Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 224
Filter
1.
Int. j. morphol ; 42(2): 387-401, abr. 2024. ilus
Article in English | LILACS | ID: biblio-1558155

ABSTRACT

SUMMARY: The calcium-activated chloride channel (CLCA2) performs a vital function in the intricate process of tumorigenesis. Using a bioinformatics analysis system, we conducted a pan-cancer investigation on CLCA2 to explore its association with tumor prognosis and its involvement in immunology. In order to achieve this objective, we examined the prognostic significance and expression level of CLCA2 in multiple cancer types using the TIMER and Sangerbox databases. The analysis of protein interaction networks revealed proteins linked to CLCA2. To investigate the potential biological functions and enrichment pathways of CLCA2 in cancer, the SangerBox and GSCA databases were utilized. Furthermore, the expression of CLCA2 in different cancer subtypes was evaluated during the analysis. Various functional conditions of cancer cells were then compared with CLCA2 in the CancerSEA database. Using online tools like TISIDB and Assistant for Clinical Bioinformatics, the investigation explored the link between CLCA2 and immune subtypes. Additionally, it assessed immune cell infiltration as part of the analysis. In addition, the application of GDSA was employed to investigate the predictive significance of CLCA2 in relation to drug sensitivity. The research outcomes uncovered abnormal expression patterns of CLCA2 in diverse tumor categories, with its expression level demonstrating a correlation with distinct subtypes of tumors. Strong associations have been observed between enhanced patient survival rates and CLCA2 in specific tumor types. There is a noteworthy connection observed among diverse tumor types, immune cell infiltration, immune subtypes, and CLCA2. The enrichment analysis of KEGG indicates that there may exist a connection between the expression of CLCA2 and renin secretion, pancreatic secretion, as well as other pathways in pan-cancer. CLCA2 appears to primarily activate pathways such as EMT (epithelial-mesenchymal transition), RAS/MAPK, RTK, apoptosis, TSC/mTOR, and PI3K/ AKT in pan-cancer. On the other hand, it seems to inhibit pathways like cell cycle, DNA damage, hormone AR, and hormone ER. Through single-cell functional analysis, it has been confirmed that CLCA2 is associated with diverse cellular functional states, encompassing DNA repair, EMT, hypoxia, invasion, metastasis, and quiescence. Furthermore, a substantial correlation has been observed between the expression of CLCA2 and drug sensitivity towards bosutinib, tipifarnib-P1, as well as other therapeutic agents. This research affirms that various cancer types express CLCA2 and its involvement in tumor advancement and immune penetration. CLCA2 possesses the capability to function as a noteworthy biomarker and target for therapeutic intervention in diverse cancer forms.


El canal de cloruro activado por calcio (CLCA2) desempeña una función vital en el proceso de tumorigénesis. Utilizando un sistema de análisis bioinformático, llevamos a cabo una investigación pan-cáncer en CLCA2 para explorar su asociación con el pronóstico tumoral y su participación en la inmunología. Para lograr este objetivo, examinamos la importancia pronóstica y el nivel de expresión de CLCA2 en múltiples tipos de cáncer utilizando las bases de datos TIMER y Sangerbox. El análisis de las redes de interacción de proteínas reveló proteínas vinculadas a CLCA2. Para investigar las posibles funciones biológicas y las vías de enriquecimiento de CLCA2 en el cáncer, se utilizaron las bases de datos SangerBox y GSCA. Además, durante el análisis se evaluó la expresión de CLCA2 en diferentes subtipos de cáncer. Luego se compararon varias condiciones funcionales de las células cancerosas con CLCA2 en la base de datos CancerSEA. Utilizando herramientas en línea como TISIDB y Assistant for Clinical Bioinformatics, la investigación exploró el vínculo entre CLCA2 y los subtipos inmunes. Además, evaluó la infiltración de células inmunitarias como parte del análisis y se empleó la aplicación de GDSA para investigar la importancia predictiva de CLCA2 en relación con la sensibilidad al fármaco. Los resultados de la investigación descubrieron patrones de expresión anormales de CLCA2 en diversas categorías de tumores, y su nivel de expresión demuestra una correlación con distintos subtipos de tumores. Se han observado fuertes asociaciones entre mayores tasas de supervivencia de los pacientes y CLCA2 en tipos de tumores específicos. Se observa una conexión notable entre diversos tipos de tumores, infiltración de células inmunitarias, subtipos inmunitarios y CLCA2. El análisis de enriquecimiento de KEGG indica que puede existir una conexión entre la expresión de CLCA2 y la secreción de renina, la secreción pancreática y otras vías en el pancáncer. CLCA2 parece activar principalmente vías como EMT (transición epitelial-mesenquimatosa), RAS/MAPK, RTK, apoptosis, TSC/mTOR y PI3K/AKT en pan-cáncer. Por otro lado, parece inhibir vías como el ciclo celular, el daño del ADN, la hormona AR y la hormona ER. Mediante análisis funcional unicelular, se ha confirmado que CLCA2 está asociado con diversos estados funcionales celulares, que abarcan la reparación del ADN, la EMT, la hipoxia, la invasión, la metástasis y la inactividad. Además, se ha observado una correlación sustancial entre la expresión de CLCA2 y la sensibilidad al fármaco hacia bosutinib, tipifarnib-P1, así como a otros agentes terapéuticos. Esta investigación indica que varios tipos de cáncer expresan CLCA2 y su participación en el avance tumoral y la penetración inmune. CLCA2 posee la capacidad de funcionar como un biomarcador notable y como un objetivo para la intervención terapéutica en diversas formas de cáncer.


Subject(s)
Humans , Chloride Channels/metabolism , Neoplasms/metabolism , Prognosis , Biomarkers, Tumor , Chloride Channels/immunology , Genomics , Kaplan-Meier Estimate , Neoplasms/genetics , Neoplasms/immunology
2.
Rev. méd. Chile ; 151(10): 1344-1360, oct. 2023. tab, ilus, mapas
Article in Spanish | LILACS | ID: biblio-1565652

ABSTRACT

El cáncer seguirá siendo uno de los mayores desafíos para la salud pública a nivel local y mundial. Actualmente, en nuestro país, el cáncer es la principal causa de muerte. Gracias al enorme conocimiento acumulado en las últimas décadas sobre las bases celulares y moleculares del cáncer, se ha desarrollado la oncología de precisión, un enfoque que permite dirigir de manera cada vez más precisa el tratamiento farmacológico en función de los exámenes de diagnóstico. Para ello se utilizan tecnologías avanzadas, como la secuenciación de próxima generación. Es imprescindible implementar estas tecnologías en los sistemas sanitarios actuales y futuros para optimizar el arsenal de estrategias para el control del cáncer. En esta revisión, se discuten algunos alcances de la oncología de precisión, especialmente aplicada a tumores sólidos. Se aborda el estado del arte de los biomarcadores mínimos necesarios para el diagnóstico de este importante grupo de neoplasias, la situación local en cuanto a las capacidades tecnológicas instaladas en el territorio nacional ya sea con fines de investigación o diagnóstico, y el potencial impacto sanitario que tendría la aplicación de todo este conocimiento práctico al servicio de las personas con cáncer, tanto en el sector público como privado.


Cancer will remain one of the most significant challenges for public health, locally and globally. Currently, cancer is the leading cause of death in our country. Thanks to the enormous knowledge accumulated in recent decades on the cellular and molecular bases of cancer, precision oncology has been developed, an approach that allows for increasingly precise pharmacological treatment based on diagnostic tests. Advanced technologies such as next-generation sequencing are used for this purpose. It is essential to implement these technologies in current and future health systems to optimize the arsenal of strategies for cancer control. This review discusses some of the achievements of precision oncology, particularly applied to solid tumors. It addresses the state-of-the-art minimum biomarkers required for the diagnosis of this important group of neoplasms, the local situation regarding technological capabilities installed in the national territory, either for research or diagnosis, and the potential health impact of applying all this practical knowledge to serve people with cancer, both in the public and private sectors.


Subject(s)
Humans , Precision Medicine/methods , Neoplasms/diagnosis , Neoplasms/genetics , Biomarkers, Tumor/genetics , Chile , Molecular Diagnostic Techniques/methods , High-Throughput Nucleotide Sequencing/methods , Medical Oncology/methods , Medical Oncology/trends
4.
Chinese Medical Journal ; (24): 127-137, 2023.
Article in English | WPRIM | ID: wpr-970062

ABSTRACT

Adoptive therapeutic immune cells, such as chimeric antigen receptor (CAR)-T cells and natural killer cells, have established a new generation of precision medicine based on which dramatic breakthroughs have been achieved in intractable lymphoma treatments. Currently, well-explored approaches focus on autologous cells due to their low immunogenicity, but they are highly restricted by the high costs, time consumption of processing, and the insufficiency of primary cells in some patients. Induced pluripotent stem cells (iPSCs) are cell sources that can theoretically produce indefinite well-differentiated immune cells. Based on the above facts, it may be reasonable to combine the iPSC technology and the CAR design to produce a series of highly controllable and economical "live" drugs. Manufacturing hypoimmunogenic iPSCs by inactivation or over-expression at the genetic level and then arming the derived cells with CAR have emerged as a form of "off-the-shelf" strategy to eliminate tumor cells efficiently and safely in a broader range of patients. This review describes the reasonability, feasibility, superiority, and drawbacks of such approaches, summarizes the current practices and relevant research progress, and provides insights into the possible new paths for personalized cell-based therapies.


Subject(s)
Humans , Receptors, Chimeric Antigen/genetics , Induced Pluripotent Stem Cells , Killer Cells, Natural , Cell- and Tissue-Based Therapy , T-Lymphocytes , Immunotherapy, Adoptive , Neoplasms/genetics
5.
Article in Chinese | WPRIM | ID: wpr-970604

ABSTRACT

This study aimed to explore the mechanism of Cistanches Herba in the treatment of cancer-induced fatigue(CRF) by network pharmacology combined with in vivo and in vitro experiments to provide a theoretical basis for the clinical medication. The chemical constituents and targets of Cistanches Herba were searched from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The targets of CRF were screened out by GeneCards and NCBI. The common targets of traditional Chinese medicine and disease were selected to construct a protein-protein interaction(PPI) network, followed by Gene Ontology(GO) functional and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses. A visual signal pathway rela-ted to Chinese medicine and disease targets was constructed. The CRF model was induced by paclitaxel(PTX) in mice. Mice were divided into a control group, a PTX model group, and low-and high-dose Cistanches Herba extract groups(250 and 500 mg·kg~(-1)). The anti-CRF effect in mice was evaluated by open field test, tail suspension test, and exhaustive swimming time, and the pathological morphology of skeletal muscle was evaluated by hematoxylin-eosin(HE) staining. The cancer cachexia model in C2C12 muscle cells was induced by C26 co-culture, and the cells were divided into a control group, a conditioned medium model group, and low-, medium-, and high-dose Cistanches Herba extract groups(62.5, 125, and 250 μg·mL~(-1)). The reactive oxygen species(ROS) content in each group was detected by flow cytometry, and the intracellular mitochondrial status was evaluated by transmission electron microscopy. The protein expression levels of hypoxia-inducible factor-1α(HIF-1α), BNIP3L, and Beclin-1 were detected by Western blot. Six effective constituents were screened out from Cistanches Herba. The core genes of Cistanches Herba in treating CRF were AKT1, IL-6, VEGFA, CASP3, JUN, EGFR, MYC, EGF, MAPK1, PTGS2, MMP9, IL-1B, FOS, and IL10, and the pathways related to CRF were AGE-RAGE and HIF-1α. Through GO enrichment analysis, it was found that the main biological functions involved were lipid peroxidation, nutrient deficiency, chemical stress, oxidative stress, oxygen content, and other biological processes. The results of the in vivo experiment showed that Cistanches Herba extract could significantly improve skeletal muscle atrophy in mice to relieve CRF. The in vitro experiment showed that Cistanches Herba extract could significantly reduce the content of intracellular ROS, the percentage of mitochondrial fragmentation, and the protein expression of Beclin-1 and increase the number of autophagosomes and the protein expression of HIF-1α and BNIP3L. Cistanches Herba showed a good anti-CRF effect, and its mechanism may be related to the key target proteins in the HIF-1α signaling pathway.


Subject(s)
Animals , Mice , Cistanche , Network Pharmacology , Beclin-1 , Reactive Oxygen Species , Plant Extracts , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation , Medicine, Chinese Traditional , Neoplasms/genetics
6.
Article in Chinese | WPRIM | ID: wpr-970613

ABSTRACT

Genome-guided oncology refers to a new treatment concept that transcends histological classification and pathological ty-ping and uses drugs according to the genetic characteristics of tumors. New drug development technology and clinical trial design based on this concept provide new ideas for the clinical application of precision oncology. The multi-component and multi-target characteristics of Chinese medicine provide rich resources for the development of tumor-targeting drugs from natural products, and the design of the master protocol trial aiming at the characteristics of precision oncology supports the rapid clinical screening of effective tumor-targeting drugs. The emergence of the synthetic lethality strategy breaks through the bottleneck that the drug can only target the oncogene but cannot do anything to the tumor suppressor gene with the loss-of-function mutation in the past. With the rapid development of high-throughput sequencing technology, the cost of sequencing is also decreasing. For the development of tumor-targeting drugs, how to keep up with the update speed of target information is a difficult problem of concern. Based on the integration of innovative ideas and me-thods of precision oncology, network pharmacology, and synthetic lethality strategy on synthetic lethal interaction network of antitumor Chinese medicine compatibility formula design, and the combination of improvement of innovative clinical trial methods, such as master protocol trial, basket trial, and umbrella trial, unique advantages of Chinese medicine are expected to be exerted beyond the antibody-based drugs and small molecule-based drugs and corresponding targeted drugs are potentially developed for clinical application.


Subject(s)
Humans , Neoplasms/genetics , Medicine, Chinese Traditional , Precision Medicine/methods , Medical Oncology , Antineoplastic Agents/therapeutic use
7.
Article in English | WPRIM | ID: wpr-971466

ABSTRACT

Long non-coding RNAs (lncRNAs) play a significant role in maintaining tissue morphology and functions, and their precise regulatory effectiveness is closely related to expression patterns. However, the spatial expression patterns of lncRNAs in humans are poorly characterized. Here, we constructed five comprehensive transcriptomic atlases of human lncRNAs covering thousands of major tissue samples in normal and disease states. The lncRNA transcriptomes exhibited high consistency within the same tissues across resources, and even higher complexity in specialized tissues. Tissue-elevated (TE) lncRNAs were identified in each resource and robust TE lncRNAs were refined by integrative analysis. We detected 1 to 4684 robust TE lncRNAs across tissues; the highest number was in testis tissue, followed by brain tissue. Functional analyses of TE lncRNAs indicated important roles in corresponding tissue-related pathways. Moreover, we found that the expression features of robust TE lncRNAs made them be effective biomarkers to distinguish tissues; TE lncRNAs also tended to be associated with cancer, and exhibited differential expression or were correlated with patient survival. In summary, spatial classification of lncRNAs is the starting point for elucidating the function of lncRNAs in both maintenance of tissue morphology and progress of tissue-constricted diseases.


Subject(s)
Humans , Gene Expression Profiling , Neoplasms/genetics , Organ Specificity , RNA, Long Noncoding/genetics , Transcriptome
8.
Chinese Journal of Lung Cancer ; (12): 692-700, 2023.
Article in Chinese | WPRIM | ID: wpr-1010076

ABSTRACT

With the development of medical technology, tumor vaccines as a novel precise immunotherapy approach have gradually received attention in clinical applications. Against the backdrop of the global corona virus disease 2019 (COVID-19) outbreak, vaccine technology has further advanced. Depending on the types of antigens, tumor vaccines can be divided into whole-cell vaccines, peptide vaccines, messenger ribonucleic acid (mRNA) vaccines, recombinant virus vaccines, etc. Although some tumor vaccines have been marketed and achieved certain therapeutic effects, the results of tumor vaccines in clinical trials have been unsatisfactory in the past period. With the maturation of next-generation sequencing (NGS) technology and the continuous development of bioinformatics, dynamic monitoring of the entire process of tumor subpopulation development has become a reality, which has laid a solid foundation for personalized, neoantigen-centered therapeutic tumor vaccines. This article reviews the recent developments of tumor vaccines of different types, starts with lung cancer and summarizes the achievements of tumor vaccines in clinical applications, and provides an outlook for the future development of antigen-centered tumor vaccines.
.


Subject(s)
Humans , Cancer Vaccines/therapeutic use , Antigens, Neoplasm , Lung Neoplasms/drug therapy , Neoplasms/genetics , Computational Biology , Immunotherapy/methods , Lung
9.
Chinese Journal of Epidemiology ; (12): 521-528, 2023.
Article in Chinese | WPRIM | ID: wpr-985522

ABSTRACT

Identifying risk factors of the disease are one of the main tasks of epidemiology. With the advancement of omics technologies (e.g., genome, transcriptome, proteome, metabolome, and exposome), cancer etiology research has entered the stage of systems epidemiology. Genomic research identifies cancer susceptibility loci and uncovers their biological mechanisms. Exposomic research investigates the impact of environmental factors on biological processes and disease risks. The metabolome is downstream of biological regulatory networks, reflecting the effects of the gene, environment, and their interactions, which can help elucidate the biological mechanisms of genetic and environmental risk factors and identify new biomarkers. Here, we reviewed the applications of genomic, exposomic, and metabolomic studies in the etiologic research on cancer. We summarized the importance of multi-omics approaches and systems epidemiology in cancer etiology research and outlined future perspectives.


Subject(s)
Humans , Multiomics , Genomics , Metabolomics , Neoplasms/genetics , Biomarkers
10.
Chinese Medical Journal ; (24): 757-766, 2023.
Article in English | WPRIM | ID: wpr-980874

ABSTRACT

Long non-coding RNAs (lncRNAs) reportedly function as important modulators of gene regulation and malignant processes in the development of human cancers. The lncRNA JPX is a novel molecular switch for X chromosome inactivation and differentially expressed JPX has exhibited certain clinical correlations in several cancers. Notably, JPX participates in cancer growth, metastasis, and chemoresistance, by acting as a competing endogenous RNA for microRNA, interacting with proteins, and regulating some specific signaling pathways. Moreover, JPX may serve as a potential biomarker and therapeutic target for the diagnosis, prognosis, and treatment of cancer. The present article summarizes our current understanding of the structure, expression, and function of JPX in malignant cancer processes and discusses its molecular mechanisms and potential applications in cancer biology and medicine.


Subject(s)
Humans , RNA, Long Noncoding/genetics , Neoplasms/genetics , MicroRNAs/genetics , Gene Expression Regulation , X Chromosome Inactivation
11.
Acta Physiologica Sinica ; (6): 269-278, 2023.
Article in Chinese | WPRIM | ID: wpr-981004

ABSTRACT

DMRT, a gene family related to sexual determination, encodes a large group of transcription factors (DMRTs) with the double-sex and mab-3 (DM) domain (except for DMRT8), which is able to bind to and regulate DNAs. Current studies have shown that the DMRT gene family plays a critical role in the development of sexual organs (such as gender differentiation, gonadal development, germ cell development, etc.) as well as extrasexual organs (such as musculocartilage development, nervous system development, etc.). Additionally, it has been suggested that DMRTs may be involved in the cancer development and progression (such as prostate cancer, breast cancer, lung cancer, etc.). This review summarizes the research progress about the mammalian DMRTs' structure, function and its critical role in cancer development, progression and therapy (mainly in human and mice), which suggests that DMRT gene could be a candidate gene in the study of tumor formation and therapeutic strategy.


Subject(s)
Male , Animals , Humans , Mice , Transcription Factors/genetics , Mammals/metabolism , Cell Differentiation , Neoplasms/genetics
12.
Chinese Journal of Biotechnology ; (12): 1374-1389, 2023.
Article in Chinese | WPRIM | ID: wpr-981144

ABSTRACT

Sequestosome 1 (SQSTM1/p62) is a selective autophagy adaptor protein that plays an important role in the clearance of proteins to be degraded as well as in the maintenance of cellular proteostasis. p62 protein has multiple functional domains, which interact with several downstream proteins to precisely regulate multiple signaling pathways, thereby linking p62 to oxidative defense systems, inflammatory responses and nutrient sensing. Studies have shown that mutation or abnormal expression of p62 is closely related to the occurrence and development of various diseases, including neurodegenerative diseases, tumors, infectious diseases, genetic diseases and chronic diseases. This review summarizes the structural features and molecular functions of p62. Moreover, we systematically introduce its multiple functions in protein homeostasis and regulation of signaling pathways. Furthermore, the complexity and versatility of p62 in the occurrence and development of diseases are summarized, with the aim to provide a reference for understanding the function of p62 protein and facilitating related disease research.


Subject(s)
Humans , Autophagy/genetics , Sequestosome-1 Protein/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Signal Transduction , Neoplasms/genetics
13.
Chinese Medical Journal ; (24): 1783-1793, 2023.
Article in English | WPRIM | ID: wpr-1007598

ABSTRACT

Organoids are three-dimensional cellular structures with self-organizing and self-differentiation capacities. They faithfully recapitulate structures and functions of in vivo organs as represented by functionality and microstructural definitions. Heterogeneity in in vitro disease modeling is one of the main reasons for anti-cancer therapy failures. Establishing a powerful model to represent tumor heterogeneity is crucial for elucidating tumor biology and developing effective therapeutic strategies. Tumor organoids can retain the original tumor heterogeneity and are commonly used to mimic the cancer microenvironment when co-cultured with fibroblasts and immune cells; therefore, considerable effort has been made recently to promote the use of this new technology from basic research to clinical studies in tumors. In combination with gene editing technology and microfluidic chip systems, engineered tumor organoids show promising abilities to recapitulate tumorigenesis and metastasis. In many studies, the responses of tumor organoids to various drugs have shown a positive correlation with patient responses. Owing to these consistent responses and personalized characteristics with patient data, tumor organoids show excellent potential for preclinical research. Here, we summarize the properties of different tumor models and review their current state and progress in tumor organoids. We further discuss the substantial challenges and prospects in the rapidly developing tumor organoid field.


Subject(s)
Humans , Neoplasms/genetics , Organoids/pathology , Carcinogenesis , Models, Biological , Precision Medicine/methods , Tumor Microenvironment
14.
Chinese Medical Journal ; (24): 2086-2100, 2023.
Article in English | WPRIM | ID: wpr-1007627

ABSTRACT

BACKGROUND@#Metastasis is the main cause of tumor-associated death and mainly responsible for treatment failure of breast cancer. Autophagy accelerates tumor metastasis. In our work, we aimed to investigate the possibility of microRNAs (miRNAs) which participate in the regulation of autophagy to inhibit tumor metastasis.@*METHODS@#MiRNA array and comprehensive analysis were performed to identify miRNAs which participated in the regulation of autophagy to inhibit tumor metastasis. The expression levels of miR-3653 in breast cancer tissues and cells were detected by quantitative real-time polymerase chain reaction. In vivo and in vitro assays were conducted to determine the function of miR-3653. The target genes of miR-3653 were detected by a dual luciferase reporter activity assay and Western blot. The relationship between miR-3653 and epithelial-mesenchymal transition (EMT) was assessed by Western blot. Student's t -test was used to analyze the difference between any two groups, and the difference among multiple groups was analyzed with one-way analysis of variance and a Bonferroni post hoc test.@*RESULTS@#miR-3653 was downregulated in breast cancer cells with high metastatic ability, and high expression of miR-3653 blocked autophagic flux in breast cancer cells. Clinically, low expression of miR-3653 in breast cancer tissues (0.054 ± 0.013 vs . 0.131 ± 0.028, t  = 2.475, P  = 0.014) was positively correlated with lymph node metastasis (0.015 ± 0.004 vs . 0.078 ± 0.020, t  = 2.319, P  = 0.023) and poor prognosis ( P  < 0.001). miR-3653 ameliorated the malignant phenotypes of breast cancer cells, including proliferation, migration (MDA-MB-231: 0.353 ± 0.013 vs . 1.000 ± 0.038, t  = 16.290, P  < 0.001; MDA-MB-468: 0.200 ± 0.014 vs . 1.000 ± 0.043, t  = 17.530, P  < 0.001), invasion (MDA-MB-231: 0.723 ± 0.056 vs . 1.000 ± 0.035, t  = 4.223, P  = 0.013; MDA-MB-468: 0.222 ± 0.016 vs . 1.000 ± 0.019, t  = 31.050, P  < 0.001), and colony formation (MDA-MB-231: 0.472 ± 0.022 vs . 1.000 ± 0.022, t  = 16.620, P  < 0.001; MDA-MB-468: 0.650 ± 0.040 vs . 1.000 ± 0.098, t  = 3.297, P  = 0.030). The autophagy-associated genes autophagy-related gene 12 ( ATG12 ) and activating molecule in beclin 1-regulated autophagy protein 1 ( AMBRA1 ) are target genes of miR-3653. Further studies showed that miR-3653 inhibited EMT by targeting ATG12 and AMBRA1 .@*CONCLUSIONS@#Our findings suggested that miR-3653 inhibits the autophagy process by targeting ATG12 and AMBRA1 , thereby inhibiting EMT, and provided a new idea and target for the metastasis of breast cancer.


Subject(s)
Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , MicroRNAs/metabolism , Autophagy/genetics , Genes, Regulator , Gene Expression Regulation, Neoplastic/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Neoplasms/genetics
15.
Article in English | WPRIM | ID: wpr-1009905

ABSTRACT

Tumor-derived exosomes play an important role in the tumor micro-environment. The exosome-derived non-coding RNAs are transmitted in the tumor microenvironment in three ways, communication between tumor cells, normal cells affecting tumor cells, and tumor cells affecting normal cells. Through these three ways, exosomal non-coding RNAs are involved in the regulation of tumor progression, affecting tumor angiogenesis, tumor invasiveness, drug resistance, stemness, tumor metabolic repro-gramming and immune escape, resulting in dual roles in promoting or inhibiting tumor development. Exosomes have a membranous structure and their contents are resistant to degradation by extracellular proteases and remain highly stable in body fluids, thus exosome-derived non-coding RNAs are expected to serve as diagnostic and prognostic indicators for a variety of cancers. In addition, exosomes can be used to deliver non-coding RNAs for targeted therapy, or to knock down or modify tumor-promoting non-coding RNAs for tumor therapy. This article reviews the function and communication mechanism of exosomal non-coding RNAs in the tumor microenvironment, including their pathways of action, effects, potential values for tumor biomarkers and treatment targets. This article also points out the issues that need to be further studied in order to promote the progress of extracellular non-coding RNAs in cancer research and their application in tumor diagnosis and treatment.


Subject(s)
Humans , Exosomes , Neoplasms/genetics , Biomarkers, Tumor , Body Fluids , RNA, Untranslated/genetics , Tumor Microenvironment
16.
Article in Chinese | WPRIM | ID: wpr-936337

ABSTRACT

RNA binding protein (RBP) plays a key role in gene regulation and participate in RNA translation, modification, splicing, transport and other important biological processes. Studies have shown that abnormal expression of RBP is associated with a variety of diseases. The Musashi (Msi) family of mammals is an evolutionarily conserved and powerful RBP, whose members Msi1 and Msi2 play important roles in the regulation of stem cell activity and tumor development. The Msi family members regulate a variety of biological processes by binding and regulating mRNA translation, stability and downstream cell signaling pathways, and among them, Msi2 is closely related to embryonic growth and development, maintenance of tumor stem cells and development of hematological tumors. Accumulating evidence has shown that Msi2 also plays a crucial role in the development of solid tumors, mainly by affecting the proliferation, invasion, metastasis and drug resistance of tumors, involving Wnt/β-catenin, TGF-β/SMAD3, Akt/mTOR, JAK/STAT, Numb and their related signaling pathways (Notch, p53, and Hedgehog pathway). Preclinical studies of Msi2 gene as a therapeutic target for tumor have achieved preliminary results. This review summarizes the molecular structure, physiological function, role of Msi2 in the development and progression of various solid tumors and the signaling pathways involved.


Subject(s)
Animals , Hedgehog Proteins , Mammals/metabolism , Neoplasms/genetics , Neoplastic Stem Cells , RNA-Binding Proteins/metabolism , Signal Transduction
17.
Article in Chinese | WPRIM | ID: wpr-942225

ABSTRACT

OBJECTIVE@#To screen potential pan-cancer biomarkers based on The Cancer Genome Atlas (TCGA) database, and to provide help for the diagnosis and prognosis assessment of a variety of cancers.@*METHODS@#"GDC Data Transfer Tool" and "GDCRNATools" packages were used to obtain TCGA database. After data sorting, a total of 13 cancers were selected for further analysis. False disco-very rate (FDR) < 0.05 and fold change (FC) >1.5 were used as the differential expression criteria to screen genes and miRNAs that were up- or down-regulated in all the 13 cancers. In the receiver operating characteristic curve (ROC curve), the area under the curve (AUC), the best cut-off value and the corresponding sensitivity and specificity were used to reflect diagnostic significance. The Kaplan-Meier method was used to calculate the survival probability and then the log-rank test was performed. Hazard ratio (HR) was calculated to reflect prognostic evaluation significance. DAVID tool were used to perform GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis for differentially expressed genes. STRING and TargetScan tools were used to analyze the regulatory network of differentially expressed genes and miRNAs.@*RESULTS@#A total of 48 genes and 2 miRNAs were differentially expressed in all the 13 cancers. Among them, 25 genes were up-regulated, 23 genes and 2 miRNAs were down-regulated. Most differentially expressed genes and miRNAs had good ability to distinguish between the cases and controls, with AUC, sensitivity and specificity up to 0.8-0.9. Survival analysis results show that differentially expressed genes and miRNAs were significantly associated with patient survival in a variety of cancers. Most up-regulated genes were risk factors for patient survival (HR>1), while most down-regulated genes were protective factors for patient survival (0 < HR < 1). The enrichment analysis of GO and KEGG showed that the differentially expressed genes were mostly enriched in biological events related to cell proliferation. In the regulatory network analysis, a total of 13 differentially expressed genes and 2 differentially expressed miRNAs had regulatory and interaction relationships.@*CONCLUSION@#The 48 genes and 2 miRNAs that were differentially expressed in 13 cancers may serve as potential pan-cancer biomarkers, providing help for the diagnosis and prognosis evaluation of a variety of cancers, and providing clues for the development of broad-spectrum tumor therapeutic targets.


Subject(s)
Humans , Biomarkers, Tumor/genetics , Early Detection of Cancer , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Neoplasms/genetics , Prognosis
18.
Article in Chinese | WPRIM | ID: wpr-878906

ABSTRACT

Nrf2 is the key transcription factor mainly for regulating oxidative homeostasis and cytoprotective responses against oxidative stress. Nrf2/Keap1 pathway is one of the most important cellular defense mechanisms against endogenous or exogenous oxidative stress. With its activation, a wide range of stress-related genes is transactivated to restore the cellular homeostasis. Recent studies revealed that the aberrant activation of Nrf2 is related to the malignant progression, chemotherapeutic drug resistance and poor prognosis. Nrf2 plays a crucial role in cancer malignancy and chemotherapeutic resistance by controlling the intracellular redox homeostasis through the activation of cytoprotective antioxidant genes. Nrf2 inhibitor containing many natural products has been deemed as a novel therapeutic strategy for human malignancies. This article reviews the progress of studies of the Nrf2/Keap1 pathway, and its biological impact in solid malignancies and molecular mechanisms for causing Nrf2 hyperactivation in cancer cells. In conclusion, we summarized the deve-lopment of Nrf2 inhibitors in recent years, in the expectation of providing reference for further drug development and clinical studies.


Subject(s)
Humans , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Neoplasms/genetics , Oxidation-Reduction , Oxidative Stress
19.
Article in English | WPRIM | ID: wpr-879949

ABSTRACT

The gene is frequently mutated and abnormally activated in many cancers,and plays an important role in cancer development. Metabolic reprogramming occurs in malignant tumors,which can be one of the key targets for anti-tumor therapy. gene can regulate lipid metabolism through AKT-mTORC1 single axis or multiple pathways,such as lipid synthesis pathways and degradation pathways. Similarly,lipid metabolism can also modify and activate RAS protein and its downstream signaling pathways. This article overviews the current research progress on the interaction between lipid metabolism and ,to provide insight in therapeutic strategies of lipid metabolism for -driven tumors.


Subject(s)
Humans , Genes, ras , Lipid Metabolism/genetics , Neoplasms/genetics , Signal Transduction , ras Proteins/metabolism
20.
Article in English | WPRIM | ID: wpr-879956

ABSTRACT

Epigenetics concerns gene regulatory mechanisms beyond DNA sequence,such as DNA methylation,histone modification,chromatin remodeling,and non-coding RNA. Epigenetic mechanisms play a key role in development,cell fate decision and tumorigenesis. Chromatin modifications and its high order structure across our genome are major forms of epigenetic information,and its establishment and maintenance are closely related to cell metabolism. Metabolic changes in cancer cells include aerobic glycolysis,increased glucose uptake,abnormally active glutamine metabolism,and the use of non-conventional energy supply. These changes meet the vigorous energy and matter needs for the development and spread of cancer,and help tumor cells adapt to hypoxia microenvironment for their survival,proliferation,invasion and migration. There is a complex relationship between epigenetic modifications and cell metabolism in tumor. On the one hand,metabolites in tumor cells may act as cofactors,modification donors or antagonists of epigenetic enzymes,thus modulating the epigenetic landscape. On the other hand,epigenetic modifications can directly regulate the expression of metabolic enzymes,transporters,signaling pathway and transcription factors to affect cell metabolism. This article reviews the crosstalk between epigenetics and cancer metabolism,to explore their potential future applications in the treatment of tumors.


Subject(s)
Humans , Carcinogenesis , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation , Neoplasms/genetics , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL