Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Chinese Journal of Contemporary Pediatrics ; (12): 253-258, 2023.
Article in Chinese | WPRIM | ID: wpr-971069

ABSTRACT

OBJECTIVES@#To study the effect of early use of sodium valproate on neuroinflammation after traumatic brain injury (TBI).@*METHODS@#A total of 45 children who visited in Xuzhou Children's Hospital Affiliated to Xuzhou Medical University from August 2021 to August 2022 were enrolled in this prospective study, among whom 15 healthy children served as the healthy control group, and 30 children with TBI were divided into a sodium valproate treatment group and a conventional treatment group using a random number table (n=15 each). The children in the sodium valproate treatment group were given sodium valproate in addition to conventional treatment, and those in the conventional group were given an equal volume of 5% glucose solution in addition to conventional treatment. The serum concentrations of nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3), high-mobility group box 1 (HMGB1), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) were measured in the healthy control group on the day of physical examination and in the children with TBI on days 1, 3, and 5 after admission. Glasgow Outcome Scale-Extended (GOS-E) score was evaluated for the children with TBI 2 months after discharge.@*RESULTS@#Compared with the healthy control group, the children with TBI had significantly higher serum concentrations of NLRP3, HMGB1, TNF-α, and IL-1β on day 1 after admission (P<0.017). The concentration of NLRP3 on day 5 after admission was significantly higher than that on days 1 and 3 after admission in the children with TBI (P<0.017). On days 3 and 5 after admission, the sodium valproate treatment group had a significantly lower concentration of NLRP3 than the conventional treatment group (P<0.05). For the conventional treatment group, there was no significant difference in the concentration of HMGB1 on days 1, 3, and 5 after admission (P>0.017), while for the sodium valproate treatment group, the concentration of HMGB1 on day 5 after admission was significantly lower than that on days 1 and 3 after admission (P<0.017). On day 5 after admission, the sodium valproate treatment group had a significantly lower concentration of HMGB1 than the conventional treatment group (P<0.05). For the children with TBI, the concentration of TNF-α on day 1 after admission was significantly lower than that on days 3 and 5 after admission (P<0.017). On days 3 and 5 after admission, the sodium valproate treatment group had a significantly lower concentration of TNF-α than the conventional treatment group (P<0.05). The concentration of IL-1β on day 3 after admission was significantly lower than that on days 1 and 5 after admission (P<0.017) in the children with TBI. On days 3 and 5 after admission, the sodium valproate treatment group had a significantly lower concentration of IL-1β than the conventional treatment group (P<0.05). The GOS-E score was significantly higher in the sodium valproate treatment group than that in the conventional treatment group 2 months after discharge (P<0.05).@*CONCLUSIONS@#Early use of sodium valproate can reduce the release of neuroinflammatory factors and improve the prognosis of children with TBI.


Subject(s)
Child , Humans , Valproic Acid/therapeutic use , HMGB1 Protein , Pilot Projects , Tumor Necrosis Factor-alpha , Neuroinflammatory Diseases , NLR Family, Pyrin Domain-Containing 3 Protein , Prospective Studies , Brain Injuries, Traumatic/pathology
2.
China Journal of Chinese Materia Medica ; (24): 778-788, 2023.
Article in Chinese | WPRIM | ID: wpr-970548

ABSTRACT

This study aimed to explore the potential mechanism of Berberis atrocarpa Schneid. anthocyanin against Alzheimer's disease(AD) based on network pharmacology, molecular docking technology, and in vitro experiments. Databases were used to screen out the potential targets of the active components of B. atrocarpa and the targets related to AD. STRING database and Cytoscape 3.9.0 were adopted to construct a protein-protein interaction(PPI) network and carry out topological analysis of the common targets. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were performed on the target using the DAVID 6.8 database. Molecular docking was conducted to the active components and targets related to the nuclear factor kappa B(NF-κB)/Toll-like receptor 4(TLR4) pathway. Finally, lipopolysaccharide(LPS) was used to induce BV2 cells to establish the model of AD neuroinflammation for in vitro experimental validation. In this study, 426 potential targets of active components of B. atrocarpa and 329 drug-disease common targets were obtained, and 14 key targets were screened out by PPI network. A total of 623 items and 112 items were obtained by GO functional enrichment analysis and KEGG pathway enrichment analysis, respectively. Molecular docking results showed that NF-κB, NF-κB inhibitor(IκB), TLR4, and myeloid differentiation primary response 88(MyD88) had good binding abilities to the active components, and malvidin-3-O-glucoside had the strongest binding ability. Compared with the model group, the concentration of nitric oxide(NO) decreased at different doses of malvidin-3-O-glucoside without affecting the cell survival rate. Meanwhile, malvidin-3-O-glucoside down-regulated the protein expressions of NF-κB, IκB, TLR4, and MyD88. This study uses network pharmacology and experimental verification to preliminarily reveal that B. atrocarpa anthocyanin can inhibit LPS-induced neuroinflammation by regulating the NF-κB/TLR4 signaling pathway, thereby achieving the effect against AD, which provides a theoretical basis for the study of its pharmacodynamic material basis and mechanism.


Subject(s)
NF-kappa B , Alzheimer Disease , Network Pharmacology , Anthocyanins , Berberis , Lipopolysaccharides , Molecular Docking Simulation , Myeloid Differentiation Factor 88 , Neuroinflammatory Diseases , Toll-Like Receptor 4 , I-kappa B Proteins
3.
China Journal of Chinese Materia Medica ; (24): 770-777, 2023.
Article in Chinese | WPRIM | ID: wpr-970547

ABSTRACT

This paper aimed to study the effect of Erjing Pills on the improvement of neuroinflammation of rats with Alzheimer's di-sease(AD) induced by the combination of D-galactose and Aβ_(25-35) and its mechanism. SD rats were randomly divided into a sham group, a model control group, a positive drug group(donepezil, 1 mg·kg~(-1)), an Erjing Pills high-dose group(9.0 g·kg~(-1)), and an Erjing Pills low-dose group(4.5 g·kg~(-1)), with 14 rats each group. To establish the rat model of AD, Erjing Pills were intragastrically administrated to rats for 5 weeks after 2 weeks of D-galactose injection. D-galactose was intraperitoneally injected into rats for 3 weeks, and then Aβ_(25-35) was injected into the bilateral hippocampus. The new object recognition test was used to evaluate the learning and memory ability of rats after 4 weeks of intragastric administration. Tissues were acquired 24 h after the last administration. The immunofluorescence method was used to detect the activation of microglia in the brain tissue of rats. The positive expressions of Aβ_(1-42) and phosphory protein Tau~(404)(p-Tau~(404)) in the CA1 area of the hippocampus were detected by immunohistochemistry. The levels of inflammatory factors interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) in the brain tissue were determined by enzyme-linked immunosorbent assay(ELISA). Toll-like receptor 4(TLR4)/nuclear factor kappa B(NF-κB)/nucleotide-binding oligomerization domain-like receptors 3(NLRP3) pathway-associated proteins in the brain tissue were determined by Western blot. The results showed that as compared with the sham group, the new object recognition index of rats in the model control group decreased significantly, the deposition of Aβ_(1-42) and p-Tau~(404) positive protein in the hippocampus increased significantly, and the levels of microglia activation increased significantly in the dentate gyrus. The levels of IL-1β, TNF-α, and IL-6 in the hippocampus of the model control group increased significantly, and the expression levels of TLR4, p-NF-κB p65/NF-κB p65, p-IκBα/IκBα, and NLRP3 proteins in the hippocampus increased significantly. Compared with the model control group, the Erjing Pill groups enhanced the new object recognition index of rats, decreased the deposition of Aβ_(1-42) and the expression of p-Tau~(404) positive protein in the hippocampus, inhibited the activation of microglia in the dentate gyrus, reduced the levels of inflammatory factors IL-1β, TNF-α, and IL-6 in the hippocampus, and down-regulated the expression levels of TLR4, p-NF-κB P65/NF-κB P65, p-IκBα/IκBα, and NLRP3 proteins in the hippocampus. In conclusion, Erjing Pills can improve the learning and memory ability of the rat model of AD presumably by improving the activation of microglia, reducing the expression levels of neuroinflammatory factors IL-1β, TNF-α, and IL-6, inhibiting the TLR4/NF-κB/NLRP3 neuroinflammation pathway, and decreasing hippocampal deposition of Aβ and expression of p-Tau, thereby restoring the hippocampal morphological structure.


Subject(s)
Animals , Rats , Rats, Sprague-Dawley , NF-kappa B , NF-KappaB Inhibitor alpha , NLR Family, Pyrin Domain-Containing 3 Protein , Galactose , Interleukin-6 , Neuroinflammatory Diseases , Toll-Like Receptor 4 , Tumor Necrosis Factor-alpha
4.
China Journal of Chinese Materia Medica ; (24): 300-310, 2023.
Article in Chinese | WPRIM | ID: wpr-970466

ABSTRACT

As one of the most frequent complications of diabetes, diabetic neuropathy often involves peripheral and central nervous systems. Neuroinflammation is the key pathogenic factor of secondary nerve injury in diabetes. NOD-like receptor pyrin domain-containing 3(NLRP3) inflammasome is a group of subcellular multiprotein complexes, including NLRP3, apoptosis associated speck-like protein(ASC), and pro-cysteinyl aspartate specific proteinase 1(pro-caspase-1). NLRP3 inflammasome is an inducer of innate immune responses. Its activation stimulates the inflammatory cascade reaction, promotes the release of inflammatory mediators, triggers cell death and uncontrolled autophagy, activates glial cells, facilitates peripheral immune cell infiltration, and initiates amyoid β(Aβ)-tau cascade reactions. As a result, it contributes to the central nerve, somatic nerve, autonomic nerve, and retinal nerve cell damage secondary to diabetes. Therefore, due to its key role in the neuroinflammation responses of the body, NLRP3 inflammasome may provide new targets for the treatment of diabetic neuropathy. With multi-target and low-toxicity advantages, traditional Chinese medicine plays a vital role in the treatment of diabetic neuropathy. Accumulating evidence has shown that traditional Chinese medicine exerts curative effects on diabetic neuropathy possibly through regulating NLRP3 inflammasome. Although the role of NLRP3 inflammasome in diabetes and related complications has been investigated in the literature, systematical studies on drugs and mechanism analysis for secondary neuropathy are still lacking. In this article, the role of NLRP3 inflammasome in diabetic neuropathy was explored, and the research progress on traditional Chinese medicine in the treatment of diabetic neuropathy through NLRP3 inflammasome was reviewed.


Subject(s)
Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Diabetic Neuropathies/drug therapy , Medicine, Chinese Traditional , Neuroinflammatory Diseases , Inflammation , Diabetes Mellitus
5.
Neuroscience Bulletin ; (6): 832-844, 2023.
Article in English | WPRIM | ID: wpr-982457

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder caused by the loss of dopamine neurons in the substantia nigra and the formation of Lewy bodies, which are mainly composed of alpha-synuclein fibrils. Alpha-synuclein plays a vital role in the neuroinflammation mediated by the nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in PD. A better understanding of the NLRP3 inflammasome-mediated neuroinflammation and the related mitochondrial impairment during PD progression may facilitate the development of promising therapies for PD. This review focuses on the molecular mechanisms underlying NLRP3 inflammasome activation, comprising priming and protein complex assembly, as well as the role of mitochondrial impairment and its subsequent inflammatory effects on the progression of neurodegeneration in PD. In addition, the therapeutic strategies targeting the NLRP3 inflammasome for PD treatment are discussed, including the inhibitors of NLRP3 inflammatory pathways, mitochondria-focused treatments, microRNAs, and other therapeutic compounds.


Subject(s)
Humans , Parkinson Disease/complications , alpha-Synuclein , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Neuroinflammatory Diseases , Mitochondria
6.
Journal of Zhejiang University. Science. B ; (12): 554-573, 2023.
Article in English | WPRIM | ID: wpr-982400

ABSTRACT

Over the past few decades, complementary and alternative treatments have become increasingly popular worldwide. The purported therapeutic characteristics of natural products have come under increased scrutiny both in vitro and in vivo as part of efforts to legitimize their usage. One such product is tea tree oil (TTO), a volatile essential oil primarily obtained from the native Australian plant, Melaleuca alternifolia, which has diverse traditional and industrial applications such as topical preparations for the treatment of skin infections. Its anti-inflammatory-linked immunomodulatory actions have also been reported. This systematic review focuses on the anti-inflammatory effects of TTO and its main components that have shown strong immunomodulatory potential. An extensive literature search was performed electronically for data curation on worldwide accepted scientific databases, such as Web of Science, Google Scholar, PubMed, ScienceDirect, Scopus, and esteemed publishers such as Elsevier, Springer, Frontiers, and Taylor & Francis. Considering that the majority of pharmacological studies were conducted on crude oils only, the extracted data were critically analyzed to gain further insight into the prospects of TTO being used as a neuroprotective agent by drug formulation or dietary supplement. In addition, the active constituents contributing to the activity of TTO have not been well justified, and the core mechanisms need to be unveiled especially for anti-inflammatory and immunomodulatory effects leading to neuroprotection. Therefore, this review attempts to correlate the anti-inflammatory and immunomodulatory activity of TTO with its neuroprotective mechanisms.


Subject(s)
Tea Tree Oil/therapeutic use , Melaleuca , Neuroprotection , Drug Repositioning , Neuroinflammatory Diseases , Australia , Oils, Volatile , Anti-Inflammatory Agents/pharmacology
7.
Chinese journal of integrative medicine ; (12): 448-458, 2023.
Article in English | WPRIM | ID: wpr-982293

ABSTRACT

OBJECTIVE@#To investigate the molecular mechanisms underlying the beneficial effect of electroacupuncture (EA) in experimental models of Alzheimer's disease (AD) in vivo.@*METHODS@#Senescence-accelerated mouse prone 8 (SAMP8) mice were used as AD models and received EA at Yingxiang (LI 20, bilateral) and Yintang (GV 29) points for 20 days. For certain experiments, SAMP8 mice were injected intravenously with human fibrin (2 mg). The Morris water maze test was used to assess cognitive and memory abilities. The changes of tight junctions of blood-brain barrier (BBB) in mice were observed by transmission electron microscope. The expressions of fibrin, amyloid- β (Aβ), and ionized calcium-binding adapter molecule 1 (IBa-1) in mouse hippocampus (CA1/CA3) were detected by reverse transcription-quantitative polymerase chain reaction (qRT-PCR), Western blot or immunohistochemical staining. The expression of fibrin in mouse plasma was detected by enzyme-linked immunosorbent assay. The expressions of tight junction proteins zonula occludens-1 and claudin-5 in hippocampus were detected by qRT-PCR and immunofluorescence staining. Apoptosis of hippocampal neurons was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining.@*RESULTS@#Fibrin was time-dependently deposited in the hippocampus of SAMP8 mice and this was inhibited by EA treatment (P<0.05 or P<0.01). Furthermore, EA treatment suppressed the accumulation of Aβ in the hippocampus of SAMP8 mice (P<0.01), which was reversed by fibrin injection (P<0.05 or P<0.01). EA improved SAMP8 mice cognitive impairment and BBB permeability (P<0.05 or P<0.01). Moreover, EA decreased reactive oxygen species levels and neuroinflammation in the hippocampus of SAMP8 mice, which was reversed by fibrin injection (P<0.05 or P<0.01). Mechanistically, EA inhibited the promoting effect of fibrin on the high mobility group box protein 1 (HMGB1)/toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE)/nicotinamide adenine dinucleotide phosphate (NADPH) signaling pathways (P<0.01).@*CONCLUSION@#EA may potentially improve cognitive impairment in AD via inhibition of fibrin/A β deposition and deactivation of the HMGB1/TLR4 and RAGE/NADPH signaling pathways.


Subject(s)
Mice , Humans , Animals , NADP/metabolism , Toll-Like Receptor 4 , HMGB1 Protein/metabolism , Receptor for Advanced Glycation End Products/metabolism , Blood-Brain Barrier/metabolism , Neuroinflammatory Diseases , Electroacupuncture , Alzheimer Disease/therapy , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism
8.
Chinese Medical Journal ; (24): 1291-1299, 2023.
Article in English | WPRIM | ID: wpr-980925

ABSTRACT

Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane receptor on myeloid cells and plays an important role in the body's immune defense. Recently, TREM2 has received extensive attention from researchers, and its activity has been found in Alzheimer's disease, neuroinflammation, and traumatic brain injury. The appearance of TREM2 is usually accompanied by changes in apolipoprotein E (ApoE), and there has been a lot of research into their structure, as well as the interaction mode and signal pathways involved in them. As two molecules with broad and important roles in the human body, understanding their correlation may provide therapeutic targets for certain diseases. In this article, we reviewed several diseases in which TREM2 and ApoE are synergistically involved in the development. We further discussed the positive or negative effects of the TREM2-ApoE pathway on nervous system immunity and inflammation.


Subject(s)
Humans , Alzheimer Disease/metabolism , Apolipoproteins E/genetics , Microglia/metabolism , Myeloid Cells/metabolism , Signal Transduction , Neuroinflammatory Diseases
9.
Clin. biomed. res ; 42(4): 397-404, 2022.
Article in Portuguese | LILACS | ID: biblio-1516673

ABSTRACT

A Doença de Alzheimer (DA) consiste em um grande problema de saúde pública no Brasil e no mundo. Trata-se de uma doença neurodegenerativa, em que ocorre perda progressiva de neurônios e atrofia das regiões cerebrais. Essa degeneração está associada principalmente ao depósito de duas proteínas tóxicas: a proteína beta-amiloide e a proteína Tau, uma vez que estas proteínas se encontram acumuladas, elas prejudicam a ocorrência de sinapses nervosas. Apesar de extremamente prevalente na população mais idosa, suas causas ainda não estão bem esclarecidas, sendo que vários fatores já foram apontados como possíveis motivos para o surgimento do depósito destas proteínas, levando assim a neurodegeneração. Recentemente, tem se estudado o papel da inflamação, que é fundamental durante todo o curso da doença, tanto para a eliminação das proteínas tóxicas quanto para a proteção de neurônios. Um funcionamento anormal do processo inflamatório poderia dificultar a eliminação das proteínas e acentuar a perda neuronal. Com isso essa revisão de literatura tem como objetivo descrever os principais fatores imunológico que se encontram alterados na Doença de Alzheimer e como isso pode contribuir para o quadro neurodegenerativo.


Alzheimer's Disease (AD) is a major public health problem in Brazil and worldwide. It is a neurodegenerative disease, in which there is a progressive loss of neurons and atrophy of brain regions. This degeneration is mainly associated with the deposition of two toxic proteins, the beta-amyloid protein and the Tau protein, once these proteins are accumulated, they impair the occurrence of nerve synapses. Despite being extremely prevalent in the older population, its causes are still not well understood, and several factors have already been pointed out as possible reasons for the emergence of the deposit of these proteins, thus leading to neurodegeneration. Recently, the role of inflammation, which is fundamental throughout the course of the disease, has been studied, both for the elimination of toxic proteins and for the protection of neurons. An abnormal functioning of the inflammatory process could hinder the elimination of proteins and accentuate the neuronal loss Thus, this literature review aims to describe the main immunological factors that are altered in Alzheimer's Disease and how this can contribute to the neurodegenerative picture.


Subject(s)
Alzheimer Disease/physiopathology , Neuroinflammatory Diseases/complications , Astrocytes , Microglia
10.
Braz. J. Pharm. Sci. (Online) ; 58: e21530, 2022. graf
Article in English | LILACS | ID: biblio-1420486

ABSTRACT

Abstract Therapeutically, piracetam has been used for decades as a cognitive enhancer for memory- related neuronal disorders. The present study aimed to investigate the neuroprotective potential of piracetam on lipopolysaccharides (LPS)-induced neuronal deficit using both in-vitro and in-vivo experimental models. For the in-vitro analysis, EOC-20 murine microglial cells were induced with a neuronal toxicity of 100 µg/ml of LPS, and the formation of intracellular reactive oxygen species (ROS) and nitric oxide (NO) productions were determined. For in-vivo neuroprotective analysis, groups of mice were treated orally with two doses of piracetam (200 and 400 mg/kg) for 30 days. Neuronal toxicity was induced by four intraperitoneal injections of LPS (250 µg/kg/day). The malondialdehyde (MDA) level was measured for oxidative stress, and catalase reduced glutathione (GSH), glutathione reductase (GRD), and superoxide dismutase (SOD) levels were determined as the antioxidant parameters. The result of the cell viability study was that pre-treatment with piracetam significantly protected the LPS-induced cell loss, and attenuated the ROS generation and NO production in LPS-induced EOC-20 cells. Moreover, the treatment of piracetam significantly reduced the MDA levels and improved catalase, GSH, GRD, and SOD activities in LPS-induced mice brains. The overall results from this study supported the neuroprotective effects of piracetam against LPS-induced neuronal toxicity.


Subject(s)
Animals , Male , Mice , Piracetam/analysis , Lipopolysaccharides/pharmacology , Neuroprotection/drug effects , Oxidative Stress , Cerebrum/abnormalities , Neuroinflammatory Diseases/chemically induced , Antioxidants/adverse effects
11.
Chinese Medical Sciences Journal ; (4): 1-14, 2022.
Article in English | WPRIM | ID: wpr-928241

ABSTRACT

Objective To examine the neuroanatomical substrates underlying the effects of minocycline in alleviating lipopolysaccharide (LPS)-induced neuroinflammation. Methods Forty C57BL/6 male mice were randomly and equally divided into eight groups. Over three conse-cutive days, saline was administered to four groups of mice and minocycline to the other four groups. Immediately after the administration of saline or minocycline on the third day, two groups of mice were additionally injected with saline and the other two groups were injected with LPS. Six or 24 hours after the last injection, mice were sacrificed and the brains were removed. Immunohistochemical staining across the whole brain was performed to detect microglia activation via Iba1 and neuronal activation via c-Fos. Morphology of microglia and the number of c-Fo-positive neurons were analyzed by Image-Pro Premier 3D. One-way ANOVA and Fisher's least-significant differences were employed for statistical analyses. Results Minocycline alleviated LPS-induced neuroinflammation as evidenced by reduced activation of microglia in multiple brain regions, including the shell part of the nucleus accumbens (Acbs), paraventricular nucleus (PVN) of the hypothalamus, central nucleus of the amygdala (CeA), locus coeruleus (LC), and nucleus tractus solitarius (NTS). Minocycline significantly increased the number of c-Fo-positive neurons in NTS and area postrema (AP) after LPS treatment. Furthermore, in NTS-associated brain areas, including LC, lateral parabrachial nucleus (LPB), periaqueductal gray (PAG), dorsal raphe nucleus (DR), amygdala, PVN, and bed nucleus of the stria terminali (BNST), minocycline also significantly increased the number of c-Fo-positive neurons after LPS administration. Conclusion Minocycline alleviates LPS-induced neuroinflammation in multiple brain regions, possibly due to increased activation of neurons in the NTS-associated network.


Subject(s)
Animals , Female , Male , Mice , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Minocycline/pharmacology , Neuroinflammatory Diseases , Solitary Nucleus
12.
Chinese Acupuncture & Moxibustion ; (12): 407-412, 2022.
Article in Chinese | WPRIM | ID: wpr-927397

ABSTRACT

OBJECTIVE@#To observe the effect of acupuncture on the balance of T helper (Th) 1/Th2 cells in peripheral blood, inflammatory reaction and intracerebral neuroinflammation in vascular dementia (VD) rats, and to explore the mechanism of acupuncture for improving cognitive function in VD.@*METHODS@#A total of 60 SPF Wistar rats were randomized into a normal group (n=12), a sham operation group (n=12) and an operation group (n=36). Bilateral common carotid artery occlusion was adopted to establish the VD model in rats of the operation group. The rats of successful modeling were randomized into a model group and an acupuncture group, 12 rats in each one. In the acupuncture group, Sanjiao acupuncture was applied at "Danzhong" (CV 17), "Zhongwan" (CV 12), "Qihai" (CV 6), "Xuehai" (SP 10) and "Zusanli" (ST 36), the needles were manipulated for 30 s at each acupoint, without retaining. The intervention was given once a day for 15 days, and there was 1-day rest on day 8. Morris water maze test was adopted to observe the ethology, flow cytometry was used to detect the ratio of Th1/Th2 in peripheral blood, and Luminex liquid chip technology was used to detect the levels of interleukin (IL)-4, IL-10, interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) in serum and hippocampus.@*RESULTS@#There were no significant differences in various indexes between the normal group and the sham operation group (P>0.05). Compared with the sham operation group, in the model group, the escape latency of hidden platform test and reversal platform test was prolonged (P<0.01), the residence time of the original platform quadrant was shortened and the number of crossing the original platform was reduced in probe test (P<0.01, P<0.05), the proportion of Th1 cells was increased, the proportion of Th2 cells was decreased and the ratio of Th1/Th2 cells was increased in peripheral blood (P<0.01), the levels of TNF-α and IFN-γ were increased, the levels of IL-4 and IL-10 were decreased in serum and hippocampus (P<0.05, P<0.01). Compared with the model group, in the acupuncture group, the escape latency of hidden platform test and reversal platform test was shortened (P<0.01), the residence time of the original platform quadrant of the probe test was prolonged (P<0.05), the proportion of Th1 cells was decreased, the proportion of Th2 cells was increased and the ratio of Th1 / Th2 cells was decreased in peripheral blood (P<0.05), the levels of TNF-α and IFN-γ were decreased, the levels of IL-4 and IL-10 were increased in serum and hippocampus (P<0.05, P<0.01).@*CONCLUSION@#Acupuncture can improve the cognitive dysfunction and reduce the intracerebral neuroinflammation in VD rats, its mechanism may relate to the regulation of Th1/Th2 cells balance and reduce the inflammatory reaction in peripheral blood.


Subject(s)
Animals , Rats , Acupuncture Therapy , Dementia, Vascular/therapy , Interferon-gamma , Interleukin-10 , Interleukin-4 , Neuroinflammatory Diseases , Rats, Wistar , Th2 Cells , Tumor Necrosis Factor-alpha
13.
Chinese Medical Sciences Journal ; (4): 320-330, 2022.
Article in English | WPRIM | ID: wpr-970694

ABSTRACT

Objective To study the effects of TYRO protein kinase-binding protein (TYROBP) deficiency on learning behavior, glia activation and pro-inflammatory cycokines, and Tau phosphorylation of a new Alzheimer's disease (AD) mouse model carrying a PSEN1 p.G378E mutation.Methods A new AD mouse model carrying PSEN1 p.G378E mutation was built based on our previously found AD family which might be ascribed to the PSEN1 mutation, and then crossed with TYROBP deficient mice to produce the heterozygous hybrid mice (PSEN1G378E/WT; Tyrobp+/-) and the homozygous hybrid mice (PSEN1G378E/G378E; Tyrobp-/-). Water maze test was used to detect spatial learning and memory ability of mice. After the mice were sacrificed, the hippocampus was excised for further analysis. Immunofluorescence was used to identify the cell that expresses TYROBP and the number of microglia and astrocyte. Western blot was used to detect the expression levels of Tau and phosphorylated Tau (p-Tau), and ELISA to measure the levels of pro-inflammatory cytokines. Results Our results showed that TYROBP specifically expressed in the microglia of mouse hippocampus. Absence of TYROBP in PSEN1G378E mutation mouse model prevented the deterioration of learning behavior, decreased the numbers of microglia and astrocytes, and the levels of interleukin-6, interleukin-1β and tumor necrosis factor-α in the hippocampus (all P < 0.05). The ratios of AT8/Tau5, PHF1/Tau5, pT181/Tau5, pT231/Tau5 and p-ERK/ERK were all higher in homozygous hybrid mice (PSEN1G378E/G378E; Tyrobp-/- mice) compared with PSEN1G378E/G378E mice (all P < 0.05). Conclusions TYROBP deficiency might play a protective role in the modulation of neuroinflammation of AD. However, the relationship between neuroinflammation processes involving microglia and astrocyte activation, and release of pro-inflammatory cytokines, and p-Tau pathology needs further study.


Subject(s)
Mice , Animals , Alzheimer Disease/genetics , Neuroinflammatory Diseases , Hippocampus/pathology , Mutation , Cytokines/pharmacology , Disease Models, Animal , tau Proteins/pharmacology , Amyloid beta-Peptides/metabolism , Adaptor Proteins, Signal Transducing/pharmacology
14.
Acta cir. bras ; 37(6): e370605, 2022. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1402959

ABSTRACT

Purpose: Traumatic brain injury (TBI) is a major cause of death and disability. Cerebrolysin (CBL) has been reported to be anti-inflammatory by reducing reactive oxygen species (ROS) production. However, the neuroprotection of CBL in TBI and the potential mechanism are unclear. We aimed to investigate the neuroprotection and mechanisms of CBL in TBI. Methods: The TBI model was established in strict accordance with the Feeney weight-drop model of focal injury. The neurological score, brain water content, neuroinflammatory cytokine levels, and neuronal damage were evaluated. The involvement of the early brain injury modulatory pathway was also investigated. Results: Following TBI, the results showed that CBL administration increased neurological scores and decreased brain edema by alleviating blood­brain barrier (BBB) permeability, upregulating tight junction protein (ZO­1) levels, and decreasing the levels of the inflammatory cytokines tumor necrosis factor­α (TNF­α), interleukin­1ß (IL­1ß), IL­6, and NF­κB. The TUNEL assay showed that CBL decreased hippocampal neuronal apoptosis after TBI and decreased the protein expression levels of caspase­3 and Bax, increasing the levels of Bcl­2. The levels of Toll­like receptor 2 (TLR2) and TLR4 were significantly decreased after CBL treatment. In TBI patients, CBL can also decrease TNF­α, IL­1ß, IL­6, and NF­κB levels. This result indicates that CBL­mediated inhibition of neuroinflammation and apoptosis ameliorated neuronal death after TBI. The neuroprotective capacity of CBL is partly dependent on the TLR signaling pathway. Conclusions: Taken together, the results of this study indicate that CBL can improve neurological outcomes and reduce neuronal death against neuroinflammation and apoptosis via the TLR signaling pathway in mice.


Subject(s)
Animals , Mice , Peptides/administration & dosage , Reactive Oxygen Species/analysis , Apoptosis , Brain Injuries, Traumatic/therapy , Neuroinflammatory Diseases/veterinary
15.
Acta cir. bras ; 37(6): e370606, 2022. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1402960

ABSTRACT

Purpose: Spontaneous intracerebral hemorrhage (ICH) is still a major public health problem, with high mortality and disability. Ulinastatin (UTI) was purified from human urine and has been reported to be anti-inflammatory, organ protective, and antioxidative stress. However, the neuroprotection of UTI in ICH has not been confirmed, and the potential mechanism is unclear. In the present study, we aimed to investigate the neuroprotection and potential molecular mechanisms of UTI in ICH-induced early brain injury in a C57BL/6 mouse model. Methods: The neurological score, brain water content, neuroinflammatory cytokine levels, oxidative stress levels, and neuronal damage were evaluated. Results: UTI treatment markedly increased the neurological score, alleviated brain edema, decreased the levels of the inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), IL-6, and NF-κB, decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and upregulated the levels of glutathione (GSH), superoxide dismutase (SOD), and Nrf2. This finding indicated that UTI-mediated inhibition of neuroinflammation and oxidative stress alleviated neuronal damage after ICH. The neuroprotective capacity of UTI is partly dependent on the ROS/MAPK/Nrf2 signaling pathway. Conclusions: UTI improves neurological outcomes in mice and reduces neuronal death by protecting against neural neuroinflammation and oxidative stress.


Subject(s)
Animals , Mice , Protease Inhibitors/administration & dosage , Brain Injuries/veterinary , Cerebral Hemorrhage/veterinary , Oxidative Stress , Neuroinflammatory Diseases
16.
Neuroscience Bulletin ; (6): 1671-1682, 2021.
Article in English | WPRIM | ID: wpr-922661

ABSTRACT

Microglia-mediated neuroinflammation is widely perceived as a contributor to numerous neurological diseases and mental disorders including depression. Discs large homolog 1 (Dlg1), an adaptor protein, regulates cell polarization and the function of K


Subject(s)
Animals , Mice , Depression/chemically induced , Inflammation , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , Mice, Knockout , Microglia , NF-kappa B , Neuroinflammatory Diseases
17.
Chinese Medical Journal ; (24): 205-215, 2021.
Article in English | WPRIM | ID: wpr-921203

ABSTRACT

BACKGROUND@#Microglia plays an indispensable role in the pathological process of sleep deprivation (SD). Here, the potential role of microglial CX3C-chemokine receptor 1 (CX3CR1) in modulating the cognition decline during SD was evaluated in terms of microglial neuroinflammation and synaptic pruning. In this study, we aimed to investigat whether the interference in the microglial function by the CX3CR1 knockout affects the CNS's response to SD.@*METHODS@#Middle-aged wild-type (WT) C57BL/6 and CX3CR1-/- mice were either subjected to SD or allowed normal sleep (S) for 8 h to mimic the pathophysiological changes of middle-aged people after staying up all night. After which, behavioral and histological tests were used to explore their different changes.@*RESULTS@#CX3CR1 deficiency prevented SD-induced cognitive impairments, unlike WT groups. Compared with the CX3CR1-/- S group, the CX3CR1-/- SD mice reported a markedly decreased microglia and cellular oncogene fos density in the dentate gyrus (DG), decreased expression of pro-inflammatory cytokines, and decreased microglial phagocytosis-related factors, whereas increased levels of anti-inflammatory cytokines in the hippocampus and a significant increase in the density of spines of the DG were also noted.@*CONCLUSIONS@#These findings suggest that CX3CR1 deficiency leads to different cerebral behaviors and responses to SD. The inflammation-attenuating activity and the related modification of synaptic pruning are possible mechanism candidates, which indicate CX3CR1 as a candidate therapeutic target for the prevention of the sleep loss-induced cognitive impairments.


Subject(s)
Animals , Mice , Cognitive Dysfunction , Mice, Inbred C57BL , Microglia , Neuroinflammatory Diseases , Sleep Deprivation
SELECTION OF CITATIONS
SEARCH DETAIL