Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.576
Filter
1.
Acta Physiologica Sinica ; (6): 253-262, 2021.
Article in Chinese | WPRIM | ID: wpr-878254

ABSTRACT

The aim of this study was to investigate the effects of dexmedetomidine (Dex) on hepatic ischemia/reperfusion injury (HIRI) and the underlying mechanism. The in vitro HIRI was induced by culturing HL-7702 cells, a human hepatocyte cell line, under 24 h of hypoxia and 12 h of reoxygenation. Quantitative real time PCR (qRT-PCR) and Western blot were performed to detect the expression levels of long non-coding RNA MALAT1, microRNA-126-5p (miR-126-5p) and high mobility group box-1 (HMGB1). Bioinformatics prediction and double luciferase assay were used to verify the targeting relationship between miR-126-5p and MALAT1, HMGB1. Reactive oxygen species (ROS), malondialdehyde (MDA) and ATP levels in culture medium were detected by corresponding kits. The results showed that Dex significantly reduced the levels of ROS and MDA, but increased the level of ATP in HL-7702 cells with HIRI. HIRI up-regulated the expression levels of MALAT1 and HMGB1, and down-regulated the level of miR-126-5p. Dex reversed these effects of HIRI. Furthermore, Dex inhibited HIRI-induced cellular apoptosis, whereas MALAT1 reversed the effect of Dex. This inhibitory effect of Dex could be restored by up-regulation of miR-126-5p. The results suggest that Dex protects hepatocytes from HIRI via regulating MALAT1/miR-126-5p/HMGB1 axis.


Subject(s)
Dexmedetomidine/pharmacology , HMGB1 Protein/genetics , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Reperfusion Injury/genetics
2.
Acta Physiologica Sinica ; (6): 17-25, 2021.
Article in Chinese | WPRIM | ID: wpr-878231

ABSTRACT

This study was aimed to determine the effect of acute cerebral ischemia on the protein expression level of silent mating type information regulator 2 homolog 3 (Sirt3) in the neurons and clarify the pathological role of Sirt3 in acute cerebral ischemia. The mice with middle cerebral artery occlusion (MCAO) and primary cultured rat hippocampal neurons with oxygen glucose deprivation (OGD) were used as acute cerebral ischemia models in vivo and in vitro, respectively. Sirt3 overexpression was induced in rat hippocampal neurons by lentivirus transfection. Western blot was utilized to measure the changes in Sirt3 protein expression level. CCK8 assay was used to detect cell viability. Immunofluorescent staining was used to detect mitochondrial function. Transmission electron microscope was used to detect mitochondrial autophagy. The results showed that, compared with the normoxia group, hippocampal neurons from OGD1 h/reoxygenation 2 h (R2 h) and OGD1 h/R12 h groups exhibited down-regulated Sirt3 protein expression levels. Compared with contralateral normal brain tissue, the ipsilateral penumbra region from MCAO1 h/reperfusion 24 h (R24 h) and MCAO1 h/R72 h groups exhibited down-regulated Sirt3 protein expression levels, while there was no significant difference between the Sirt3 protein levels on both sides of sham group. OGD1 h/R12 h treatment damaged mitochondrial function, activated mitochondrial autophagy and reduced cell viability in hippocampal neurons, whereas Sirt3 over-expression attenuated the above damage effects of OGD1 h/R12 h treatment. These results suggest that acute cerebral ischemia results in a decrease in Sirt3 protein level. Sirt3 overexpression can alleviate acute cerebral ischemia-induced neural injuries by improving the mitochondrial function. The current study sheds light on a novel strategy against neural injuries caused by acute cerebral ischemia.


Subject(s)
Animals , Brain Ischemia , Down-Regulation , Infarction, Middle Cerebral Artery , Mice , Mitochondria , Neurons/metabolism , Rats , Reperfusion Injury , Sirtuin 3/metabolism , Sirtuins
3.
Article in Chinese | WPRIM | ID: wpr-877674

ABSTRACT

OBJECTIVE@#To observe the effect of electroacupuncture (EA) pretreatment on inflammatory reaction, apoptosis and expression of Yes-associated protein (YAP) of ischemic penumbra of cerebral cortex in cerebral ischemia reperfusion injury rats, and to explore the possible mechanism of its neuroprotection effect.@*METHODS@#A total of 84 SD rats were randomized into a sham operation group (12 rats), a model group (18 rats), an EA group (18 rats), an EA+YAP virus transfection group (18 rats) and an EA+virus control group (18 rats). Except for the sham operation group, thread embolization method was adopted to establish the middle cerebral artery occlusion (MCAO) model in rats of the other groups. EA was applied at "Baihui" (GV 20) and "Dazhui" (GV 14) for 30 min in the 3 EA intervention groups 2 h before model establishment, disperse-dense wave, 2 Hz/15 Hz in frequency and 1 mA in intensity. Adenovirus transfection technique was used to induce gene silencing of YAP in the EA+YAP virus transfection group, and adenovirus vectors was injected as negative control in the EA+virus control group 4 d before model establishment. Twenty-four hours after model establishment, neurological function score was evaluated, the relative cerebral infarction area was observed by TTC staining, the apoptosis in the ischemic penumbra of cerebral cortex was detected by TUNEL staining, the levels of inflammatory factors IL-1β, IL-6 and TNF-α in the ischemic penumbra of cerebral cortex was detected by ELISA method, the expression of YAP was detected by Western blot and immunofluorescence.@*RESULTS@#Compared with the sham operation group, the expression of YAP was increased in the model group (@*CONCLUSION@#Electroacupuncture pretreatment can effectively improve the ischemia reperfusion injury, its mechanism may be related to up-regulating the expression of YAP in the ischemic penumbra of cerebral cortex and relieving the apoptosis and inflammatory reaction.


Subject(s)
Animals , Brain Ischemia/therapy , Electroacupuncture , Infarction, Middle Cerebral Artery , Rats , Rats, Sprague-Dawley , Reperfusion Injury/therapy
4.
Braz. j. med. biol. res ; 54(4): e10498, 2021. graf
Article in English | LILACS | ID: biblio-1153543

ABSTRACT

It is known that neuronal apoptosis contributes to pathology of cerebral ischemia injury. Zonisamide (ZNS) has shown anti-apoptosis effects in recent studies. The present study investigated whether the anti-apoptotic effect can account for the neuroprotective action of ZNS on cerebral ischemia. Neuronal cells were maintained under oxygen-glucose deprivation conditions to simulate cerebral ischemia and treated with ZNS simultaneously. The apoptosis of the cells and expression of apoptosis-related proteins were investigated by flow cytometry and western blot analysis, respectively. A cerebral ischemia mouse model was created via middle cerebral artery occlusion, and the mice were treated with ZNS. Neurological deficit scores and infarct volumes of the cerebral ischemia mice were measured. The apoptosis status of the neuronal cells was evaluated by TUNEL staining. In vitro, the ZNS treatment inhibited both the apoptosis of the neuronal cells and apoptosis-related protein expression (caspase-3, caspase-8, and calpain-1) induced by the oxygen-glucose deprivation. The anti-apoptosis effect of ZNS could occur through the blocking of reactive oxygen species. Moreover, ZNS treatment significantly ameliorated neurological deficits and reduced infarct volumes in the cerebral ischemia mice model. In this study, ZNS exerted neuroprotective effects by inhibition of apoptosis in neuronal cells in cerebral ischemia. Therefore, ZNS might be a promising therapy for cerebral ischemia.


Subject(s)
Animals , Rats , Reperfusion Injury , Brain Ischemia/drug therapy , Neuroprotective Agents/pharmacology , Apoptosis , Infarction, Middle Cerebral Artery/drug therapy , Zonisamide/pharmacology
5.
Braz. j. med. biol. res ; 54(10): e11028, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285653

ABSTRACT

Engeletin is a natural derivative of Smilax glabra rhizomilax that exhibits anti-inflammatory activity and suppresses lipid peroxidation. In the present study, we sought to elucidate the mechanistic basis for the neuroprotective and pro-angiogenic activity of engeltin in a human umbilical vein endothelial cells (HUVECs) oxygen-glucose deprivation and reoxygenation (OGD/R) model system and a middle cerebral artery occlusion (MCAO) rat model of cerebral ischemia and reperfusion injury. These analyses revealed that engeletin (10, 20, or 40 mg/kg) was able to reduce the infarct volume, increase cerebral blood flow, improve neurological function, and bolster the expression of vascular endothelial growth factor (VEGF), vasohibin-2 (Vash-2), angiopoietin-1 (Ang-1), phosphorylated human angiopoietin receptor tyrosine kinase 2 (p-Tie2), and platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) in MCAO rats. Similarly, engeletin (100, 200, or 400 nM) markedly enhanced the migration, tube formation, and VEGF expression of HUVECs in an OGD/R model system, while the VEGF receptor (R) inhibitor axitinib reversed the observed changes in HUVEC tube formation activity and Vash-2, VEGF, and CD31 expression. These data suggested that engeletin exhibited significant neuroprotective effects against cerebral ischemia and reperfusion injury in rats, and improved cerebrovascular angiogenesis by modulating the VEGF/vasohibin and Ang-1/Tie-2 pathways.


Subject(s)
Animals , Rats , Reperfusion Injury/prevention & control , Brain Ischemia/prevention & control , Infarction, Middle Cerebral Artery , Endothelial Cells , Flavonols , Angiopoietin-1 , Vascular Endothelial Growth Factors , Vascular Endothelial Growth Factor A , Glycosides
6.
Braz. j. med. biol. res ; 54(7): e10520, 2021. graf
Article in English | LILACS | ID: biblio-1249321

ABSTRACT

Ischemia-reperfusion injury (IRI) has brought attention to flap failure in reconstructive surgery. To improve the prognosis of skin transplantation, we performed experimental IRI by surgical obstruction of blood flow and used sodium ferulate (SF) to prevent IRI in rats. After SF treatment, the morphological and histological changes of the skin flaps were observed by H&E and Masson's trichrome staining. We also detected the expression levels of COX-1, HO-1, and Ki67 by immunohistochemical and western blot analysis. Moreover, enzyme-linked immunosorbent assay was used to identify the content of tumor necrosis factor (TNF)-α, myeloperoxidase (MPO), malondialdehyde (MDA), and nitric oxide (NO) in peripheral blood and skin tissue. Compared with the model group, SF treatment significantly improved the recovered flap area (%) and promoted collagen synthesis. Cyclooxygenase-2 (COX-2) expression was significantly inhibited by heme oxygenase-1 (HO-1) induction after SF treatment. Furthermore, SF significantly inhibited the levels of TNF-α in peripheral blood, MPO and MDA in the skin tissue, and the increased synthesis of NO. Our results showed the protective effects of SF on IRI after flap transplantation and we believe that the protective effects of SF was closely related to the alleviation of the inflammatory response and the inhibition of the oxidative stress injury.


Subject(s)
Animals , Rats , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , Oxidative Stress , Coumaric Acids/pharmacology , Anti-Inflammatory Agents/pharmacology
7.
Clinics ; 76: e2683, 2021. graf
Article in English | LILACS | ID: biblio-1249591

ABSTRACT

OBJECTIVES: Ischemia and reperfusion (I/R) in the intestine could lead to severe endothelial injury, compromising intestinal motility. Reportedly, estradiol can control local and systemic inflammation induced by I/R injury. Thus, we investigated the effects of estradiol treatment on local repercussions in an intestinal I/R model. METHODS: Rats were subjected to ischemia via the occlusion of the superior mesenteric artery (45 min) followed by reperfusion (2h). Thirty minutes after ischemia induction (E30), 17β-estradiol (E2) was administered as a single dose (280 μg/kg, intravenous). Sham-operated animals were used as controls. RESULTS: I/R injury decreased intestinal motility and increased intestinal permeability, accompanied by reduced mesenteric endothelial nitric oxide synthase (eNOS) and endothelin (ET) protein expression. Additionally, the levels of serum injury markers and inflammatory mediators were elevated. Estradiol treatment improved intestinal motility, reduced intestinal permeability, and increased eNOS and ET expression. Levels of injury markers and inflammatory mediators were also reduced following estradiol treatment. CONCLUSION: Collectively, our findings indicate that estradiol treatment can modulate the deleterious intestinal effects of I/R injury. Thus, estradiol mediates the improvement in gut barrier functions and prevents intestinal dysfunction, which may reduce the systemic inflammatory response.


Subject(s)
Animals , Male , Rats , Reperfusion Injury/prevention & control , Reperfusion Injury/drug therapy , Estradiol/pharmacology , Permeability , Reperfusion , Estrogens , Intestines , Ischemia
8.
Clinics ; 76: e2513, 2021. graf
Article in English | LILACS | ID: biblio-1249580

ABSTRACT

OBJECTIVES: The current study compared the impact of pretreatment with melatonin and N-acetylcysteine (NAC) on the prevention of rat lung damage following intestinal ischemia-reperfusion (iIR). METHODS: Twenty-eight Wistar rats were subjected to intestinal ischemia induced by a 60 min occlusion of the superior mesenteric artery, followed by reperfusion for 120 min. Animals were divided into the following groups (n=7 per group): sham, only abdominal incision; SS+iIR, pretreated with saline solution and iIR; NAC+iIR, pretreated with NAC (20 mg/kg) and iIR; MEL+iIR, pretreated with melatonin (20 mg/kg) and iIR. Oxidative stress and inflammatory mediators were measured and histological analyses were performed in the lung tissues. RESULTS: Data showed a reduction in malondialdehyde (MDA), myeloperoxidase (MPO), and TNF-alpha in the animals pretreated with NAC or MEL when compared to those treated with SS+iIR (p<0.05). An increase in superoxide dismutase (SOD) levels in the NAC- and MEL-pretreated animals as compared to the SS+iIR group (34±8 U/g of tissue; p<0.05) was also observed. TNF-α levels were lower in the MEL+iIR group (91±5 pg/mL) than in the NAC+iIR group (101±6 pg/mL). Histological analysis demonstrated a higher lung lesion score in the SS+iIR group than in the pretreated groups. CONCLUSION: Both agents individually provided tissue protective effect against intestinal IR-induced lung injury, but melatonin was more effective in ameliorating the parameters analyzed in this study.


Subject(s)
Animals , Rats , Reperfusion Injury/prevention & control , Acute Lung Injury/etiology , Acute Lung Injury/prevention & control , Melatonin/therapeutic use , Acetylcysteine/therapeutic use , Reperfusion , Rats, Wistar , Ischemia
9.
Braz. j. med. biol. res ; 54(11): e9941, 2021. tab, graf
Article in English | LILACS | ID: biblio-1339454

ABSTRACT

Acute kidney injury (AKI) is a common complication in seriously ill patients, while renal ischemia-reperfusion (I/R) injury is the most frequent event in this oxidative renal injury. N-acetylcysteine (NAC) is a small molecule containing a thiol group that has antioxidant properties, promoting detoxification and acting directly as a free radical scavenger. In this study, the protective effect of NAC was investigated in short-term (30 min) and long-term (45 min) ischemic AKI. This was achieved via clamping of the renal artery for 30 or 45 min in Wistar rats to induce I/R injury. AKI worsened with a longer period of ischemia (45 compared to 30 min) due to probable irreversible damage. Preconditioning with NAC in short-term ischemia improved renal blood flow and increased creatinine clearance by reducing oxidative metabolites and increasing antioxidant capacity. Otherwise, NAC did not change these parameters in the long-term ischemia. Therefore, this study demonstrated that the period of ischemia determines the severity of the AKI, and NAC presented antioxidant effects in short-term ischemia but not in long-term ischemia, confirming that there is a possible therapeutic window for its renoprotective effect.


Subject(s)
Humans , Animals , Rats , Reperfusion Injury/prevention & control , Acute Kidney Injury/prevention & control , Acetylcysteine/therapeutic use , Rats, Wistar , Oxidative Stress , Kidney
10.
Rev. bras. cir. cardiovasc ; 35(4): 512-520, July-Aug. 2020. tab, graf
Article in English | LILACS, SES-SP | ID: biblio-1137306

ABSTRACT

Abstract Introduction: Ischemia-associated mortality caused by aortic cross-clamps, as in ruptured abdominal aorta aneurysm surgeries, and reperfusion following their removal represent some of the main emergency conditions in cardiovascular surgery. The purpose of our study was to examine the potential protective effect of tea grape against aortic occlusion-induced lung injury using biochemical, histopathological, immunohistochemical, and quantitative analyses. Methods: Thirty-two male Sprague-Dawley rats were randomly assigned into four groups: control (healthy), glycerol + ischemia/reperfusion (I/R) (sham), I/R, and I/R + tea grape. Results: Following aortic occlusion, we observed apoptotic pneumocytes, thickening in the alveolar wall, edematous areas in interstitial regions, and vascular congestion. We also observed an increase in pulmonary malondialdehyde (MDA) levels and decrease in pulmonary glutathione (GSH). However, tea grape reduced apoptotic pneumocytes, edema, vascular congestion, and MDA levels, while increased GSH levels in lung tissue. Conclusion: Our findings suggest that tea grape is effective against aortic occlusion-induced lung injury by reducing oxidative stress and apoptosis.


Subject(s)
Animals , Male , Rats , Reperfusion Injury/prevention & control , Vitis , Lung Injury/etiology , Lung Injury/prevention & control , Aorta, Abdominal/surgery , Tea , Rats, Sprague-Dawley , Lung
11.
Rev. bras. cir. cardiovasc ; 35(4): 490-497, July-Aug. 2020. tab, graf
Article in English | LILACS, SES-SP | ID: biblio-1137292

ABSTRACT

Abstract Objective: To examine the biochemical and histopathological renal effects of ischemia/reperfusion (I/R) injury using a ruptured abdominal aortic aneurysm (RAAA) model in rats and to investigate the potential protective effects of whortleberry (Vaccinium myrtillus). Methods: Thirty-two male Sprague-Dawley rats were randomly assigned into four groups - control, sham (I/R+glycerol), I/R, and I/R+whortleberry. Midline laparotomy alone was performed in the control group. Atraumatic abdominal clamps were attached under anesthesia to the abdominal aorta beneath the level of the renal artery in the groups subjected to I/R. Sixty-minute reperfusion was established one hour after ischemia. The sham group received five intraperitoneal doses of glycerol five days before I/R. The I/R+whortleberry group received a single intraperitoneal 50 mg/kg dose diluted with saline solution five days before I/R. All animals were finally euthanized by cervical dislocation following 60-min reperfusion. Results: Increases were observed in malondialdehyde (MDA) levels and tubular necrosis scores (TNS) in thin kidney tissues and in numbers of apoptotic renal tubule cells, together with a decrease in glutathione (GSH) levels, in sham and I/R groups. In contrast, we observed a decrease in MDA levels, TNS, and numbers of apoptotic renal tubule cells, and an increase in GSH levels with whortleberry treatment compared to the I/R group. Conclusion: Our findings suggest that whortleberry may be effective against acute kidney injury by reducing oxidative stress and apoptosis.


Subject(s)
Animals , Male , Rats , Reperfusion Injury/prevention & control , Aortic Aneurysm, Abdominal/prevention & control , Vaccinium myrtillus , Aortic Rupture , Rats, Wistar , Rats, Sprague-Dawley , Kidney , Models, Theoretical
12.
Int. j. morphol ; 38(3): 804-810, June 2020. tab, graf
Article in English | LILACS | ID: biblio-1098323

ABSTRACT

Honey is a natural antioxidant that its protective effects have been proven against ischemia-reperfusion (IR) injury. The aim of this study was to evaluate the ameliorative effect of Persian Honey, Apis mellifera meda skorikov, on gastrocnemius muscle IR injury. Eighty adult male Sprague-Dawley rats weighing 250-300 g were used. They were divided into ten groups (N=8 per group). The ischemia was conducted with a silk suture 6-0 using the slipknot technique. All groups were rendered in ischemic for 3 h, and reperfused for various times of 3 days (3-day reperfusion), 7 days (7-day reperfusion), 14 days (14-day reperfusion), and 28 days (28-day reperfusion). Half of the groups had experimental honey (5 %) treatment immediately after ischemia. After reperfusion, the rats, based on the grouping, were killed with high doses of anesthetic, and the gastrocnemius muscles were removed and fixed. After the tissue processing, the evaluation of edema and mast cells infiltration was performed with hematoxylin-eosin and toluidine blue staining, respectively. TNF-α was detected with immunohistochemistry method. The amount of TNF-α as an index of acute inflammatory except the 3rd day significantly decreased on the other day of reperfusion (7th, 147th and 287th days). The mast cells infiltration was significantly decreased on 77th and 147th days. The tissue edema was decreased significantly in honey administrated group in the comparison with placebo groups. Honey administration can reduce damage caused by ischemia-reperfusion in the rat gastrocnemius muscle.


La miel es un antioxidante natural; sus efectos protectores han sido probados contra la lesión por isquemiareperfusión (IR). El objetivo de este estudio fue evaluar el efecto de mejora de la miel persa Apis mellifera meda skorikov, en la lesión por IR del músculo gastrocnemio. Se utilizaron 80 ratas Sprague-Dawley macho adultas con un peso entre 250 y 300 g divididas en diez grupos (N = 8 por grupo). La isquemia se realizó con una sutura de seda 6-0 utilizando la técnica slipknot permaneciendo isquémicos durante 3 h. La reperfusión se realizó durante varios tiempos de 3 días, 7 días (reperfusión de 7 días), 14 días (reperfusión de 14 días) y 28 días (28 días reperfusión). La mitad de los grupos recibió tratamiento experimental con miel (5 %) inmediatamente después de la isquemia. Después de la reperfusión, las ratas, fueron sacrificadas con altas dosis de anestésico, y los músculos gastrocnemios fueron removidos y fijados. Después de procesar el tejido, se realizó la evaluación del edema y la infiltración de mastocitos se realizó con tinción de hematoxilina-eosina y azul de toluidina, respectivamente. TNF-α se detectó con el método de inmunohistoquímica. La cantidad de TNF-α como índice de inflamación inflamatoria aguda, excepto en el tercer día, disminuyó significativamente al día siguiente de la reperfusión (7, 14 y 28 días). La infiltración de mastocitos disminuyó significativamente a los 7 y 14 días. El edema tisular disminuyó significativamente en el grupo administrado con miel en comparación con los grupos placebo. El tratamiento con miel puede reducir el daño causado por la isquemia-reperfusión en el músculo gastrocnemio de la rata.


Subject(s)
Animals , Male , Rats , Reperfusion Injury/complications , Apis mellifica/administration & dosage , Muscle, Skeletal/injuries , Honey , Immunohistochemistry , Reperfusion Injury/drug therapy , Apis mellifica/pharmacology , Rats, Sprague-Dawley , Muscle, Skeletal/drug effects , Protective Agents
13.
CorSalud ; 12(2): 214-218,
Article in Spanish | LILACS | ID: biblio-1133612

ABSTRACT

RESUMEN La N-acetilcisteína es conocida en varias especialidades médicas. Su empleo en cardiología se ha incrementado desde hace décadas, por su potencial para disminuir el impacto del daño por reperfusión en el infarto miocárdico agudo. Pero el espectro de sus efectos es aún mayor, tiene acciones sobre los radicales de oxígeno, con un papel protector, por la vía de los grupos sulfhidrilos de regiones importantes de la membrana celular, los cuales interfieren y tienen efecto en la función endotelial y en los procesos complejos de adhesión como efectos secundarios; así como otros fenómenos del compartimento extravascular. Estos procesos están estrechamente relacionados con el aparato cardiovascular.


ABSTRACT N-acetylcysteine is known in a number of medical specialties and its ability to decrease the impact of reperfusion injury in acute myocardial infarction has boosted its use in cardiology over the past decades. N-acetylcysteine has a far-reaching range of effects since it functions as a protective agent against oxygen radicals through sulfhydryl groups in important regions of the cell membrane that interfere and affect endothelial functioning and complex adhesion processes as side effects; as well as other phenomena of the extravascular compartment. These processes are closely related to the cardiovascular system.


Subject(s)
Acetylcysteine , Myocardial Reperfusion Injury , Reperfusion Injury , Oxidative Stress
14.
Rev. bras. cir. cardiovasc ; 35(3): 314-322, May-June 2020. tab, graf
Article in English | LILACS, SES-SP | ID: biblio-1137269

ABSTRACT

Abstract Objective: We aimed to investigate the protective effect of adrenomedullin (ADM) on cerebral tissue of rats with cerebral ischemia/reperfusion (I/R) injury. Methods: Thirty-two Wistar rats were randomized into four groups (n=8). In the I/R Group, bilateral common carotid arteries were clamped for 30 minutes and, subsequently, reperfused for 120 minutes. In the ADM Group, rats received 12 µg/kg of ADM. In the I/R+ADM Group, bilateral common carotid arteries were clamped for 30 minutes and, subsequently, the rats received 12 µg/ kg of ADM. Then, reperfusion was performed for 120 minutes. The Control Group underwent no procedure. Blood and brain tissue samples were collected for biochemical and histopathological analysis. Serum malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were analysed. Brain tissue was evaluated histopathologically and neuronal cells were counted in five different fields, at a magnification of ×400. Results: Brain MDA in I/R Group was significantly higher than in ADM Group. Brain GPx and SOD in I/R+ADM Group were significantly higher than in I/R Group. The number of neurons was decreased in I/R Group compared to the Control Group. The number of neurons in I/R+ADM Group was significantly higher than in I/R Group, and lower than in Control Group. Apoptotic changes decreased significantly in I/R+ADM Group and the cell structure was similar in morphology compared to the Control Group. Conclusion: We demonstrated the cerebral protective effect of ADM in the rat model of cerebral I/R injury after bilateral carotid artery occlusion.


Subject(s)
Animals , Rats , Carotid Artery, Common , Reperfusion , Reperfusion Injury/prevention & control , Rats, Wistar , Adrenomedullin
15.
Electron. j. biotechnol ; 45: 46-52, May 15, 2020. tab, graf, ilus
Article in English | LILACS | ID: biblio-1177424

ABSTRACT

BACKGROUND: The present study analyzed the synergistic protective effect of ß-alanine and taurine against myocardial ischemia/reperfusion. Myocardial infarct size, lipid peroxidation, and levels of glutathione peroxidase (Gpx), superoxide dismutase (SOD), reduced glutathione (GSH), catalase, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), reactive oxygen species (ROS), apoptosis, and the mRNA and protein expression of Janus kinase 2 (JAK2) and signal transducer and activator 3 of transcription (STAT3) were determined. The molecular docking was carried out by using AutoDock 4.2.1. RESULTS: Combined treatment with ß-alanine and taurine reduced myocardial infarct size, lipid peroxidation, inflammatory marker, ROS levels, and apoptosis and increased Gpx, SOD activity, GSH, and catalase activity. Furthermore, combined treatment significantly reduced JAK2 and STAT3 mRNA and protein expression compared with the control. The small molecule was docked over the SH2 domain of a STAT3, and binding mode was determined to investigate the inhibitory potential of ß-alanine and taurine. ß-Alanine bound to SH2 domain with ΔG of -7.34 kcal/mol and KI of 1.91 µM. Taurine bound to SH2 domain with ΔG of -7.38 kcal/mol and KI of 1.95 µM. CONCLUSION: Taken together, these results suggest that the combined supplementation of ß-alanine and taurine should be further investigated as an effective therapeutic approach in achieving cardioprotection in myocardial ischemia/reperfusion.


Subject(s)
Animals , Male , Rats , Taurine/therapeutic use , Cardiotonic Agents/therapeutic use , Reperfusion Injury/drug therapy , beta-Alanine/therapeutic use , Myocardial Ischemia/drug therapy , Superoxide Dismutase , Immunohistochemistry , Lipid Peroxidation , Reactive Oxygen Species , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Disease Models, Animal , Janus Kinase 2 , Molecular Docking Simulation , Glutathione Peroxidase , Heart Diseases/drug therapy , Inflammation
16.
Article in Chinese | WPRIM | ID: wpr-828859

ABSTRACT

OBJECTIVE@#To study the protective effect of isoflurane preconditioning on hepatic ischemia-reperfusion (I/R) injury mediated by the noncanonical pyroptosis pathway.@*METHODS@#Thirty C57BL/6 mice were randomly divided into sham-operated group, isoflurane group and I/R group, and in the latter two groups, hepatic I/R injury was induced by clamping the portal vein for 30 min. In isoflurane group, the mice were pretreated with 1.4% isoflurane 30 min before the surgery. The protective effect of isoflurane preconditioning against hepatic I/R injury was evaluated by assessing the pathological score of HE staining of the liver tissue and serum ALT and AST levels. Serum IL-1β and IL-18 levels and the protein expression of GSDMS were detected by ELISA and Western blotting to evaluate the inhibitory effect of isoflurane preconditioning on pyroptosis. Western blotting and immunofluroescence were used to detect the protein expression of caspase-11 in the liver tissues to evaluate the inhibitory effect of isoflurane preconditioning on noncanonical pyroptosis pathway.@*RESULTS@#The Suzuki's score of the liver tissue was significantly higher in I/R group than in the sham group ( < 0.05), while the score in the isoflurane group was significantly lower than that in the I/R group ( < 0.05). Serum ALT and AST levels significantly increased in the sham group ( < 0.05), and were significantly lower in isoflurane group than in I/R group ( < 0.05). The serum levels of IL-1β and IL-18 were significantly higher in I/R group than in sham group ( < 0.05), and were significantly lower in isoflurane group than in I/R group ( < 0.05). The expression of GSDMD in the I/R group was significantly higher than that in sham group, and was significantly lower in isoflurane group than in I/R group ( < 0.05). The hepatic expression of caspase-11 was significantly higher in I/R group than in sham group ( < 0.05), and was significantly lower in isoflurane group than in I/R group ( < 0.05).@*CONCLUSIONS@#Isoflurane preconditioning has protective effect against hepatic I/R injury, which is related to the inhibition of the noncanonical pyroptosis pathway.


Subject(s)
Animals , Caspases, Initiator , Ischemic Preconditioning , Isoflurane , Liver , Mice , Mice, Inbred C57BL , Pyroptosis , Reperfusion Injury
17.
Article in Chinese | WPRIM | ID: wpr-828365

ABSTRACT

This study aimed to investigate the effect and mechanism of ligustilide, the main active ingredient in Ligusticum wallichii, on mitochondria fission after PC12 cell injury induced by oxygen and glucose deprivation/reperfusion(OGD/R). In the experiment, an OGD/R model was established in vitro, and PC12 cells were pre-treated with ligustilide for 3 h, and then the cell viability was detected by CCK-8 method. The effect of different concentrations of ligustilide on the morphology of PC12 cells after OGD/R injury was observed under an inverted microscope. Transmission electron microscopy was used to observe the mitochondrial fission of PC12 cells after OGD/R injury. DCFH-DA immunofluorescence staining method was used to detect intracellular reactive oxygen species(ROS) changes. Changes in mitochondria membrane potential(MMP) were detected by flow cytometry. Hochest 33258 was used to observe the apoptosis of PC12 cells. Western blot was used to detect changes in cytochrome C(Cyt C) content in mitochondria and cytoplasm, and mitochondrial fission-related proteins Drp 1 and Fis 1. All results showed that compared with the model group, ligustilide significantly increased the survival rate of PC12 cells and the number of cells. Further experiments showed that ligustilide inhibited the release of ROS and decline of mitochondrial membrane potential in PC12 cells after OGD/R injury. Moreover, ligustilide reduced the release of Cyt C and promoted the expressions of Drp1 and Fis1 in mitochondrial fission proteins. Verification experiments showed that mitochondrial fission inhibitor mdivi-1 decreased cell survival rate and inhibited fission. The results indicated that ligustilide exerted neuro-protective effects by promoting mitochondrial fission and reducing cell damage. It preliminary proves that the mechanism of ligustilide on ischemic brain injury may be related to the promotion of mitochondrial fission and the maintenance of cell homeostasis.


Subject(s)
4-Butyrolactone , Animals , Apoptosis , Cell Survival , Glucose , Mitochondria , Oxygen , PC12 Cells , Rats , Reactive Oxygen Species , Reperfusion Injury
18.
Article in Chinese | WPRIM | ID: wpr-828103

ABSTRACT

OBJECTIVE@#To investigate the protective effect of serine hydroxymethyl transferase 2 (SHMT2) against hepatic ischemia-reperfusion injury in mice.@*METHODS@#Sixty C57BL/6 mice were divided equally into sham-operated group, saline adeno-associated virus group (AVV-GFP), and adeno-associated virus silencing group (AAV-SHMT2). The adeno-associated virus and normal saline were injected into the tail vein of the mice 2 weeks before establishment of a 70% ischemia-reperfusion model in the liver. qPCR, Western blotting, immunofluorescence and immunohistochemistry were used to detect the changes of AST/ALT concentration, SHMT2, JNK, NF-κB, caspase-3 and downstream inflammatory factors in the mice, and HE staining was used to observe the pathological damage of the liver tissue in each group; the cell apoptosis in the liver was detected using TUNEL assay.@*RESULTS@#The expression of SHMT2 increased with time after hepatic ischemia-reperfusion and reached the highest level at 24 h (the relative expression was 1.5, < 0.05). At 24 h after hepatic ischemia-reperfusion, the levels of AST/ALT in AAV-SHMT2 group (588/416 U/L) were significantly higher than those in the control group (416/345 U/L) and the empty vector group (387/321 U/L) ( < 0.05). Compared with those in the control group and the empty vector group, the level of SHMT2 was significantly decreased in AAV-SHMT2 group (with a relative expression of 0.24, < 0.05), the levels of p-JNK and p-p65 were significantly increased (relative expression of 0.80 and 0.97, respectively, < 0.05), and the levels TNF-α and IL-1β were consistently elevated (relative expression levels of 1.6 and 1.2, respectively, < 0.05). No significant differences were found in these parameters between the empty vector group and the control group (>0.05).@*CONCLUSIONS@#SHMT2 may alleviate liver cell apoptosis in mice with hepatic ischemia-reperfusion injury by inhibiting the activation of JNK pathway and excessive activation of NF-κB pathway to reduce hepatic damage.


Subject(s)
Animals , Apoptosis , Liver , Methyltransferases , Mice , Mice, Inbred C57BL , NF-kappa B , Reperfusion Injury , Serine
19.
Article in Chinese | WPRIM | ID: wpr-828101

ABSTRACT

OBJECTIVE@#To investigate the protective effects of dexmedetomidine (DEX) against cerebral ischemia/reperfusion (I/R) injury in mice and its relation with mitochondrial fusion and fission.@*METHODS@#Male ICR mice were randomly divided into sham-operated group, I/R group, I/R+DEX group and I/R+DEX+dorsomorphin group. Mouse models of cerebral I/R injury were established by modified thread occlusion of the middle cerebral artery. DEX (50 μg/kg) was injected intraperitoneally at 30 min before cerebral ischemia, which lasted for 1 h followed by reperfusion for 24 h. The neurobehavioral deficits of the mice were evaluated based on Longa's scores. The volume of cerebral infarction was detected by TTC staining. The changes in mitochondrial morphology of the brain cells were observed with transmission electron microscopy. Western blotting was performed to detect the expressions of phosphorylated AMP-activated protein kinase (p-AMPK), mitochondrial fusion protein (Mfn2) and mitochondrial fission protein (p-Drp1) in the brain tissues.@*RESULTS@#DEX pretreatment significantly reduced the neurobehavioral score and the percent volume of cerebral infarction in mice with cerebral I/R injury. Treatment with dorsomorphin (an AMPK inhibitor) in addition to DEX significantly increased the neurobehavioral score and the percent volume of cerebral infarction in the mouse models. Transmission electron microscopy showed that DEX obviously reduced mitochondrial damage caused by cerebral I/R injury and restored mitochondrial morphology of the brain cells, and such effects were abolished by dorsomorphin treatment. Western blotting showed that DEX pretreatment significantly increased the expressions of p-AMPK and Mfn2 protein and decreased the expression of p-Drp1 protein in the brain tissue of the mice, and these changes were also reversed by dorsomorphin treatment.@*CONCLUSIONS@#Preconditioning with DEX produces protective effects against cerebral I/R injury in mice possibly by activating AMPK signaling to regulate mitochondrial fusion and fission in the brain cells.


Subject(s)
Animals , Brain Ischemia , Dexmedetomidine , Male , Mice , Mice, Inbred ICR , Mitochondrial Dynamics , Reperfusion Injury
20.
Article in English | WPRIM | ID: wpr-880580

ABSTRACT

OBJECTIVES@#Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) controls mitochondrial biogenesis, but its role in cardiovascular diseases is unclear. The purpose of this study is to explore the effect of PGC1α on myocardial ischemia-reperfusion injury and the underlying mechanisms.@*METHODS@#The transverse coronary artery of SD rat was ligated for 30 minutes followed by 2 hours of reperfusion. Triphenyltetrazolium chloride (TTC) staining was performed to measure the area of myocardial infarction. Immunohistochemistry and Western blotting were used to detect the PGC1α expression in myocardium. The rat cardiomyocyte H9C2 was subjected to hypoxia/reoxygenation (H/R) with the knockdown of PGC1α or hypoxia- inducible factor 1α (HIF-1α), or with treatment of metformin. Western blotting was used to detect the expression of PGC1α, HIF-1α, p21, BAX, and caspase-3. CCK-8 was performed to detect cell viability, and flow cytometry was used to detect apoptosis and mitochondrial superoxide (mitoSOX) release. RT-qPCR was used to detect the mRNA expression of PGC1α and HIF-1α. Besides, chromatin immunoprecipitation (ChIP)-qPCR and luciferase reporter gene assay were applied to detect the transcriptional regulation effect of HIF-1α on PGC1α.@*RESULTS@#After I/R, the PGC1α expression was increased in infarcted myocardium. H/R induced H9C2 cell apoptosis (@*CONCLUSIONS@#After I/R, HIF-1α up-regulates the expression of PGC1α, leading to an increase in ROS production and aggravation of injury. Metformin can inhibit the accumulation of HIF-1α during hypoxia and effectively protect myocardium from ischemia/reperfusion injury.


Subject(s)
Animals , Apoptosis , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Myocardial Reperfusion Injury/genetics , Myocytes, Cardiac/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury
SELECTION OF CITATIONS
SEARCH DETAIL