

BACKGROUND AND OBJECTIVES: Elevated endothelin (ET)-1 level is strongly correlated with the pathogenesis of pulmonary arterial hypertension (PAH). Expression level of nicotinamide adenine dinucleotide phosphate oxidase (NOX) 4 is increased in the PAH patients. Ambrisentan, a selective endothelin receptor A (ERA) antagonist, is widely used in PAH therapy. The current study was undertaken to evaluate the effects of ambrisentan treatment in the monocrotaline (MCT)-induced PAH rat model. METHODS: Rats were categorized into control group (C), monocrotaline group (M) and ambrisentan group (Am). The M and Am were subcutaneously injected 60 mg/kg MCT at day 0, and in Am, ambrisentan was orally administered the day after MCT injection for 4 weeks. The right ventricle (RV) pressure was measured and pathological changes of the lung tissues were observed by Victoria blue staining. Protein expressions of ET-1, ERA, endothelial nitric oxide synthase (eNOS) and NOX4 were confirmed by western blot analysis. RESULTS: Ambrisentan treatment resulted in a recovery of the body weight and RV/left ventricle+septum at week 4. The RV pressure was lowered at weeks 2 and 4 after ambrisentan administration. Medial wall thickening of pulmonary arterioles and the number of intra-acinar arteries were also attenuated by ambrisentan at week 4. Protein expression levels of ET-1 and eNOS were recovered at weeks 2 and 4, and ERA levels recovered at week 4. CONCLUSIONS: Ambrisentan administration resulted in the recovery of ET-1, ERA and eNOS protein expression levels in the PAH model. However, the expression level of NOX4 remained unaffected after ambrisentan treatment.


Subject(s)
Animals , Humans , Rats , Arteries , Arterioles , Blotting, Western , Body Weight , Endothelin Receptor Antagonists , Endothelins , Gene Expression , Heart Ventricles , Hypertension , Hypertension, Pulmonary , Lung , Models, Animal , Monocrotaline , NADP , NADPH Oxidases , Nitric Oxide Synthase Type III , Oxidoreductases , Receptors, Endothelin , Victoria
10.
Mycobiology ; : 105-111, 2019.
Article in English | WPRIM | ID: wpr-760521

ABSTRACT

Many of the fungicides and antibiotics currently available against plant pathogens are of limited use due to the emergence of resistant strains. In this study, we examined the effects of diphenyleneiodonium chloride (DPIC), an inhibitor of the superoxide producing enzyme NADPH oxidase, against fungal and bacterial plant pathogens. We found that DPIC inhibits fungal spore germination and bacterial cell proliferation. In addition, we demonstrated the potent antibacterial activity of DPIC using rice heads infected with the bacterial pathogen Burkholderia glumae which causes bacterial panicle blight (BPB). We found that treatment with DPIC reduced BPB when applied during the initial flowering stage of the rice heads. These results suggest that DPIC could serve as a new and useful antimicrobial agent in agriculture.


Subject(s)
Agriculture , Anti-Bacterial Agents , Burkholderia , Cell Proliferation , Flowers , Germination , Head , NADPH Oxidases , Plants , Spores, Fungal , Superoxides
11.
Diabetes & Metabolism Journal ; : 854-866, 2019.
Article in English | WPRIM | ID: wpr-785705

ABSTRACT

BACKGROUND: Chronic exposure to elevated levels of free fatty acids contributes to pancreatic β-cell dysfunction. Although it is well known that metformin induces cellular energy depletion and a concomitant activation of AMP-activated protein kinase (AMPK) through inhibition of the respiratory chain, previous studies have shown inconsistent results with regard to the action of metformin on pancreatic β-cells. We therefore examined the effects of metformin on pancreatic β-cells under lipotoxic stress.METHODS: NIT-1 cells and mouse islets were exposed to palmitate and treated with 0.05 and 0.5 mM metformin. Cell viability, glucose-stimulated insulin secretion, cellular adenosine triphosphate, reactive oxygen species (ROS) levels and Rho kinase (ROCK) activities were measured. The phosphorylation of AMPK was evaluated by Western blot analysis and mRNA levels of endoplasmic reticulum (ER) stress markers and NADPH oxidase (NOX) were measured by real-time quantitative polymerase chain reaction analysis.RESULTS: We found that metformin has protective effects on palmitate-induced β-cell dysfunction. Metformin at a concentration of 0.05 mM inhibits NOX and suppresses the palmitate-induced elevation of ER stress markers and ROS levels in a AMPK-independent manner, whereas 0.5 mM metformin inhibits ROCK activity and activates AMPK.CONCLUSION: This study suggests that the action of metformin on β-cell lipotoxicity was implemented by different molecular pathways depending on its concentration. Metformin at a usual therapeutic dose is supposed to alleviate lipotoxic β-cell dysfunction through inhibition of oxidative stress and ER stress.


Subject(s)
Animals , Mice , Adenosine Triphosphate , AMP-Activated Protein Kinases , Blotting, Western , Cell Survival , Electron Transport , Endoplasmic Reticulum , Endoplasmic Reticulum Stress , Fatty Acids, Nonesterified , Insulin , Insulin-Secreting Cells , Metformin , NADPH Oxidases , Oxidative Stress , Phosphorylation , Polymerase Chain Reaction , Reactive Oxygen Species , rho-Associated Kinases , RNA, Messenger
12.
Journal of Zhejiang University. Science. B ; (12): 713-727, 2019.
Article in English | WPRIM | ID: wpr-1010479

ABSTRACT

Production of reactive oxygen species (ROS) is a conserved immune response primarily mediated by NADPH oxidases (NOXs), also known in plants as respiratory burst oxidase homologs (RBOHs). Most microbe-associated molecular patterns (MAMPs) trigger a very fast and transient ROS burst in plants. However, recently, we found that lipopolysaccharides (LPS), a typical bacterial MAMP, triggered a biphasic ROS burst. In this study, we isolated mutants defective in LPS-triggered biphasic ROS burst (delt) in Arabidopsis, and cloned the DELT1 gene that was shown to encode RBOHD. In the delt1-2 allele, the antepenultimate residue, glutamic acid (E919), at the C-terminus of RBOHD was mutated to lysine (K). E919 is a highly conserved residue in NADPH oxidases, and a mutation of the corresponding residue E568 in human NOX2 has been reported to be one of the causes of chronic granulomatous disease. Consistently, we found that residue E919 was indispensable for RBOHD function in the MAMP-induced ROS burst and stomatal closure. It has been suggested that the mutation of this residue in other NADPH oxidases impairs the protein's stability and complex assembly. However, we found that the E919K mutation did not affect RBOHD protein abundance or the ability of protein association, suggesting that the residue E919 in RBOHD might have a regulatory mechanism different from that of other NOXs. Taken together, our results confirm that the antepenultimate residue E is critical for NADPH oxidases and provide a new insight into the regulatory mechanisms of RBOHD.


Subject(s)
Humans , Agrobacterium tumefaciens/metabolism , Alleles , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Genetic Techniques , Lipopolysaccharides/metabolism , Luminescence , Mutation , NADPH Oxidase 2/chemistry , NADPH Oxidases/genetics , Plant Stomata/metabolism , Protein Domains , Reactive Oxygen Species/metabolism , Nicotiana/metabolism
13.
Journal of Central South University(Medical Sciences) ; (12): 1258-1267, 2019.
Article in Chinese | WPRIM | ID: wpr-813021

ABSTRACT

Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a major source of reactive oxygen species (ROS) in the cardiovascular system. The family of NOX includes seven isoforms, and expressed in different cardiovascular cell types and cell compartments, modulating multiple functions, such as cell proliferation, migration, differentiation, apoptosis, senescence, and inflammatory responses. The NOX-derived ROS are involved in many processes associated with cardiovascular diseases, such as hypertension, atherosclerosis, diabetic vascular disease, ventricular remodeling after myocardial infarction, and so on.


Subject(s)
Humans , Cardiovascular Diseases , Hypertension , NADPH Oxidases , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species
14.
Braz. j. biol ; 78(4): 686-690, Nov. 2018. graf
Article in English | LILACS | ID: biblio-951609

ABSTRACT

Abstract Kiwifruit are a popular fruit worldwide; however, plant growth is threatened by abiotic stresses such as drought and high temperatures. Niacin treatment in plants has been shown to increase NADPH levels, thus enhancing abiotic stresses tolerance. Here, we evaluate the effect of niacin solution spray treatment on NADPH levels in the kiwifruit cultivars Hayward and Xuxiang. We found that spray treatment with niacin solution promoted NADPH and NADP+ levels and decreased both O2·- production and H2O2 contents in leaves during a short period. In fruit, NADPH contents increased during early development, but decreased later. However, no effect on NADP+ levels has been observed throughout fruit development. In summary, this report suggests that niacin may be used to increase NADPH oxidases, thus increasing stress-tolerance in kiwifruit during encounter of short-term stressful conditions.


Resumo Kiwis são uma fruta popular em todo o mundo; No entanto, o crescimento das plantas é ameaçado por estresses abióticos como a seca e as altas temperaturas. O tratamento com niacina em plantas mostrou aumentar os níveis de NADPH, aumentando assim a tolerância a stress abiótico. Aqui, avaliamos o efeito do tratamento com spray de solução de niacina sobre os níveis de NADPH nos cultivares de kiwis Hayward e Xuxiang. Descobrimos que o tratamento por spray com solução de niacina promoveu níveis de NADPH e NADP + e diminuiu a produção de O2·- e os teores de H2O2 nas folhas durante um curto período. Nos frutos, os teores de NADPH aumentaram durante o desenvolvimento precoce, mas diminuíram mais tarde. No entanto, não se observou qualquer efeito nos níveis de NADP + ao longo do desenvolvimento do fruto. Em resumo, este relatório sugere que a niacina pode ser utilizada para aumentar NADPH oxidases, aumentando assim a tolerância ao estresse em kiwis durante o encontro de condições estressantes de curto prazo.


Subject(s)
NADPH Oxidases/drug effects , Actinidia/drug effects , Fruit/drug effects , Niacin/pharmacology , Oxidation-Reduction , Plant Leaves/drug effects , Plant Leaves/metabolism , Free Radicals/metabolism , Fruit/growth & development , NADP/metabolism
15.
Natural Product Sciences ; : 59-65, 2018.
Article in English | WPRIM | ID: wpr-741595

ABSTRACT

An isoform of NADPH oxidase (NOX), NOX2 is a superoxide-generating enzyme involved in diverse pathophysiological events. Although its potential as a therapeutic target has been validated, there is no clinically available inhibitor. Herein, NOX2-inhibitory activity was screened with the constituents isolated from Schisandra chinensis, which has been reported to have antioxidant and reactive oxygen species (ROS)-scavenging effects. Among the partitions prepared from crude methanolic extract, a chloroform-soluble partition showed the highest NOX2-inhibitory activity in PLB-985 cell-based NOX2 assay. A total of twenty nine compounds (1 – 29) were identified from the chloroform fraction, including two first isolated compounds; dimethyl-malate (25) and 2-(2-hydroxyacetyl) furan (27) from this plants. Of these constituents, two compounds (gomisin T, and pregomisin) exhibited an NOX2-inhibitory effect with the IC₅₀ of 9.4 ± 3.6, and 62.9 ± 11.3 µM, respectively. They are confirmed not to be nonspecific superoxide scavengers in a counter assay using a xanthine-xanthine oxidase system. These findings suggest the potential application of gomisin T (6) and other constituents of S. chinensis to inhibit NOX2.


Subject(s)
Chloroform , Fruit , Lignans , Methanol , NADP , NADPH Oxidases , Oxidoreductases , Reactive Oxygen Species , Schisandra , Superoxides
16.
Frontiers of Medicine ; (4): 518-524, 2018.
Article in English | WPRIM | ID: wpr-772734

ABSTRACT

The increased levels of intracellular reactive oxygen species (ROS) in granulosa cells (GCs) may affect the pregnancy results in women with polycystic ovary syndrome (PCOS). In this study, we compared the in vitro fertilization and embryo transfer (IVF-ET) results of 22 patients with PCOS and 25 patients with tubal factor infertility and detected the ROS levels in the GCs of these two groups. Results showed that the PCOS group had significantly larger follicles on the administration day for human chorionic gonadotropin than the tubal factor group (P 0.05). PCOS group had slightly lower fertilization, cleavage, grade I/II embryo, clinical pregnancy, and implantation rates and higher miscarriage rate than the tubal factor group (P > 0.05). We further found a significantly higher ROS level of GCs in the PCOS group than in the tubal factor group (P < 0.05). The increased ROS levels in GCs caused GC apoptosis, whereas NADPH oxidase 2 (NOX2) specific inhibitors (diphenyleneiodonium and apocynin) significantly reduced the ROS production in the PCOS group. In conclusion, the increased ROS expression levels in PCOS GCs greatly induced cell apoptosis, which further affected the oocyte quality and reduced the positive IVF-ET pregnancy results of women with PCOS. NADPH oxidase pathway may be involved in the mechanism of ROS production in GCs of women with PCOS.


Subject(s)
Adult , Female , Humans , Pregnancy , Abortion, Spontaneous , Epidemiology , Acetophenones , Therapeutic Uses , Apoptosis , Embryo Transfer , Fertilization in Vitro , Granulosa Cells , Metabolism , NADPH Oxidases , Onium Compounds , Therapeutic Uses , Oocyte Retrieval , Oxidative Stress , Polycystic Ovary Syndrome , Drug Therapy , Pregnancy Rate , Reactive Oxygen Species , Metabolism
17.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 41-52, 2018.
Article in English | WPRIM | ID: wpr-773640

ABSTRACT

The aims of the present study were to evaluate the effects of puerarin on angiotensin II-induced cardiac fibroblast proliferation and to explore the molecular mechanisms of action. Considering the role of HO in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation, we hypothesized that modulating catalase activity would be a potential target in regulating the redox-sensitive pathways. Our results showed that the activation of Rac1 was dependent on the levels of intracellular HO. Puerarin blocked the phosphorylation of extracellular regulated protein kinases (ERK)1/2, abolished activator protein (AP)-1 binding activity, and eventually attenuated cardiac fibroblast proliferation through the inhibition of HO-dependent Rac1 activation. Further studies revealed that angiotensin II treatment resulted in decreased catalase protein expression and enzyme activity, which was disrupted by puerarin via the upregulation of catalase protein expression at the transcriptional level and the prolonged protein degradation. These findings indicated that the anti-proliferation mechanism of puerarin was mainly through blocking angiontensin II-triggered downregulation of catalase expression and HO-dependent Rac1 activation.


Subject(s)
Animals , Mice , Angiotensin II , Pharmacology , Angiotensin II Type 1 Receptor Blockers , Pharmacology , Animals, Newborn , Catalase , Genetics , Metabolism , Cell Proliferation , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases , Metabolism , Fibroblasts , Gene Expression Regulation , Heart , Hydrogen Peroxide , Metabolism , Pharmacology , Isoflavones , Pharmacology , Myocardium , Cell Biology , Metabolism , NADPH Oxidases , Metabolism , Neuropeptides , Metabolism , Signal Transduction , Transcription Factor AP-1 , Metabolism , Transcriptional Activation , rac1 GTP-Binding Protein , Metabolism
18.
Korean Journal of Pediatrics ; : 271-278, 2018.
Article in English | WPRIM | ID: wpr-716768

ABSTRACT

PURPOSE: Abnormal potassium channels expression affects vessel function, including vascular tone and proliferation rate. Diverse potassium channels, including voltage-gated potassium (Kv) channels, are involved in pathological changes of pulmonary arterial hypertension (PAH). Since the role of the Kv1.7 channel in PAH has not been previously studied, we investigated whether Kv1.7 channel expression changes in the lung tissue of a monocrotaline (MCT)-induced PAH rat model and whether this change is influenced by the endothelin (ET)-1 and reactive oxygen species (ROS) pathways. METHODS: Rats were separated into 2 groups: the control (C) group and the MCT (M) group (60 mg/kg MCT). A hemodynamic study was performed by catheterization into the external jugular vein to estimate the right ventricular pressure (RVP), and pathological changes in the lung tissue were investigated. Changes in protein and mRNA levels were confirmed by western blot and polymerase chain reaction analysis, respectively. RESULTS: MCT caused increased RVP, medial wall thickening of the pulmonary arterioles, and increased expression level of ET-1, ET receptor A, and NADPH oxidase (NOX) 4 proteins. Decreased Kv1.7 channel expression was detected in the lung tissue. Inward-rectifier channel 6.1 expression in the lung tissue also increased. We confirmed that ET-1 increased NOX4 level and decreased glutathione peroxidase-1 level in pulmonary artery smooth muscle cells (PASMCs). ET-1 increased ROS level in PASMCs. CONCLUSION: Decreased Kv1.7 channel expression might be caused by the ET-1 and ROS pathways and contributes to MCT-induced PAH.


Subject(s)
Animals , Rats , Arterioles , Blotting, Western , Catheterization , Catheters , Endothelins , Glutathione , Hemodynamics , Hypertension , Jugular Veins , Lung , Models, Animal , Monocrotaline , Myocytes, Smooth Muscle , NADPH Oxidases , Polymerase Chain Reaction , Potassium , Potassium Channels , Potassium Channels, Voltage-Gated , Pulmonary Artery , Reactive Oxygen Species , RNA, Messenger , Ventricular Pressure
19.
Chonnam Medical Journal ; : 159-166, 2018.
Article in English | WPRIM | ID: wpr-716580

ABSTRACT

The Amyloid β peptide (Aβ) is a main component of senile plaques in Alzheimer's disease. Currently, NADPH oxidase (NOX) and mitochondria are considered as primary sources of ROS induced by Aβ. However, the contribution of NOX and mitochondria to Aβ-induced ROS generation has not been well defined. To delineate the relative involvement of NOX and mitochondria in Aβ-induced ROS generation and neuronal death in mouse cortical cultures, we examined the effect of NOX inhibitors, apocynin and AEBSF, and the mitochondria-targeted antioxidants (MTAs), mitotempol and mitoquinone, on Aβ-induced ROS generation and neuronal deaths. Cell death was assessed by measuring lactate dehydrogenase efflux in bathing media at 24 and 48 hrs after exposure to Aβ₁₋₄₂. Aβ₁₋₄₂ induced dose- and time-dependent neuronal deaths in cortical cultures. Treatment with 20 µM Aβ₁₋₄₂ markedly and continuously increased not only the DHE fluorescence (intracellular ROS signal), but also the DHR123 fluorescence (mitochondrial ROS signal) up to 8 hrs. Treatment with apocynin or AEBSF selectively suppressed the increase in DHE fluorescence, while treatment with mitotempol selectively suppressed the increase in DHR123 fluorescence. Each treatment with apocynin, AEBSF, mitotempol or mitoquinone significantly attenuated the Aβ₁₋₄₂-induced neuronal deaths. However, any combined treatment with apocynin/AEBSF and mitotempol/mitoquinone failed to show additive effects. These findings indicate that 20 µM Aβ₁₋₄₂ induces oxidative neuronal death via inducing mitochondrial ROS as well as NOX activation in mixed cortical cultures, but combined suppression of intracellular and mitochondrial ROS generation fail to show any additive neuroprotective effects against Aβ neurotoxicity.


Subject(s)
Animals , Mice , Alzheimer Disease , Amyloid beta-Peptides , Amyloid , Antioxidants , Baths , Cell Death , Fluorescence , L-Lactate Dehydrogenase , Mitochondria , NADP , NADPH Oxidases , Neurons , Neuroprotective Agents , Oxidative Stress , Plaque, Amyloid
20.
Yonsei Medical Journal ; : 366-375, 2018.
Article in English | WPRIM | ID: wpr-714674

ABSTRACT

PURPOSE: Vascular smooth muscle cell (VSMC) proliferation induced by native low-density lipoprotein (nLDL) stimulation is dependent on superoxide production from activated NADPH oxidase. The present study aimed to investigate whether the novel arginase inhibitor limonin could suppress nLDL-induced VSMC proliferation and to examine related mechanisms. MATERIALS AND METHODS: Isolated VSMCs from rat aortas were treated with nLDL, and cell proliferation was measured by WST-1 and BrdU assays. NADPH oxidase activation was evaluated by lucigenin-induced chemiluminescence, and phosphorylation of protein kinase C (PKC) βII and extracellular signal-regulated kinase (ERK) 1/2 was determined by western blot analysis. Mitochondrial reactive oxygen species (ROS) generation was assessed using MitoSOX-red, and intracellular L-arginine concentrations were determined by high-performance liquid chromatography (HPLC) in the presence or absence of limonin. RESULTS: Limonin inhibited arginase I and II activity in the uncompetitive mode, and prevented nLDL-induced VSMC proliferation in a p21Waf1/Cip1-dependent manner without affecting arginase protein levels. Limonin blocked PKCβII phosphorylation, but not ERK1/2 phosphorylation, and translocation of p47phox to the membrane was decreased, as was superoxide production in nLDL-stimulated VSMCs. Moreover, mitochondrial ROS generation was increased by nLDL stimulation and blocked by preincubation with limonin. Mitochondrial ROS production was responsible for the phosphorylation of PKCβII. HPLC analysis showed that arginase inhibition with limonin increases intracellular L-arginine concentrations, but decreases polyamine concentrations. L-Arginine treatment prevented PKCβII phosphorylation without affecting ERK1/2 phosphorylation. CONCLUSION: Increased L-arginine levels following limonin-dependent arginase inhibition prohibited NADPH oxidase activation in a PKCβII-dependent manner, and blocked nLDL-stimulated VSMC proliferation.


Subject(s)
Animals , Rats , Aorta , Arginase , Arginine , Blotting, Western , Bromodeoxyuridine , Cell Proliferation , Chromatography, High Pressure Liquid , Chromatography, Liquid , Lipoproteins , Luminescence , Membranes , Muscle, Smooth, Vascular , NADP , NADPH Oxidases , Phosphorylation , Phosphotransferases , Protein Kinase C , Reactive Oxygen Species , Superoxides
SELECTION OF CITATIONS
SEARCH DETAIL