Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Rev. méd. Minas Gerais ; 31: 31209, 2021.
Article in Portuguese | LILACS | ID: biblio-1292752

ABSTRACT

Introdução: O tratamento da leucemia linfoblástica aguda (LLA) atualmente baseia-se em quimioterapia e/ou transplante de células tronco hematopoiéticas; entretanto, uma nova terapia vem se tornando promissora: a imunoterapia com células T modificadas geneticamente que expressam um receptor de antígeno quimérico (CAR-T) visando antígenos específicos presente em blastos de LLA, gerando resultados promissores em crianças e adultos com doença recidivada e refratária (r/r). Objetivo: Discorrer sobre a LLA e descrever a imunoterapia com CAR-T, como inovação terapêutica no tratamento da LLA de linhagem B. Método: Foi realizada uma revisão bibliográfica por meio de publicações indexadas nas bases de dados Scielo e Pubmed, utilizando os descritores: leucemia linfoblástica aguda de células B; células CAR-T; receptores de antígeno quimérico, recidivados/refratários; imunoterapia. Resultados: As altas taxas de remissão completa (42% até 100%) e parcial (28,5%) da LLA (r/r) tratadas com CAR-T, possibilitam um aumento considerável da sobrevida geral comparado a outros tratamentos convencionais. Efeitos desfavoráveis, tais como síndrome da liberação de citocinas (CRS) (0 até 90%) e neurotoxicidade (NT) (0 até 29%) podem ser vistos, sendo manejáveis, não prejudicando o desfecho do tratamento. Conclusão: A LLA é uma doença grave, de difícil tratamento e prognóstico reservado. A imunoterapia vêm se mostrando promissora à essa enfermidade, principalmente em casos de doença r/r se mostrado uma ferramenta poderosa que permite o foco específico de células malignas por meio de engenharia de células T


Introduction: The treatment of acute lymphoblastic leukemia (ALL) is currently based on chemotherapy and/or hematopoietic stem cell transplantation; however, a new therapy is becoming promising: immunotherapy with genetically modified T cells that express a chimeric antigen receptor (CAR-T) targeting specific antigens present on ALL blasts, reaching promising results in children and adults with relapsed and refractory disease (r/r). Objective: To discuss ALL and describe immunotherapy with CAR-T as a therapeutic innovation in the treatment of B-lineage ALL. Method: A literature review was carried out through publications indexed in the Scielo and Pubmed databases, using the following descriptors: B-cell acute lymphoblastic leukemia; CAR-T cells; chimeric antigen receptors, relapsed/refractory; immunotherapy. Results: The high rates of complete (42% to 100%) and partial remission (28.5%) of ALL (r/r) treated with CAR-T allows a considerable increase in overall survival compared to other conventional treatments. Unfavorable effects such as cytokine release syndrome (CRS) (0 to 90%) and neurotoxicity (NT) (0 to 29%) can be seen, being manageable, not impairing the treatment outcome. Conclusion: ALL is a serious disease, with a difficult treatment and poor prognosis. Immunotherapy has shown benefits for this disease, especially in cases of r/r ALL, showing itself to be a powerful tool that allows the specific focus of malignant cells through T cell engineering.


Subject(s)
Humans , Child , Adult , Leukemia/therapy , Receptors, Chimeric Antigen , Immunotherapy , Neprilysin , Immunotherapy, Adoptive , Hematopoietic Stem Cell Transplantation , Cytokine Release Syndrome
2.
Frontiers of Medicine ; (4): 783-804, 2021.
Article in English | WPRIM | ID: wpr-922520

ABSTRACT

The current standard of care in hematological malignancies has brought considerable clinical benefits to patients. However, important bottlenecks still limit optimal achievements following a current medical practice. The genetic complexity of the diseases and the heterogeneity of tumor clones cause difficulty in ensuring long-term efficacy of conventional treatments for most hematological disorders. Consequently, new treatment strategies are necessary to improve clinical outcomes. Chimeric antigen receptor T-cell (CAR T) immunotherapy opens a new path for targeted therapy of hematological malignancies. In this review, through a representative case study, we summarize the current experience of CAR T-cell therapy, the management of common side effects, the causative mechanisms of therapy resistance, and new strategies to improve the efficacy of CAR T-cell therapy.


Subject(s)
Hematologic Neoplasms/therapy , Humans , Immunotherapy/adverse effects , Neoplasms , Receptors, Chimeric Antigen , T-Lymphocytes
3.
Frontiers of Medicine ; (4): 805-828, 2021.
Article in English | WPRIM | ID: wpr-922518

ABSTRACT

Immunotherapy plays a compelling role in cancer treatment and has already made remarkable progress. However, many patients receiving immune checkpoint inhibitors fail to achieve clinical benefits, and the response rates vary among tumor types. New approaches that promote anti-tumor immunity have recently been developed, such as small molecules, bispecific antibodies, chimeric antigen receptor T cell products, and cancer vaccines. Small molecule drugs include agonists and inhibitors that can reach the intracellular or extracellular targets of immune cells participating in innate or adaptive immune pathways. Bispecific antibodies, which bind two different antigens or one antigen with two different epitopes, are of great interest. Chimeric antigen receptor T cell products and cancer vaccines have also been investigated. This review explores the recent progress and challenges of different forms of immunotherapy agents and provides an insight into future immunotherapeutic strategies.


Subject(s)
Antibodies, Bispecific/therapeutic use , Cancer Vaccines , Humans , Immunotherapy , Neoplasms/therapy , Receptors, Chimeric Antigen , T-Lymphocytes
4.
Journal of Experimental Hematology ; (6): 1982-1986, 2021.
Article in Chinese | WPRIM | ID: wpr-922236

ABSTRACT

Chimeric antigen receptor T cell (CAR-T) therapy was awarded as the largest research breakthrough in 2017 by the American Society of Clinical Oncology, at present, it is rapidly becoming the most promising new treatment for hematological malignancies. However, this therapy also produces a new challenge: toxic adverse events such as cytokine release syndrome (CRS) and neurotoxicity, partial of them can bring death to the patients. The incidence and severity of the above toxic events in different multi-center trial reports are also different, which may be attributed to the different in the considerably variable assessment and grading of toxicities between clinical trials and across institutions. The ASTCT published at 2018 advanced the consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells, it was focusing on CRS and neurotoxicity associated with immune effector cells. In order to provide reference for the development of relevant work in this field and the formulation of security strategies in our country, the main content of the consensus was summarized briefly.


Subject(s)
Cell- and Tissue-Based Therapy , Consensus , Cytokine Release Syndrome , Humans , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen
5.
Article in Chinese | WPRIM | ID: wpr-880069

ABSTRACT

T lymphoid malignancy is a group of highly heterogeneous hematological tumors. Disease recurrence and resistance to therapy are the common causes of failed treatment. Traditional therapy is radiotherapy and chemotherapy, although it has achieved great success. However, many patients still failed to survive following the treatment. With the introduction of monoclonal antibodies, immunotherapy and cellular therapy into clinical practice, the outcome of hematologic malignancies has been significantly improved. In particular, chimeric antigen receptor T cells (CAR-T) showed high efficacy in treating B-cell lymphoma and acute B lymphocytic leukemia and surpassed any previous therapeutic strategies. However, this treatment seldom succeeded in treating T cell malignancies. In this review, the history of CAR-T cells treating T cell malignancies, and the clinical trials, adverse events of previously reported were summarized briefly.


Subject(s)
Humans , Immunotherapy , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , T-Lymphocytes
6.
Journal of Experimental Hematology ; (6): 1203-1208, 2021.
Article in Chinese | WPRIM | ID: wpr-888539

ABSTRACT

OBJECTIVE@#To investigate the relationship between the levels of ferritin, C-reactive protein (CRP), lactate dehydrogenase (LDH) and interleukin-6 (IL-6) in peripheral serum and cytokine release syndrome (CRS) in patients with relapse and/or refractory multiple myeloma (R/R MM) after receiving chimeric antigen receptor T cells (CAR-T) immunotherapy.@*METHODS@#Twenty-eight patients with R/R MM were treated with 1×10@*RESULTS@#Among the 28 patients, 27 cases (96.4%) developed CRS, 24 cases (85.7%) in 1-2 grade CRS and 3 cases (10.7%) in 3-5 grade. The severity grade of CRS of 27 patients was positively correlated with the peak values of ferritin, CRP, LDH, and IL-6 in peripheral blood (r@*CONCLUSION@#After receiving CAR-T cellular immunotherapy, the incidence of CRS in patients with R/R MM is higher, but most of them are in grade 1 or 2. The severity of CRS is positively correlated with the levels of ferritin, CRP, LDH and IL-6 in peripheral blood.


Subject(s)
Animals , Antigens, CD19 , Cytokine Release Syndrome , Humans , Immunotherapy, Adoptive , Mice , Multiple Myeloma/therapy , Neoplasm Recurrence, Local , Receptors, Chimeric Antigen
7.
Journal of Experimental Hematology ; (6): 1069-1074, 2020.
Article in Chinese | WPRIM | ID: wpr-827159

ABSTRACT

Abstract  Acute myeloid leukemia (AML) is a malignant clonal proliferative hematological tumor that originates from hematopoietic stem progenitor cells. Traditional chemotherapy can achieve complete remission in most patients, but so far, only allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the only way to cure AML. Recurrence, drug resistance, and transplant-related deaths remain a key issue for AML treatment. Therefore, finding new treatments to improve the prognosis of patients with AML is urgently needed. In recent years, the emergence of new immunotherapy has revolutionized the concept of cancer treatment in the past few decades. Cellular immunotherapy represented by chimeric-antigen receptor T cell (CAR-T) and immunological detection point inhibitor represented by PD-1 blockade have achieved remarkable effects in hematological malignancies. This article mainly reviews the recent research progress of CAR-T and PD-1 blockade in the clinical treatment of AML.


Subject(s)
Hematopoietic Stem Cell Transplantation , Humans , Immunotherapy, Adoptive , Leukemia, Myeloid, Acute , Programmed Cell Death 1 Receptor , Receptors, Chimeric Antigen
8.
Journal of Experimental Hematology ; (6): 1189-1196, 2020.
Article in Chinese | WPRIM | ID: wpr-827141

ABSTRACT

OBJECTIVE@#To investigate the prognosis prediction value of PET/CT in DLBCL patients treated with CAR-T therapy.@*METHODS@#The effects of PET/CT were retrospectively explored on 13 R/R DLBCL patients who were treated with CAR-T therapy. Parameters reflecting tumor metabolic burden, such as metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were measured before and after CAR-T treatment.@*RESULTS@#Patients with larger baseline MTV or longer sum of longest diameters showed shorter overall survival (OS) time than those with low tumor burden. Patients achieved complete remission (CR), partial remission (PR) and minor remission (MR) determined by response evaluation criteria in lymphoma (RECIL) in 12 weeks showed progression-free survival and OS time superior to those of patients with no remission. In addition, it was found that 2 patients with residual masses classified as PR by contrast-enhanced CT of patients were evaluated as complete metabolic response by PET/CT imaging.@*CONCLUSION@#PET/CT shows a great value in the evaluation of prognosis and response in CAR-T-treated R/R DLBCL patients.


Subject(s)
Cell- and Tissue-Based Therapy , Fluorodeoxyglucose F18 , Humans , Lymphoma, Large B-Cell, Diffuse , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Prognosis , Receptors, Chimeric Antigen , Retrospective Studies
9.
Journal of Experimental Hematology ; (6): 1367-1375, 2020.
Article in Chinese | WPRIM | ID: wpr-827110

ABSTRACT

OBJECTIVE@#To investigate the killing effect of NK-92MI cells modified by chimeric antigen receptor (CD7-CAR) and specifically targeting CD7 to CD7 hematological malignant cells.@*METHODS@#Three types of hematological malignant tumor cells, including 5 cases of CD7 acute T-lymphoblastic leukemia (T-ALL), 10 cases of acute myeloid leukemia (AML) and 6 cases of T-cell lymphoma were collected, centrifuged, cultured and used to detect the expression levels of tumor cell surface targets; 7-AAD, CD56-APC, CD3-FITC, IgG Fc-PE flow cytometry were used to detected the transfection efficiency of NK-92MI and CD7-CAR-NK-92MI cells, killing efficiencies of CD7-CAR-NK-92MI cells to CD7 hematological tumor cells in vitro were determined by flow cytometry using PE Annexin V Apoptosis Detection Kit. Secretion differences of NK-92MI and CD7-CAR-NK-92MI cytokines interleukin (IL)-2, interferon (IFN)-γ, and granzyme B detection were estimated by using CBA kit.@*RESULTS@#The killing efficiencies of CD7-CAR-modified NK-92MI cells to CD7 T-ALL, AML, T-cell lymphoma tumor cells were significantly higher than those of NK-92MI cells without genetical modification. The difference showed statistically significant (P<0.05). The level of IFN-γ and granzyme B were significantly increased among cytokines secreted by CD7-CAR-modified NK-92MI cells as compared with those of NK-92MI cells without genetical modification (P<0.05) .@*CONCLUSION@#CD7-CAR-modified NK-92MI cells have significantly improved killing efficiency against CD7 T-ALL, AML and T lymphoma cells, and shows specific targeting effects, which provides a clinical basis for the treatment of CD7 hematological malignancies.


Subject(s)
Cell Line, Tumor , Humans , Killer Cells, Natural , Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , T-Lymphocytes
10.
Chinese Journal of Biotechnology ; (12): 979-991, 2020.
Article in Chinese | WPRIM | ID: wpr-826878

ABSTRACT

Adoptive immunotherapy based on chimeric antigen receptor-modified T cells (CAR-T) is one of the most promising strategies to treat malignant tumors, but its application in solid tumors is still limited. Glypican-3 (GPC3) is a meaningful diagnostic, therapeutic, and prognostic biomarker for hepatocellular carcinoma (HCC). The second/third generation GPC3-targeted CAR-T cells are generated to treat HCC. In order to improve the therapeutic effect, we constructed a fourth-generation lentiviral vector to express GPC3 CAR, human interleukin-7 (IL-7) and CCL19. Then the lentiviral vector and packaging plasmids were co-transfected into HEK293T cells to generate CAR lentiviral particles. Human T lymphocyte cells were transduced with CAR lentiviral to develop the fourth-generation GPC3-targeted CAR-T cells (GPC3-BBZ-7×19). In vitro, we used cell counting, transwell assay, luciferase bioluminescence assay and flow cytometry to compare the proliferation, chemotaxis, cytotoxicity and subtype distribution between GPC3-BBZ-7×19 CAR-T cells and the second generation GPC3-targeted CAR-T cells (GPC3-BBZ). In vivo, we established GPC3-positive HCC xenograft model in immunodeficient mice, then untransduced T cells (non-CAR-T) or GPC3-BBZ-7×19 CAR-T cells were injected. Tumor growth in mice was observed by bioluminescence imaging. Results showed that compared with GPC3-BBZ CAR-T, GPC3-BBZ-7×19 CAR-T cells had stronger proliferation, chemotactic ability, and higher composition of memory stem T cells (Tscm) (P values<0.05). However, there were no significant difference in cytotoxicity and cytokine secretion between them. In addition, GPC3-BBZ-7×19 CAR-T cells could significantly eliminate GPC3-positive HCC xenografts established in immunodeficient mice. Therefore, the fourth-generation GPC3-targeted CAR-T cells (secreting IL-7 and CCL19) are expected to be more durable and effective against HCC and produce tumor-specific memory, to provide a preclinical research basis for future clinical trials.


Subject(s)
Animals , Carcinoma, Hepatocellular , Cell Line, Tumor , Chemokine CCL19 , Metabolism , Glypicans , Metabolism , HEK293 Cells , Humans , Interleukin-7 , Metabolism , Lentivirus , Genetics , Liver Neoplasms , Mice , Receptors, Chimeric Antigen , Metabolism , T-Lymphocytes , Metabolism , Xenograft Model Antitumor Assays
11.
Frontiers of Medicine ; (4): 701-710, 2020.
Article in English | WPRIM | ID: wpr-880968

ABSTRACT

Chimeric antigen receptor T cell (CAR T) therapies have achieved unprecedented efficacy in B-cell tumors, prompting scientists and doctors to exploit this strategy to treat other tumor types. Acute myeloid leukemia (AML) is a group of heterogeneous myeloid malignancies. Relapse remains the main cause of treatment failure, especially for patients with intermediate or high risk stratification. Allogeneic hematopoietic stem cell transplantation could be an effective therapy because of the graft-versus-leukemia effect, which unfortunately puts the patient at risk of serious complications, such as graft-versus-host disease. Although the identification of an ideal target antigen for AML is challenging, CAR T therapy remains a highly promising strategy for AML patients, particularly for those who are ineligible to receive a transplantation or have positive minimal residual disease. In this review, we focus on the most recent and promising advances in CAR T therapies for AML.


Subject(s)
Hematopoietic Stem Cell Transplantation , Humans , Immunotherapy, Adoptive , Leukemia, Myeloid, Acute/therapy , Receptors, Chimeric Antigen , T-Lymphocytes
12.
Frontiers of Medicine ; (4): 711-725, 2020.
Article in English | WPRIM | ID: wpr-880967

ABSTRACT

The combination of the immunotherapy (i.e., the use of monoclonal antibodies) and the conventional chemotherapy increases the long-term survival of patients with lymphoma. However, for patients with relapsed or treatment-resistant lymphoma, a novel treatment approach is urgently needed. Chimeric antigen receptor T (CAR-T) cells were introduced as a treatment for these patients. Based on recent clinical data, approximately 50% of patients with relapsed or refractory B-cell lymphoma achieved complete remission after receiving the CD19 CAR-T cell therapy. Moreover, clinical data revealed that some patients remained in remission for more than two years after the CAR-T cell therapy. Other than the CD19-targeted CAR-T, the novel target antigens, such as CD20, CD22, CD30, and CD37, which were greatly expressed on lymphoma cells, were studied under preclinical and clinical evaluations for use in the treatment of lymphoma. Nonetheless, the CAR-T therapy was usually associated with potentially lethal adverse effects, such as the cytokine release syndrome and the neurotoxicity. Therefore, optimizing the structure of CAR, creating new drugs, and combining CAR-T cell therapy with stem cell transplantation are potential solutions to increase the effectiveness of treatment and reduce the toxicity in patients with lymphoma after the CAR-T cell therapy.


Subject(s)
Cell- and Tissue-Based Therapy , Humans , Immunotherapy, Adoptive , Lymphoma/therapy , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen
13.
Frontiers of Medicine ; (4): 786-791, 2020.
Article in English | WPRIM | ID: wpr-880947

ABSTRACT

Factors associated with complete and durable remissions after anti-CD19 chimeric antigen receptor T (CAR-T) cell immunotherapy for relapsed or refractory non-Hodgkin lymphoma (r/r NHL) have not been well characterized. In this study, we found that the different sites of extranodal involvement may affect response, overall survival (OS), and progression-free survival (PFS) in patients with r/r NHL treated with anti-CD19 CAR-T cells. In a cohort of 32 treated patients, 12 (37.5%) and 8 (25%) patients exhibited soft tissue lymphoma and bone marrow (BM) infiltrations, respectively, and 13 (41%) patients exhibited infiltration at other sites. The factors that may affect prognosis were identified through multivariable analysis. As an independent risk factor, soft tissue infiltration was the only factor significantly correlated with adverse prognosis (P < 0.05), whereas other factors did not reach statistical significance. Furthermore, the site of extranodal tumor infiltration significantly and negatively affected OS and PFS in patients with r/r NHL treated with anti-CD19 CAR-T cell therapy. PFS and OS in patients with BM involvement were not significantly different from those of patients with lymph node involvement alone. Thus, anti-CD19 CAR-T cell therapy may improve the prognosis of patients with BM infiltration.


Subject(s)
Cell- and Tissue-Based Therapy , Humans , Immunotherapy, Adoptive , Lymphoma, Non-Hodgkin/therapy , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen
14.
Frontiers of Medicine ; (4): 811-815, 2020.
Article in English | WPRIM | ID: wpr-880944

ABSTRACT

Mantle cell lymphoma (MCL) is a distinct histological type of B-cell lymphoma with a poor prognosis. Several agents, such as proteasome inhibitors, immunomodulatory drugs, and inhibitors of B cell lymphoma-2 and Bruton's tyrosine kinase have shown efficacy for relapsed or refractory (r/r) MCL but often have short-term responses. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a novel treatment modality for r/r non-Hodgkin's lymphoma. However, long-term safety and tolerability associated with CAR T-cell therapy are not defined well, especially in MCL. In this report, we described a 70-year-old patient with r/r MCL with 48-month duration of follow-up who achieved long-term remission after CAR T-cell therapy. CAR T-cell-related toxicities were also mild and tolerated well even in this elderly patient. This report suggested that CAR T-cell therapy is a promising treatment modality for patients with MCL, who are generally elderly and have comorbid conditions.


Subject(s)
Adult , Aged , Cell- and Tissue-Based Therapy , Humans , Immunotherapy, Adoptive , Lymphoma, Mantle-Cell/therapy , Neoplasm Recurrence, Local , Receptors, Chimeric Antigen
15.
Article in English | WPRIM | ID: wpr-772938

ABSTRACT

The activation mechanism of chimeric antigen receptor (CAR)-engineered T cells may differ substantially from T cells carrying native T cell receptor, but this difference remains poorly understood. We present the first comprehensive portrait of single-cell level transcriptional and cytokine signatures of anti-CD19/4-1BB/CD28/CD3ζ CAR-T cells upon antigen-specific stimulation. Both CD4 helper T (T) cells and CD8 cytotoxic CAR-T cells are equally effective in directly killing target tumor cells and their cytotoxic activity is associated with the elevation of a range of T1 and T2 signature cytokines, e.g., interferon γ, tumor necrotic factor α, interleukin 5 (IL5), and IL13, as confirmed by the expression of master transcription factor genes TBX21 and GATA3. However, rather than conforming to stringent T1 or T2 subtypes, single-cell analysis reveals that the predominant response is a highly mixed T1/T2 function in the same cell. The regulatory T cell activity, although observed in a small fraction of activated cells, emerges from this hybrid T1/T2 population. Granulocyte-macrophage colony stimulating factor (GM-CSF) is produced from the majority of cells regardless of the polarization states, further contrasting CAR-T to classic T cells. Surprisingly, the cytokine response is minimally associated with differentiation status, although all major differentiation subsets such as naïve, central memory, effector memory, and effector are detected. All these suggest that the activation of CAR-engineered T cells is a canonical process that leads to a highly mixed response combining both type 1 and type 2 cytokines together with GM-CSF, supporting the notion that polyfunctional CAR-T cells correlate with objective response of patients in clinical trials. This work provides new insights into the mechanism of CAR activation and implies the necessity for cellular function assays to characterize the quality of CAR-T infusion products and monitor therapeutic responses in patients.


Subject(s)
Antigens , Metabolism , CTLA-4 Antigen , Metabolism , Cell Differentiation , Cell Line , Cytokines , Metabolism , Cytotoxicity, Immunologic , Granulocyte-Macrophage Colony-Stimulating Factor , Pharmacology , Humans , Lymphocyte Activation , Allergy and Immunology , Lymphocyte Subsets , Metabolism , Phenotype , Proteomics , Receptors, Chimeric Antigen , Metabolism , Single-Cell Analysis , Methods , T-Lymphocytes, Regulatory , Metabolism , Th1 Cells , Cell Biology , Th2 Cells , Cell Biology , Transcription, Genetic , Up-Regulation
16.
Chinese Journal of Biotechnology ; (12): 2339-2349, 2019.
Article in Chinese | WPRIM | ID: wpr-781634

ABSTRACT

Chimeric antigen receptor T (CAR-T) cell therapy, which adoptively transfers engineered T cells expressing synthetic receptors to target specific antigens, has achieved great clinical success in treating hematological malignancies. Though FDA has approved two CAR-T products, CAR-T therapy can cause some side effects, such as cytokine release syndrome (CRS), neurotoxicity and B cell aplasia. Meanwhile, lacking tumor specific antigen and the suppressive tumor environment limit the efficacy of CAR-T therapy in solid tumor. This review focuses on the structural components, clinical applications and synthetic biology approaches on CAR-T cell design, and summarizes the challenges and perspectives of CAR-T therapy as a revolutionary cancer immunotherapy.


Subject(s)
Cell- and Tissue-Based Therapy , Child , Humans , Immunotherapy , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , T-Lymphocytes
17.
Journal of Experimental Hematology ; (6): 1040-1045, 2019.
Article in Chinese | WPRIM | ID: wpr-771842

ABSTRACT

OBJECTIVE@#To study the long-term efficacy and safety of CD19 chimeric antigen receptor T cells (CAR-T) in the treatment of relapsed patients with B-cell acute lymphoblastic leukemia (ALL) after allogeneic hematopoietic stem cell transplantation (allo-HSCT).@*METHODS@#A total of 7 patients with B-cell ALL relapsed after allo-HSCT were treated with CD19 CAR-T cells from September 2015 to March 2018. Among them, 6 had hematological recurrence and 1 had positive of MRD. They all were treated with a single infusion of CAR-T cells. FC chemotherapy regimen was administered before transfusion. The median number of CAR-T cells transfused was 6.0 (range 4.0-8.6) )×10/kg. Long-term efficacy and toxicity were evaluated.@*RESULTS@#Bone marrow examination performed at d 30 after CAR-T infusion showed that all 7 patients achieved complete remission and MRD negative, grade I CRS for 1 case and grade II CRS for 6 cases, two of them had mild neurotoxicity, which was controlled by treatment. Two patients presented grade VI intestinal GVHD after CAR-T infusion. The median follow-up time was 18 months (range 12-42). Follow-up showed that two patients relapsed at 9 months and 14 months after treatment, out of 2 patients one died of progressive disease and the other reachived the hematological remission, but MRD was positive after CD22 CAR-T cell therapy. At present, five patients are disease-free survival, moreover showed complete donor chimerism. One year after CAR-T cell therapy, the results of immune reconstitution showed that CD4 level was more than 300×10/L in 5 patients who disease-free survived. Among them, 3 patients had poor recovery of immunoglobulin and received gamma globulin replacement therapy.@*CONCLUSION@#All patients are followed up for at least one year. The preliminary efficacy and safety are satisfactory. CAR-T cell infusion is an effective method for the treatment of B-ALL recurrence after allo-HSCT.


Subject(s)
B-Lymphocytes , Hematopoietic Stem Cell Transplantation , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , T-Lymphocytes
18.
Frontiers of Medicine ; (4): 3-11, 2019.
Article in English | WPRIM | ID: wpr-771266

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. This malignancy is associated with poor prognosis and high mortality. Novel approaches for prolonging the overall survival of patients with advanced HCC are urgently needed. The antitumor activities of adoptive cell transfer therapy (ACT), such as strategies based on tumor-infiltrating lymphocytes and cytokine-induced killer cells, are more effective than those of traditional strategies. Currently, chimeric antigen receptor T-cell (CAR-T) immunotherapy has achieved numerous breakthroughs in the treatment of hematological malignancies, including relapsed or refractory lymphoblastic leukemia and refractory large B-cell lymphoma. Nevertheless, this approach only provides a modest benefit in the treatment of solid tumors. The clinical results of CAR-T immunotherapy for HCC that could be obtained at present are limited. Some published studies have demonstrated that CAR-T could inhibit tumor growth and cause severe side effects. In this review, we summarized the current application of ACT, the challenges encountered by CAR-T technology in HCC treatment, and some possible strategies for the future direction of immunotherapeutic research.


Subject(s)
Adoptive Transfer , Methods , Carcinoma, Hepatocellular , Allergy and Immunology , Therapeutics , Humans , Immunotherapy, Adoptive , Methods , Liver Neoplasms , Allergy and Immunology , Therapeutics , Lymphocytes, Tumor-Infiltrating , Cell Biology , Randomized Controlled Trials as Topic , Receptors, Chimeric Antigen , T-Lymphocytes , Cell Biology
19.
Frontiers of Medicine ; (4): 57-68, 2019.
Article in English | WPRIM | ID: wpr-771260

ABSTRACT

Lung cancer is the most common incident cancer and the leading cause of cancer death. In recent years, the development of tumor immunotherapy especially chimeric antigen receptor T (CAR-T) cell has shown a promising future. Epidermal growth factor receptor variant III (EGFRvIII) is a tumor-specific mutation expressed in various types of tumors and has been detected in non-small cell lung cancer with a mutation rate of 10%. Thus, EGFRvIII is a potential antigen for targeted lung cancer therapy. In this study, CAR vectors were constructed and transfected into virus-packaging cells. Then, activated T cells were infected with retrovirus harvested from stable virus-producing single clone cell lines. CAR expression on the surfaces of the T cells was detected by flow cytometry and Western blot. The function of CAR-T targeting EGFRvIII was then evaluated. The EGFRvIII-CAR vector was successfully constructed and confirmed by DNA sequencing. A stable virus-producing cell line was produced from a single clone by limited dilution. The culture conditions for the cell line, including cell density, temperature, and culture medium were optimized. After infection with retrovirus, CAR was expressed on more than 90% of the T cells. The proliferation of CAR-T cells were induced by cytokine and specific antigen in vitro. More importantly, EGFRvIII-CART specifically and efficiently recognized and killed A549-EGFRvIII cells with an effector/target ratio of 10:1 by expressing and releasing cytokines, including perforin, granzyme B, IFN-γ, and TNF-α. The in vivo study indicated that the metastasis of A549-EGFRvIII cells in mice were inhibited by EGFRvIII-CART cells, and the survival of the mice was significantly prolonged with no serious side effects. EGFRvIII-CART showed significantly efficient antitumor activity against lung cancer cells expressing EGFRvIII in vivo and in vitro. Therefore, CAR-T targeting EGFRvIII is a potential therapeutic strategy in preventing recurrence and metastasis of lung cancer after surgery.


Subject(s)
Animals , Carcinoma, Non-Small-Cell Lung , Allergy and Immunology , Therapeutics , Cell Line, Tumor , ErbB Receptors , Allergy and Immunology , Metabolism , Female , Humans , Immunotherapy, Adoptive , Methods , Lung Neoplasms , Allergy and Immunology , Therapeutics , Mice , Mice, Inbred NOD , Receptors, Chimeric Antigen , Allergy and Immunology , T-Lymphocytes , Allergy and Immunology , Xenograft Model Antitumor Assays
20.
Journal of Experimental Hematology ; (6): 1316-1320, 2019.
Article in Chinese | WPRIM | ID: wpr-775722

ABSTRACT

Abstract  Chimeric antigen receptor-T cell(CAR-T) is a kind of genetically engineered T cells that can express tumor antigen-specific receptors on its surface, and the modified T cells can be used for cancer therapy through targeting malignant tumor cells with its specific receptor and killing tumor cells with its cytotoxicity. CAR-T has been successfully applied to treat various hematological malignancies, such as ALL, CLL, NHL and MM. It is a feasible treatment for relapsed and refractory multiple myeloma (RRMM). The achievements of CAR-T in clinical trials have been widely reported, which is expected to be a therapy to prolong patients survival. In this review, the clinical application of CAR-T in the treatment of RRMM from the following aspects:different types of CAR-T and its curative efficacy, adverse effects, opportunities and challenges are summarized beriefly.


Subject(s)
Humans , Immunotherapy, Adoptive , Multiple Myeloma , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL