Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 290
Filter
1.
Chinese Journal of Biotechnology ; (12): 1298-1311, 2021.
Article in Chinese | WPRIM | ID: wpr-878632

ABSTRACT

As a class of multifunctional biocatalysts, halohydrin dehalogenases are of great interest for the synthesis of chiral β-substituted alcohols and epoxides. There are less than 40 halohydrin dehalogenases with relatively clear catalytic functions, and most of them do not meet the requirements of scientific research and practical applications. Therefore, it is of great significance to excavate and identify more halohydrin dehalogenases. In the present study, a putative halohydrin dehalogenase (HHDH-Ra) from Rhodospirillaceae bacterium was expressed and its enzymatic properties were investigated. The HHDH-Ra gene was cloned into the expression host Escherichia coli BL21(DE3) and the target protein was shown to be soluble. Substrate specificity studies showed that HHDH-Ra possesses excellent specificity for 1,3-dichloro-2-propanol (1,3-DCP) and ethyl-4-chloro-3-hydroxybutyrate (CHBE). The optimum pH and temperature for HHDH-Ra with 1,3-DCP as the reaction substrate were 8.0 and 30 °C, respectively. HHDH-Ra was stable at pH 6.0-8.0 and maintained about 70% of its original activity after 100 h of treatment. The thermal stability results revealed that HHDH-Ra has a half-life of 60 h at 30 °C and 40 °C. When the temperature is increased to 50 °C, the enzyme still has a half-life of 20 h, which is much higher than that of the reported enzymes. To sum up, the novel halohydrin dehalogenase from Rhodospirillaceae bacterium possesses good temperature and pH stability as well as catalytic activity, and shows the potential to be used in the synthesis of chemical and pharmaceutical intermediates.


Subject(s)
Escherichia coli/metabolism , Hydrolases/metabolism , Rhodospirillaceae , Substrate Specificity
2.
Chinese Journal of Biotechnology ; (12): 580-592, 2021.
Article in Chinese | WPRIM | ID: wpr-878583

ABSTRACT

A novel β-glucosidase BglD2 with glucose and ethanol tolerant properties was screened and cloned from the deep-sea bacterium Bacillus sp. D1. The application potential of BglD2 toward polydatin-hydrolyzing was also evaluated. BglD2 exhibited the maximal β-glucosidase activity at 45 °C and pH 6.5. BglD2 maintained approximately 50% of its origin activity after incubation at 30 °C and pH 6.5 for 20 h. BglD2 could hydrolyze a variety of substrates containing β (1→3), β (1→4), and β (1→6) bonds. The activity of β-glucosidase was enhanced to 2.0 fold and 2.3 fold by 100 mmol/L glucose and 150 mmol/L xylose, respectively. BglD2 possessed ethanol-stimulated and -tolerant properties. At 30 °C, the activity of BglD2 enhanced to 1.2 fold in the presence of 10% ethanol and even remained 60% in 25% ethanol. BglD2 could hydrolyze polydatin to produce resveratrol. At 35 °C, BglD2 hydrolyzed 86% polydatin after incubation for 2 h. Thus, BglD2 possessed glucose and ethanol tolerant properties and can be used as the potential candidate of catalyst for the production of resveratrol from polydatin.


Subject(s)
Enzyme Stability , Glucose , Glucosides/pharmacology , Hydrogen-Ion Concentration , Stilbenes/pharmacology , Substrate Specificity , Temperature , Xylose , beta-Glucosidase/genetics
3.
Article in Chinese | WPRIM | ID: wpr-878545

ABSTRACT

The formation of most proteins consists of two steps: the synthesis of precursor proteins and the synthesis of functional proteins. In these processes, propeptides play important roles in assisting protein folding or inhibiting its activity. As an important polypeptide chain coded by a gene sequence in lipase gene, propeptide usually functions as an intramolecular chaperone, assisting enzyme molecule folding. Meanwhile, some specific sites on propeptide such as glycosylated sites, have important effect on the activity, stability in extreme environment, methanol resistance and the substrate specificity of the lipase. Studying the mechanism of propeptide-mediated protein folding, as well as the influence of propeptide on lipases, will allow to regulate lipase by alternating the propeptide folding behavior and in turn pave new ways for protein engineering research.


Subject(s)
Lipase/metabolism , Molecular Chaperones/metabolism , Protein Folding , Protein Precursors , Substrate Specificity
4.
Chinese Journal of Biotechnology ; (12): 868-878, 2020.
Article in Chinese | WPRIM | ID: wpr-826889

ABSTRACT

2-Haloacid dehalogenases (EC 3.8.1.X) catalyze the hydrolytic dehalogenation of 2-haloacids, releasing halogen ions and producing corresponding 2-hydroxyacids. The enzymes not only degrade xenobiotic halogenated pollutants, but also show wide substrate profile and astonishing efficiency for enantiomer resolution, making them valuable in environmental protection and the green synthesis of optically pure chiral compounds. A variety of 2-haloacid dehalogenases have been biochemically characterized so far. Further studies have been made in protein crystal structures and catalytic mechanisms. Here, we review the recent progresses of 2-haloacid dehalogenases in their source, protein structures, reaction mechanisms, catalytic properties and application. We also suggest further research directions for 2-haloacid dehalogenase.


Subject(s)
Catalysis , Halogenation , Hydrolases , Chemistry , Metabolism , Hydrolysis , Research , Substrate Specificity
5.
Chinese Journal of Biotechnology ; (12): 1021-1030, 2020.
Article in Chinese | WPRIM | ID: wpr-826874

ABSTRACT

Pectin methylesterase (PME) is an important pectinase that hydrolyzes methyl esters in pectin to release methanol and reduce the degree of methylation of pectin. At present, it has broad application prospects in food processing, tea beverage, paper making and other production processes. With the in-depth study of PME, the crystal structures with different sources have been reported. Analysis of these resolved crystal structures reveals that PME belongs to the right-hand parallel β-helix structure, and its catalytic residues are two aspartic acids and a glutamine, which play the role of general acid-base, nucleophile and stable intermediate, in the catalytic process. At the same time, the substrate specificity is analyzed to understand the recognition mechanism of the substrate and active sites. This paper systematically reviews these related aspects.


Subject(s)
Carboxylic Ester Hydrolases , Chemistry , Metabolism , Catalytic Domain , Crystallography , Pectins , Metabolism , Protein Structure, Tertiary , Substrate Specificity
6.
Chinese Journal of Biotechnology ; (12): 1234-1246, 2019.
Article in Chinese | WPRIM | ID: wpr-771805

ABSTRACT

1,3-1,4-β-glucanase (E.C.3.2.1.73) is an important industrial enzyme which cleave β-glucans into oligosaccharides through strictly cutting the β-1,4 glycosidic bonds in 3-O-substituted glucopyranose units. Microbial 1,3-1,4-β-glucanase belongs to retaining glycosyl hydrolases of family 16 with a jellyroll β-sandwich fold structure. The present paper reviews the industrial application and protein engineering of microbial β-glucanases in the last decades and forecasts the research prospects of microbial β-glucanases.


Subject(s)
Amino Acid Sequence , Glycoside Hydrolases , Models, Molecular , Protein Engineering , Substrate Specificity
7.
Chinese Journal of Biotechnology ; (12): 1843-1856, 2019.
Article in Chinese | WPRIM | ID: wpr-771748

ABSTRACT

By constructing mutant libraries and utilizing high-throughput screening methods, directed evolution has emerged as the most popular strategy for protein design nowadays. In the past decade, taking advantages of computer performance and algorithms, computer-assisted protein design has rapidly developed and become a powerful method of protein engineering. Based on the simulation of protein structure and calculation of energy function, computational design can alter the substrate specificity and improve the thermostability of enzymes, as well as de novo design of artificial enzymes with expected functions. Recently, machine learning and other artificial intelligence technologies have also been applied to computational protein engineering, resulting in a series of remarkable applications. Along the lines of protein engineering, this paper reviews the progress and applications of computer-assisted protein design, and current trends and outlooks of the development.


Subject(s)
Directed Molecular Evolution , High-Throughput Screening Assays , Protein Engineering , Proteins , Chemistry , Genetics , Metabolism , Substrate Specificity
8.
Chinese Journal of Biotechnology ; (12): 816-826, 2019.
Article in Chinese | WPRIM | ID: wpr-771328

ABSTRACT

A new method to express oligomerized feruloyl esterase (FAE) in Pichia pastoris GS115 to improve the catalytic efficiency was developed. It was realized by fusing the foldon domain at the C-terminus of FAE, and the fusion protein was purified by histidine tag. Fusion of the feruloyl esterase with the foldon domain resulted spontaneously forming a trimer FAE to improve the catalytic performance. The oligomerized FAE and monomeric FAE were obtained by purification. The apparent molecular weight of the oligomerized FAE was about 110 kDa, while the monomeric FAE about 40 kDa, and the optimum temperature of the oligomerized FAE was 50 °C, which is the same as the monomeric one. The optimal pH of the oligomerized FAE is 5.0, while the optimal pH of the monomer FAE is 6.0. When compared with the monomeric ones, the catalytic efficiency (kcat/Km) of the oligomerized FAE increased 7.57-folds. The catalytic constant (kcat) of the oligomerized FAE increased 3.42-folds. The oligomerized FAE induced by foldon have advantages in the catalytic performances, which represents a simple and effective enzyme-engineering tool. The method proposed here for improving the catalytic efficiency of FAE would have great potentials for improving the catalytic efficiency of other enzymes.


Subject(s)
Carboxylic Ester Hydrolases , Metabolism , Catalysis , Molecular Weight , Pichia , Genetics , Metabolism , Polymerization , Protein Engineering , Substrate Specificity
9.
Braz. j. microbiol ; 49(3): 647-655, July-Sept. 2018. graf
Article in English | LILACS | ID: biblio-951810

ABSTRACT

Abstract An intronless endoglucanase from thermotolerant Aspergillus fumigatus DBINU-1 was cloned, characterized and expressed in the yeast Kluyveromyces lactis. The full-length open reading frame of the endoglucanase gene from A. fumigatus DBiNU-1, designated Cel7, was 1383 nucleotides in length and encoded a protein of 460 amino acid residues. The predicted molecular weight and the isoelectric point of the A. fumigatus Cel7 gene product were 48.19 kDa and 5.03, respectively. A catalytic domain in the N-terminal region and a fungal type cellulose-binding domain/module in the C-terminal region were detected in the predicted polypeptide sequences. Furthermore, a signal peptide with 20 amino acid residues at the N-terminus was also detected in the deduced amino acid sequences of the endoglucanase from A. fumigatus DBiNU-1. The endoglucanase from A. fumigatus DBiNU-1 was successfully expressed in K. lactis, and the purified recombinant enzyme exhibited its maximum activity at pH 5.0 and 60 °C. The enzyme was very stable in a pH range from 4.0 to 8.0 and a temperature range from 30 to 60 °C. These features make it suitable for application in the paper, biofuel, and other chemical production industries that use cellulosic materials.


Subject(s)
Aspergillus fumigatus/enzymology , Fungal Proteins/genetics , Fungal Proteins/chemistry , Gene Expression , Cellulase/genetics , Cellulase/chemistry , Cloning, Molecular , Aspergillus fumigatus/genetics , Substrate Specificity , Enzyme Stability , Kluyveromyces/genetics , Kluyveromyces/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Fungal Proteins/metabolism , Cellulase/metabolism , Hot Temperature , Hydrogen-Ion Concentration
10.
Braz. j. microbiol ; 49(2): 429-442, Apr.-June 2018. tab, graf
Article in English | LILACS | ID: biblio-889226

ABSTRACT

Abstract Bacteria are important sources of cellulases with various industrial and biotechnological applications. In view of this, a non-hemolytic bacterial strain, tolerant to various environmental pollutants (heavy metals and organic solvents), showing high cellulolytic index (7.89) was isolated from cattle shed soil and identified as Bacillus sp. SV1 (99.27% pairwise similarity with Bacillus korlensis). Extracellular cellulases showed the presence of endoglucanase, total cellulase and β-glucosidase activities. Cellulase production was induced in presence of cellulose (3.3 times CMCase, 2.9 times FPase and 2.1 times β-glucosidase), and enhanced (115.1% CMCase) by low-cost corn steep solids. An in silico investigation of endoglucanase (EC 3.2.1.4) protein sequences of three Bacillus spp. as query, revealed their similarities with members of nine bacterial phyla and to Eukaryota (represented by Arthropoda and Nematoda), and also highlighted of a convergent and divergent evolution from other enzymes of different substrate [(1,3)-linked beta-d-glucans, xylan and chitosan] specificities. Characteristic conserved signature indels were observed among members of Actinobacteria (7 aa insert) and Firmicutes (9 aa insert) that served as a potential tool in support of their relatedness in phylogenetic trees.


Subject(s)
Animals , Cattle , Bacillus/enzymology , Cellulase/genetics , Cellulase/metabolism , Evolution, Molecular , Bacillus/growth & development , Bacillus/isolation & purification , Cellulose/metabolism , Computational Biology , Feces/microbiology , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , INDEL Mutation , Sequence Analysis, DNA , Sequence Homology , Substrate Specificity , Zea mays/metabolism
11.
Chinese Journal of Biotechnology ; (12): 1996-2006, 2018.
Article in Chinese | WPRIM | ID: wpr-771409

ABSTRACT

Efficient utilization of cellulose and xylan is of importance in the bioethanol industry. In this study, a novel bifunctional xylanase/cellulase gene, Tcxyn10a, was cloned from Thermoascus crustaceus JCM12803, and the gene product was successfully overexpressed in Pichia pastoris GS115. The recombinant protein was then purified and characterized. The pH and temperature optima of TcXyn10A were determined to be 5.0 and 65-70 °C, respectively. The enzyme retained stable under acid to alkaline conditions (pH 3.0-11.0) or after 1-h treatment at 60 °C. The specific activities of TcXyn10A towards beechwood xylan, wheat arabinoxylan, sodium carboxymethyl cellulose and lichenan were (1 480±26) U/mg, (2 055±28) U/mg, (7.4±0.2) U/mg and (10.9±0.4) U/mg, respectively. Homologous modeling and molecular docking analyses indicated that the bifunctional TcXyn10A has a single catalytic domain, in which the substrate xylan and cellulose shared the same binding cleft. This study provides a valuable material for the study of structure and function relationship of bifunctional enzymes.


Subject(s)
Cellulase , Endo-1,4-beta Xylanases , Enzyme Stability , Hydrogen-Ion Concentration , Molecular Docking Simulation , Pichia , Substrate Specificity , Thermoascus
12.
An. acad. bras. ciênc ; 90(1,supl.1): 943-992, 2018. tab, graf
Article in English | LILACS | ID: biblio-886937

ABSTRACT

ABSTRACT Several enzymatic reactions of heteroatom-containing compounds have been explored as unnatural substrates. Considerable advances related to the search for efficient enzymatic systems able to support a broader substrate scope with high catalytic performance are described in the literature. These reports include mainly native and mutated enzymes and whole cells biocatalysis. Herein, we describe the historical background along with the progress of biocatalyzed reactions involving the heteroatom(S, Se, B, P and Si) from hetero-organic substrates.


Subject(s)
Bacteria/metabolism , Biotransformation , Enzymes/metabolism , Biocatalysis , Fungi/metabolism , Substrate Specificity , Biosensing Techniques , Enzymes/chemistry
13.
Electron. j. biotechnol ; 27: 37-43, May. 2017. tab, ilus, graf
Article in English | LILACS | ID: biblio-1010283

ABSTRACT

Background: ß-Galactosidases catalyze both hydrolytic and transgalactosylation reactions and therefore have many applications in food, medical, and biotechnological fields. Aspergillus niger has been a main source of ß-galactosidase, but the properties of this enzyme are incompletely studied. Results: Three new ß-galactosidases belonging to glycosyl hydrolase family 35 from A. niger F0215 were cloned, expressed, and biochemically characterized. In addition to the known activity of LacA encoded by lacA, three putative ß-galactosidases, designated as LacB, LacC, and LacE encoded by the genes lacB, lacC, and lacE, respectively, were successfully cloned, sequenced, and expressed and secreted by Pichia pastoris. These three proteins and LacA have N-terminal signal sequences and are therefore predicted to be extracellular enzymes. They have the typical structure of fungal ß-galactosidases with defined hydrolytic and transgalactosylation activities on lactose. However, their activity properties differed. In particular, LacB and lacE displayed maximum hydrolytic activity at pH 4­5 and 50°C, while LacC exhibited maximum activity at pH 3.5 and 60°C. All ß-galactosidases performed transgalactosylation activity optimally in an acidic environment. Conclusions: Three new ß-galactosidases belonging to glycosyl hydrolase family 35 from A. niger F0215 were cloned and biochemically characterized. In addition to the known LacA, A. niger has at least three ß-galactosidase family members with remarkably different biochemical properties.


Subject(s)
Aspergillus niger/enzymology , beta-Galactosidase/chemistry , Substrate Specificity , Kinetics , Amino Acid Sequence , Cloning, Molecular , beta-Galactosidase/genetics , beta-Galactosidase/metabolism
14.
Braz. j. microbiol ; 48(1): 13-24, Jan.-Mar. 2017. tab, graf
Article in English | LILACS | ID: biblio-839339

ABSTRACT

Abstract Specific proteases capable of degrading native triple helical or denatured collagen have been required for many years and have a large spectrum of applications. There are few complete reports that fully uncover production, characterization and purification of fungi collagenases. In this review, authors searched through four scientific on line data bases using the following keywords (collagenolytic OR collagenase) AND (fungi OR fungus OR fungal) AND (production OR synthesis OR synthesize) AND (characterization). Scientific criteria were adopted in this review to classify found articles by score (from 0 to 10). After exclusion criteria, 21 articles were selected. None obtained the maximum of 10 points defined by the methodology, which indicates a deficiency in studies dealing simultaneously with production, characterization and purification of collagenase by fungi. Among microorganisms studied the non-pathogenic fungi Penicillium aurantiogriseum and Rhizoctonia solani stood out in volumetric and specific collagenase activity. The only article found that made sequencing of a true collagenase showed 100% homology with several metalloproteinases fungi. A clear gap in literature about collagenase production by fungi was verified, which prevents further development in the area and increases the need for further studies, particularly full characterization of fungal collagenases with high specificity to collagen.


Subject(s)
Collagen/metabolism , Collagenases/metabolism , Fungi/metabolism , Substrate Specificity , Collagen/chemistry , Collagenases/isolation & purification , Collagenases/biosynthesis , Collagenases/chemistry , Culture Media , Enzyme Activation , Proteolysis , Fungi/classification
15.
Braz. j. med. biol. res ; 50(1): e5658, 2017. tab, graf
Article in English | LILACS | ID: biblio-839234

ABSTRACT

Chitinases are hydrolases that degrade chitin, a polymer of N-acetylglucosamine linked β(1-4) present in the exoskeleton of crustaceans, insects, nematodes and fungal cell walls. A metagenome fosmid library from a wastewater-contaminated soil was functionally screened for chitinase activity leading to the isolation and identification of a chitinase gene named metachi18A. The metachi18A gene was subcloned and overexpressed in Escherichia coli BL21 and the MetaChi18A chitinase was purified by affinity chromatography as a 6xHis-tagged fusion protein. The MetaChi18A enzyme is a 92-kDa protein with a conserved active site domain of glycosyl hydrolases family 18. It hydrolyses colloidal chitin with an optimum pH of 5 and temperature of 50°C. Moreover, the enzyme retained at least 80% of its activity in the pH range from 4 to 9 and 98% at 600 mM NaCl. Thin layer chromatography analyses identified chitobiose as the main product of MetaChi18A on chitin polymers as substrate. Kinetic analysis showed inhibition of MetaChi18A activity at high concentrations of colloidal chitin and 4-methylumbelliferyl N,N′-diacetylchitobiose and sigmoid kinetics at low concentrations of colloidal chitin, indicating a possible conformational change to lead the chitin chain from the chitin-binding to the catalytic domain. The observed stability and activity of MetaChi18A over a wide range of conditions suggest that this chitinase, now characterized, may be suitable for application in the industrial processing of chitin.


Subject(s)
Chitinases/genetics , Chitin/genetics , Metagenome/genetics , Chitinases/chemistry , Chitin/chemistry , Chromatography, High Pressure Liquid , Escherichia coli , Gene Expression/genetics , Gene Library , Genetic Vectors , Hydrogen-Ion Concentration , Substrate Specificity
16.
IBJ-Iranian Biomedical Journal. 2017; 21 (1): 48-56
in English | IMEMR | ID: emr-185667

ABSTRACT

Background: Alginate is a linear polysaccharide consisting of guluronate [polyG] and mannuronate [polyM] subunits


Methods: In the initial screening of alginate-degrading bacteria from soil, 10 isolates were able to grow on minimal medium containing alginate. The optimization of cell growth and alginate lyase [algL] production was carried out by the addition of 0.8% alginate and 0.2-0.3 M NaCl to the culture medium. Of 10 isolates, one was selected based on its fast growth rate on minimal 9 medium containing 0.4% sodium alginate. The selected bacterium, identified based on morphological and biochemical characteristics, as well as 16S rDNA sequence data, was confirmed to be an isolate belonging to the genus Bacillus and designated as Bacillus sp. TAG8


Results: The results showed the ability of Bacillus sp. TAG8 in utilizing alginate as a sole carbon source. Bacillus sp. TAG8 growth and algL production were augmented with an increase in sodium alginate concentration and also by the addition of 0.2-0.3 M NaCl. Molecular analysis of TAG8 algL gene showed 99% sequence identity with algL of Pseudomonas aeruginosa PAO1. The algL produced by Bacillus sp. TAG8 cleaved both polyM and polyG blocks in alginate molecule, as well as acetylated alginate residues, confirming the bifunctionality of the isolated lyase


Conclusion: The identification of novel algL genes from microbial communities constitutes a new approach for exploring lyases with specific activity against bacterial alginates and may thus contribute to the eradication of persistent biofilms from clinical samples


Subject(s)
Substrate Specificity , Bacterial Proteins , Extracellular Matrix Proteins , Pseudomonas/isolation & purification , Bacillus megaterium/isolation & purification
17.
An. acad. bras. ciênc ; 89(3,supl): 2359-2370, 2017. tab, graf
Article in English | LILACS | ID: biblio-886801

ABSTRACT

ABSTRACT During composting processes, the degradation of organic waste is accomplished and driven by a succession of microbial populations exhibiting a broad range of functional competencies. A total of 183 bacteria, isolated from a composting process, were evaluated for cellulase activity at different temperatures (37, 50, 60, and 70°C) and pH values. Out of the 22 isolates that showed activity, isolate 380 showed the highest cellulase activity. Its ability to produce cellulase was evaluated in culture medium supplemented with carboxymethyl cellulose, microcrystalline cellulose, wheat straw, and rice husk. The culture medium supplemented with carboxymethyl cellulose induced higher enzyme activity after 6 hours of incubation (0.12 UEA mL-1 min-1). For wheat straw and rice husk, the results were 0.08 UEA mL-1 min-1 for both, while for microcrystalline cellulose, 0.04 UEA mL-1 min-1 were observed. The highest carboxymethyl cellulase activity was observed at 60°C (0.14 UEA mL-1 min-1) for both crude and partially purified enzyme after 30 and 120 min of incubation, respectively. Alkalinization of the medium was observed during cultivation in all substrates. The cellulase had a molecular mass of 20 kDa determined by SDS-Page. Isolate 380 was identified as Bacillus licheniformis. This work provides a basis for further studies on composting optimization.


Subject(s)
Carboxymethylcellulose Sodium/pharmacology , Cellulase/isolation & purification , Cellulase/biosynthesis , Culture Media/pharmacology , Bacillus licheniformis/enzymology , Substrate Specificity , Electrophoresis, Polyacrylamide Gel , Bacillus licheniformis/drug effects , Hot Temperature
18.
Braz. j. microbiol ; 47(3): 680-690, July-Sept. 2016. tab, graf
Article in English | LILACS | ID: lil-788964

ABSTRACT

ABSTRACT A new strain of Thermomyces lanuginosus was isolated from the Atlantic Forest biome, and its β-xylosidases optimization in response to agro-industrial residues was performed. Using statistical approach as a strategy for optimization, the induction of β-xylosidases activity was evaluated in residual corn straw, and improved so that the optimum condition achieved high β-xylosidases activities 1003 U/mL. According our known, this study is the first to show so high levels of β-xylosidases activities induction. In addition, the application of an experimental design with this microorganism to induce β-xylosidases has not been reported until the present work. The optimal conditions for the crude enzyme extract were pH 5.5 and 60 °C showing better thermostability at 55 °C. The saccharification ability of β-xylosidase in the presence of hemicellulose obtained from corn straw raw and xylan from beechwood substrates showed a xylo-oligosaccharide to xylose conversion yield of 80 and 50%, respectively, at 50 °C. Our data strongly indicated that the β-xylosidases activities was not subjected to the effects of potential enzyme inhibitors often produced during fermentation process. These data suggest the application of this enzyme studied for saccharification of hemicellulose, an abundant residue in the American continents, thus providing an interesting alternative for future tests for energy production.


Subject(s)
Ascomycota/enzymology , Xylosidases/metabolism , Fermentation , Polysaccharides/metabolism , Polysaccharides/chemistry , Substrate Specificity , Temperature , Xylose/metabolism , Biomass , Zea mays/chemistry , Enzyme Activation , Hydrogen-Ion Concentration , Hydrolysis
19.
Braz. j. microbiol ; 47(3): 647-657, July-Sept. 2016. tab, graf
Article in English | LILACS | ID: lil-788974

ABSTRACT

ABSTRACT The purpose of this study was to isolate, purify and optimize the production conditions of an organic solvent tolerant and thermostable lipase from Acinetobacter sp. AU07 isolated from distillery waste. The lipase production was optimized by response surface methodology, and a maximum production of 14.5 U/mL was observed at 30 ºC and pH 7, using a 0.5% (v/v) inoculum, 2% (v/v) castor oil (inducer), and agitation 150 rpm. The optimized conditions from the shake flask experiments were validated in a 3 L lab scale bioreactor, and the lipase production increased to 48 U/mL. The enzyme was purified by ammonium sulfate precipitation and ion exchange chromatography and the overall yield was 36%. SDS-PAGE indicated a molecular weight of 45 kDa for the purified protein, and Matrix assisted laser desorption/ionization time of flight analysis of the purified lipase showed sequence similarity with GDSL family of lipases. The optimum temperature and pH for activity of the enzyme was found to be 50 ºC and 8.0, respectively. The lipase was completely inhibited by phenylmethylsulfonyl fluoride but minimal inhibition was observed when incubated with ethylenediaminetetraacetic acid and dithiothreitol. The enzyme was stable in the presence of non-polar hydrophobic solvents. Detergents like SDS inhibited enzyme activity; however, there was minimal loss of enzyme activity when incubated with hydrogen peroxide, Tween 80 and Triton X-100. The kinetic constants (Km and Vmax) revealed that the hydrolytic activity of the lipase was specific to moderate chain fatty acid esters. The Vmax, Km and Vmax/Km ratio of the enzyme were 16.98 U/mg, 0.51 mM, and 33.29, respectively when 4-nitrophenyl palmitate was used as a substrate.


Subject(s)
Organic Chemicals , Solvents , Bacterial Proteins/isolation & purification , Bacterial Proteins/biosynthesis , Acinetobacter/enzymology , Lipase/isolation & purification , Lipase/biosynthesis , Organic Chemicals/chemistry , Solvents/chemistry , Substrate Specificity , Temperature , Bacterial Proteins/chemistry , Enzyme Stability , Kinetics , Chromatography, Ion Exchange , Enzyme Activation , Extracellular Space/enzymology , Hydrogen-Ion Concentration , Ions , Lipase/chemistry , Lipolysis , Metals , Molecular Weight
20.
Electron. j. biotechnol ; 19(4): 26-30, July 2016. ilus
Article in English | LILACS | ID: lil-793949

ABSTRACT

Background: Glycine oxidase (GO), a type of D-amino acid oxidase, is of biotechnological interest for its potential in several fields. In our previous study, we have characterized a new glycine oxidase (BceGO) from Bacillus cereus HYC-7. Here, a variant of N336K with increased the affinity against all the tested substrate was obtained by screening a random mutant library of BceGO. It is observed that the residue N336 is invariable between its homogeneous enzymes. This work was aimed to explore the role of the residue N336 in glycine oxidase by site-directed mutagenesis, kinetic assay, structure modeling and substrate docking. Results: The results showed that the affinity of N336H, N336K and N336R increased gradually toward all the substrates, with increase in positive charge on side chain, while N336A and N336G have not shown a little significant effect on substrate affinity. The structure modeling studies indicated that the residue Asn336 is located in a random coil between -J-18 and a-10. Also, far-UV CD spectra-analysis showed that the mutations at Asn336 do not affect the secondary structure of enzyme. Conclusion: Asn336 site was located in a conserved GHYRNG loop which adjoining to substrate and the isoalloxazine ring of FAD, and involved in the substrate affinity of glycine oxidase. This might provide new insight into the structure-function relationship of GO, and valuable clue to redesign its substrate specificity for some biotechnological application.


Subject(s)
Bacillus cereus/metabolism , Amino Acid Oxidoreductases/metabolism , Glycine/analogs & derivatives , Substrate Specificity , Kinetics , Polymerase Chain Reaction/methods , Mutagenesis, Site-Directed , Amino Acid Oxidoreductases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL