ABSTRACT
CONTEXTO: Os PCDT são documentos que visam garantir o melhor cuidado de saúde diante do contexto brasileiro e dos recursos disponíveis no SUS. Podem ser utilizados como materiais educativos aos profissionais de saúde, auxílio administrativo aos gestores, regulamentação da conduta assistencial perante o Poder Judiciário e explicitação de direitos aos usuários do SUS. Os PCDT são os documentos oficiais do SUS que estabelecem critérios para o diagnóstico de uma doença ou agravo à saúde; tratamento preconizado, com os medicamentos e demais produtos apropriados, quando couber; posologias recomendadas; mecanismos de controle clínico; e acompanhamento e verificação dos resultados terapêuticos a serem seguidos pelos gestores do SUS. Os PCDT devem incluir recomendações de condutas, medicamentos ou produtos para as diferentes fases evolutivas da doença ou do agravo à saúde de que se tratam, bem como aqueles indicados em casos de perda de eficácia e de surgimento de intolerância ou reação adversa relevante,
Subject(s)
Clinical Protocols , Macular Degeneration/diagnosis , Macular Degeneration/drug therapy , Macular Degeneration/therapy , Photochemotherapy/instrumentation , Unified Health System , Brazil , Fluorescein Angiography/instrumentation , Laser Coagulation/instrumentation , Vascular Endothelial Growth Factor A/therapeutic use , Bevacizumab/therapeutic use , Ranibizumab/therapeutic use , Slit Lamp Microscopy/instrumentationABSTRACT
SUMMARY: Laser photobiomodulation (laser PBM) is known to be able to accelerate burn wound healing in the animal model; however little evidence exists on the action of laser PBM on the expression of important proteins in wound healing in the animal model, such as VEGF and TGF-ß1. The aim of this study was to carry out a systematic review in order to analyse the effect of laser PBM on VEGF and TGF-ß expression during burn wound repair in the animal model. A systematic review was carried out of the EMBASE, PubMed/ MEDLINE and LILACS databases. The studies included were preclinical studies that analysed the action of laser PBM on the expression of VEGF and TGF-ß (1, 2, 3) during burn wound repair in the animal model. The SYRCLE risk of bias tool was used. Random effect models were used to estimate the combined effect. Increased VEGF expression was observed with the use of laser PBM at 4.93 J/cm2 per point in the first two weeks after induction of the burn wound, with greater size of effect in the second week (SDM = 5.72; 95% CI: 3.14 to 8.31, I2 = 0 %; very low certainty of evidence). We also observed that the effect of laser PBM on TGF-ß1 expression was greater than in the control in the first week (SDM = -0.45; 95% CI: -1.91 to 1.02, I2 = 51 %; very low certainty of evidence), but diminished in the third week after induction of the lesion (SDM = -2.50; 95% CI: 3.98 to -1.01, I2 = 0 %; very low certainty of evidence). Laser PBM has an effect on TGF-ß1 and VEGF expression, promoting burn wound repair in the animal model.
RESUMEN: Es sabido que la fotobiomodulación por láser (FBM láser) puede acelerar el proceso de curación de heridas por quemadura en modelo animal, sin embargo aún se carece de mayor evidencia sobre la acción de la FBM láser en la expresión de proteínas importantes en el proceso de curación de heridas en modelo animal, como VEGF y TGF-ß1. Así, el objetivo de este estudio fue realizar una revisión sistemática a fin de analizar el efecto de la FBM láser sobre la expresión de VEGF, TGF-ß durante el proceso de reparación de heridas por quemadura en modelo animal. Se realizó una búsqueda sistemática en las bases de datos EMBASE, PubMed/MEDLINE y LILACS. Se incluyeron estudios preclínicos que analizaron la acción de la FBM láser en la expresión de VEGF, TGF-ß (1, 2, 3) durante el proceso de reparación de heridas por quemadura en modelo animal. Se utilizó la herramienta de riesgo de sesgo SYRCLE. Se utilizaron modelos de efectos aleatorios para estimar el efecto combinado. Observamos aumento de la expresión de VEGF con el uso de FBM láser 4.93 J/cm2 por punto, en las dos primeras semanas tras inducción de la herida por quemadura, con mayor tamaño de efecto en la segunda semana (SDM = 5,72; IC del 95%: 3,14 a 8,31, I2 = 0 %; certeza de la evidencia muy baja). También se observó el efecto de la FBM láser en la expresión del TGF- ß1 que fue mayor que el control en la primera semana (SDM = - 0,45; IC del 95%: -1,91 a 1,02, I2 = 51 %; certeza de la evidencia muy baja), disminuyendo en la tercera semana tras inducción de la lesión (SDM = -2,50; IC del 95%: -3,98 a -1,01; I2 = 0 %; certeza de la evidencia baja). La TFB por láser ejerce influencia en la expresión de TGF-ß1 y VEGF favoreciendo el proceso de reparación de heridas por quemadura en modelo animal.
Subject(s)
Animals , Wound Healing/radiation effects , Transforming Growth Factor beta/drug effects , Low-Level Light Therapy , Vascular Endothelial Growth Factor A/drug effects , Burns/radiotherapy , Disease Models, AnimalABSTRACT
To study the protective effect of Ershiwuwei Zhenzhu Pills on ischemic stroke rats. Ninety 4-weeks-old SPF male SD rats were randomly divided into 6 groups(n=15):sham operation group, model group, nimodipine group(12 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills high-dose group(400 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills medium-dose group(200 mg·kg~(-1)), Ershiwuwei Zhenzhu Pills low-dose group(100 mg·kg~(-1)).The permanent middle cerebral artery occlusion model(PMCAO) was established in the model group, nimodipine group, and Ershiwuwei Zhenzhu Pills groups by the improved thread plug method, while the sham operation group did not insert the thread plug.Nimodipine group and Ershiwuwei Zhenzhu Pills groups were given intragastric administration once a day for 24 days before the modeling operation, and once 1 hour before the modeling operation, while sham operation group and model group were given equal volumes of distilled water.The neuroethology of the surviving rats was measured; The volume of cerebral infarction in rats was measured by TTC method; The histopathology of rat brain was observed by HE method; The expression levels of tumor necrosis factor α(TNF-α),interleukin-1β(IL-1β),interleukin-6(IL-6),malondialdehyde(MDA),superoxide dismutase(SOD) and catalase(CAT) in serum were detected by ELISA;The mRNA expressions of Notch 1,Jagged 1,Hes 1 and Bcl-2 in rat brain were detected by RT-PCR;Western blot was used to detect the expression levels of caspase-3 protein in rat brain; the expression levels of vascular endothelial growth factor(VEGF) and CD34 positive cells in rat brain were detected by immunofluorescence.The low, medium and high dose groups of Ershiwuwei Zhenzhu Pills and nimodipine group could significantly reduce the neurobehavioral score and cerebral infarction volume of rats with permanent middle cerebral artery occlusion, reduce the morphological changes of nerve cells, decrease the expression of TNF-α,IL-1β and IL-6 in rat serum, increase the activity of SOD and CAT,and reduce the level of MDA.Furthermore, the expression levels of Notch l, Jagged l, Hes l and Bcl-2 mRNA were significantly increased, and the expression level of caspase-3 protein was decreased.Meanwhile, the number of VEGF and CD34 positive cells increased in the treatment group.The differences were statistically significant. Ershiwuwei Zhenzhu Pills has a protective effect on ischemic stroke rats, and its mechanism may be related to anti-inflammation, anti-oxidation, promotion of nerve cell proliferation, inhibition nerve cell apoptosis and promotion of angiogenesis.
Subject(s)
Animals , Caspase 3/metabolism , Drugs, Chinese Herbal/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Interleukin-6/metabolism , Ischemic Stroke/drug therapy , Male , Nimodipine/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolismABSTRACT
This study aimed to observe the intervention effect of Jianpi Huogu Formula(JPHGF) on the functional damage of vascular endothelial cells caused by glucocorticoid, and explore its action mechanism from the PI3 K/Akt and mitogen activated protein kinase(MAPK) signaling pathways. The extracted thoracic aorta ring of normal SD rats were intervened first with vascularendothelial growth factor(VEGF, 20 μg·L-1) and/or sodium succinate(MPS, 0. 04 g·L-1) in vitro and then with JPHGF(8, 16, and 32 μg·L-1) for five mcontinuous ethylpdays, rednisolofollowed nebythe statistics of the number, length, and area of microvessels budding fromvascular rings. In addition, the human umbilical vein endothelial cells(HUVECs) induced by VEGF(20 μg·L-1) were added with MPS(0. 04 g·L-1) and then with JPHGF(8, 16, and 32 μg·L-1) for observing the migration, invasion, and luminal formation abilities of HUVECs in the migration, invasion and luminal formation experiments. The protein expression levels of PI3 K, p-Akt, p-JN K, and p-ERK in HUVECs were assayed by Western blot. The results showed that JPHGF dose-dependently improved the num-ber,length, and area of microvessels in MPS-induced rat thoracic aortic ring, reversed the migration, invasion and lumen formation abiliti es of HUVECs reduced by MPS, and up-regulated the protein expression levels of PI3 K, p-Akt, and p-JNK in HUVECs. All thesehave suggested that JPHGF exerts the protective effect against hormone-induced damage to the angiogenesis of vascular endothelial cells by activating the PI3 K/Akt and MAPK signaling pathways, which has provided reference for exploring the mechanism of JPHGF in treating s teroid-induced avascular necrosis of femoral head(SANFH) and also the experimental evidence for enriching the scientific connotationof spleen-invigorating and blood-activating therapy.
Subject(s)
Animals , Glucocorticoids/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Neovascularization, Pathologic/metabolism , Rats , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolismABSTRACT
Ginsenoside Rg_1, one of the main active components of precious traditional Chinese medicine Ginseng Radix et Rhizoma, has the anti-oxidative stress, anti-inflammation, anti-aging, neuroprotection, and other pharmacological effects. Diabetic retinopathy(DR), the most common complication of diabetes, is also the main cause of impaired vision and blindness in the middle-aged and the elderly. The latest research shows that ginsenoside Rg_1 can protect patients against DR, but the protection and the mechanism are rarely studied. This study mainly explored the protective effect of ginsenoside Rg_1 against DR in type 2 diabetic mice and the mechanism. High fat diet(HFD) and streptozotocin(STZ) were used to induce type 2 diabetes in mice, and hematoxylin-eosin(HE) staining was employed to observe pathological changes in the retina of mice. The immunohistochemistry was applied to study the localization and expression of nucleotide-binding oligomerization domain-like receptors 3(NLRP3) and vascular endothelial growth factor(VEGF) in retina, and Western blot was used to detect the expression of nuclear factor-kappa B(NF-κB), p-NF-κB, NLRP3, caspase-1, interleukin-1β(IL-1β), transient receptor potential channel protein 6(TRPC6), nuclear factor of activated T-cell 2(NFAT2), and VEGF in retina. The results showed that ginsenoside Rg_1 significantly alleviated the pathological injury of retina in type 2 diabetic mice. Immunohistochemistry results demonstrated that ginsenoside Rg_1 significantly decreased the expression of NLRP3 and VEGF in retinal ganglion cells, middle plexiform layer, and outer plexiform layer in type 2 diabetic mice. According to the Western blot results, ginsenoside Rg_1 significantly lowered the expression of p-NF-κB, NLRP3, caspase-1, IL-1β, TRPC6, NFAT2, and VEGF in retina of type 2 diabetic mice. These findings suggest that ginsenoside Rg_1 can significantly alleviate DR in type 2 diabetic mice, which may be related to inhibition of NLRP3 inflammasome and VEGF. This study provides experimental evidence for the clinical application of ginsenoside Rg_1 in the treatment of DR.
Subject(s)
Aged , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetic Retinopathy/genetics , Ginsenosides/pharmacology , Humans , Inflammasomes/metabolism , Mice , Middle Aged , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/geneticsABSTRACT
The present study investigated the mechanism of components in stasis-resolving and collateral-dredging Chinese herbal medicines, including scutellarin(Scu), paeonol(Pae), and hydroxy safflower yellow A(HSYA), in the treatment of psoriasis by regulating angiogenesis and inflammation. The human umbilical vein endothelial cells(HUVECs) cultured in vitro were divided into a normal group, a model group, a VEGFR tyrosine kinase inhibitor Ⅱ(VRI) group, and Scu, Pae, and HSYA groups with low, me-dium, and high doses. Cell viability was detected by the CCK-8 assay. Cell migration was detected by wound healing assay. Tube formation assay was used to measure the tube formation ability. Western blot was used to detect the protein expression of the VEGFR2/Akt/ERK1/2 signaling pathway. The secretion levels of inflammatory cytokines IFN-γ, IL-1β, IL-6, and TNF-α were detected by ELISA. The results showed that compared with the model group, all the Scu, Pae, and HSYA groups could reduce cell viability, inhibit cell migration and tube formation(P<0.05, P<0.01), and down-regulated the protein expression of VEGFR2, p-VEGFR2, Akt, p-Akt, ERK1/2, and p-ERK1/2. Scu and Pae could down-regulate VEGFR2 expression(P<0.05, P<0.01), while other groups only showed a downward trend. Scu and Pae significantly reduced IFN-γ and IL-6 levels(P<0.01), and HSYA significantly reduced the levels of IFN-γ, IL-1β, and IL-6(P<0.01). Scu, Pae, and HSYA had no significant effect on TNF-α. The results suggested that Scu, Pae, and HSYA may exert a therapeutic role in psoriasis-related angiogenesis and inflammation by inhibiting VEGFR2/Akt/ERK1/2 signaling pathway and inhibiting the secretion of IFN-γ, IL-1β, and IL-6.
Subject(s)
Angiogenesis Inhibitors/pharmacology , China , Human Umbilical Vein Endothelial Cells , Humans , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/metabolismABSTRACT
A implantação do embrião na parede uterina é um processo complexo que consiste na interação do blastocisto com as células epiteliais do útero, e depende de diferentes tipos celulares do microambiente uterino. Embora a literatura mostre a participação de neutrófilos neste processo, os dados ainda são incipientes para proposição da função exata destas células nos períodos iniciais da gestação. Dados do nosso grupo de pesquisa mostraram que neutrófilos pró-angiogênicos induzem a tolerância gestacional, e que a depleção de neutrófilos durante as fases iniciais da gestação prejudica a implantação do blastocisto e a progressão da gestação. Com base nestes resultados, o presente estudo visou investigar se a depleção de neutrófilos na fase pré-receptiva da janela de implantação do blastocisto altera a morfologia placentária. Para tanto, foi utilizado o modelo de gestação alogênica, onde camundongos fêmeas C57BL/6, após cruzamento com machos Balb/C foram tratadas com anticorpo anti-Ly6G ou isotipo no dia 1,5 da gestação (24 horas após a detecção do plug vaginal) em dose suficiente para manter a depleção de neutrófilos circulantes por 48 horas (200µg/ 500µL; i.p). No final da gestação (dia 18,5), o sangue periférico foi coletado e, em seguida, os animais foram submetidos a laparotomia para retirada da placenta, a qual foi submetida à análise histológica. As análises dos leucócitos circulantes evidenciaram a efetividade do tratamento para depleção de neutrófilos periféricos. A análise histológica mostrou alterações significativas na morfologia da placenta nos animais tratados com anti-Ly6G. Foram detectadas a redução da zona juncional, de células trofoblásticas e de fatores angiogênicos, como fator de crescimento do endotélio vascular (VEGF), e das moléculas de adesão intracelular-1 (ICAM-1) e de plaqueta e endotélio (PECAM-1). Esses dados evidenciam a importância dos neutrófilos nos primeiros dias de gestação para o desenvolvimento da placenta
Blastocyst implantation is a complex process, consisting of the interaction between blastocyst and uterine epithelial cells. Also, it is well known that the implantation site resembles an inflammatory response, with a profusion of recruited immune cells into the endometrial stroma and lumen from the blood. The role of macrophages, natural killers, and dendritic cells have been extensively studied, however, the participation of neutrophils in this process remains unclear. Data from our research group showed that pro-angiogenic neutrophils induced gestation tolerance, also peripheral neutrophils depletion at the time of active placental development led to smaller embryo sizes and abnormal placentation in mice. In this context, the present study aimed to investigate whether pharmacological depletion of neutrophils in mice in the blastocyst implantation phase alters placental morphology. Therefore, C7/BL/6 female mice, after mating with Balb/C males, were treated with an anti-Ly6G antibody or isotype on day 1 of gestation (after detection of the vaginal plug) at a dose sufficient to maintain the depletion of circulating neutrophils for 48 hours (200 µg/500µL; i.p). At the end of the gestational day (day 18), peripheral blood was collected, and then the animals were submitted to laparotomy for the placenta removal and subsequent histological analysis. The analysis of circulating leukocytes from neutrophils depleted mice showed a reduction of peripheral neutrophils up to 48 hours after antibody injection. The histological analysis showed significant alterations in the placenta morphology of the animals treated with anti-Ly6G. The morphometric analyses showed a reduction in the size of neutrophils depleted placenta due to diminished junctional zone and reduction of trophoblast cells. Also, it was observed a reduction of vascular endothelial growth factors (VEGF), reduction of adhesion molecules intracell-1 (ICAM-1), and platelets and endothelium (PECAM-1) positive cells in the junctional zone. In conclusion, these data show the importance of neutrophils on the first days of pregnancy for the development of the placenta
Subject(s)
Animals , Female , Mice , Embryo Implantation , Placenta/embryology , Neutrophils/metabolism , Dendritic Cells/classification , Intercellular Adhesion Molecule-1/administration & dosage , Platelet Endothelial Cell Adhesion Molecule-1/adverse effects , Vascular Endothelial Growth Factor A , Angiogenesis Inducing Agents/adverse effects , Diagnosis , Embryonic Structures/metabolismABSTRACT
SUMMARY: Peripheral nerve damage (PNI) can cause demyelination, axonal degeneration and loss of motor and sensory function. Melatonin with its antioxidative effect, has been reported to reduce scar formation in nerve injury, take a role in repair process by suppressing fibroblast proliferation in the damaged area. It was aimed to investigate the effect of melatonin in the repair of peripheral nerve damage and the relationship between S100 proteins and angiogenic regulation. Wistar albino rats were divided into 3 groups. In the Defect group, 6 mm tibial bone defect using a motorized drill was created and kept immobile for 28 days. In Defect + graft group, tibial bone defect with allograft treatment was applied and kept immobile for 28 days. In Defect + graft + Melatonin group, melatonin was administered to defect + allograft group. All rats were sacrified by decapitation, skin and tibia bone were removed then fixed with 10 % neutral buffered formalin and embedded in paraffin, sections were examined under light microscopy. In the Defect+Graft group, enlargement and occlusion of the vessels with degeneration of the epineural sheath, thickening of the endoneural sheath and mild hyperplasia of schwannocytus (Schwann cells) were remarkable. In the Defect+Graft+Melatonin group, the epineural sheath was tight and regular, the axonal structures were prominent in the endoneural area. Mild S100 expression was observed in Defect+Graft group in fibers of the endoneural region with a prominent expression in schwannocytus. In Defect+Graft+Melatonin group (10mg/kg), S100 expression was moderate in areas where schwannocytus proliferated and nerve-connective tissue sheaths were reconstructed. VEGF expression was moderate in endoneural, perineural and epineural connective tissue sheaths in the Defect+Graft+Melatonin group, with negative expression in blood vessel endothelial cells, but with a positive expression in schwannocytus. We conclude that with the application of melatonin; oxidative stress decreases, schwannocytus proliferation increases, having positive influence on nerve repair with the regulation of S100 signaling and angiogenetic structuring.
RESUMEN: El daño a los nervios periféricos puede causar desmielinización, degeneración axonal y pérdida de la función motora y sensorial. Se ha informado que la melatonina, con su efecto antioxidante, reduce la formación de cicatrices en lesiones nerviosas y desempeña un papel en el proceso de reparación al suprimir la proliferación de fibroblastos en el área dañada. El objetivo de este trabajo fue investigar el efecto de la melatonina en la reparación del daño de los nervios periféricos y la relación entre las proteínas S100 y la regulación angiogénica. Ratas albinas Wistar se dividieron en 3 grupos. En el grupo Defecto, se creó un defecto óseo tibial de 6 mm con un taladro motorizado y se mantuvo inmóvil durante 28 días. En el grupo Defecto + injerto, se aplicó tratamiento de defecto óseo tibial con aloinjerto y se mantuvo inmóvil durante 28 días. En el grupo Defecto + injerto + Melatonina, se administró melatonina al grupo defecto + aloinjerto. Todas las ratas fueron sacrificadas por decapitación, se extrajo la piel y el hueso de la tibia y luego se fijaron con formalina tamponada neutra al 10 % y se incluyeron en parafina, las secciones se examinaron bajo microscopía óptica. En el grupo Defecto+Injerto, fueron notables el agrandamiento y la oclusión de los vasos con degeneración de la vaina epineural, engrosamiento de la vaina endoneural e hiperplasia leve de los schwannocitos (neurolemnocitos). En el grupo Defecto+Injerto+Melatonina, la vaina epineural era estrecha y regular, las estructuras axonales eran prominentes en el área endoneural. Se observó expresión leve de S100 en el grupo Defecto+Injerto en fibras de la región endoneural con una expresión prominente en los schwannocitos. En el grupo Defecto+Injerto+Melatonina, la expresión de S100 fue moderada en áreas donde proliferaron los schwannocitos y se reconstruyeron las vainas de tejido conectivo nervioso. La expresión de VEGF fue moderada en vainas de tejido conectivo endoneural, perineural y epineural en el grupo Defecto+Injerto+Melatonina, con expresión negativa en células endoteliales de vasos sanguíneos, pero con expresión positiva en schwannocitos. Concluimos que con la aplicación de melatonina; disminuye el estrés oxidativo, aumenta la proliferación de schwannocitos, influyendo positivamente en la reparación nerviosa con la regulación de la señalización S100 y la estructuración angiogenética.
Subject(s)
Animals , Rats , Tibia/pathology , Peripheral Nervous System Diseases/drug therapy , Melatonin/administration & dosage , Antioxidants/administration & dosage , Peripheral Nerves/drug effects , Tibia/innervation , S100 Proteins , Rats, Wistar , Vascular Endothelial Growth Factor A , Disease Models, Animal , FibroblastsABSTRACT
Abstract In an attempt to increase molecular stability and provide controlled release, vascular endothelial growth factor (VEGF) was encapsulated into polycaprolactone (PCL) nanoparticles. Both VEGF-free and VEGF-loaded PCL nanoparticles were formulated by w/o/w double emulsion of the dichloromethane-water system in the presence of polyvinyl alcohol (PVA) and rat serum albumin. To achieve the optimal formulation concerning particle size and monodispersity, studies were carried out with different formulation parameters, including PVA concentration, homogenization time and rate. Scanning electron microscopy and dynamic light scattering analysis showed respectively that particles had a spherical shape with a smooth surface and particle size varying between 58.68-751.9 nm. All of the formulations were negatively charged according to zeta potential analysis. In vitro release study was performed in pH 7.4 phosphate-buffered saline at 37°C and released VEGF amount was measured by enzyme-linked immunosorbent assay (ELISA) method. At the end of the 35th day, 10% of total encapsulated VEGF was released with a sustained-release profile, which fitted the Korsmeyer-Peppas kinetic model. The bioactivation of the nanoparticles was evaluated using XTT and ELISA methods. As a result, the released VEGF was biologically active and also VEGF loaded PCL nanoparticles enhanced proliferation of the human umbilical vein endothelial cells in cell culture.
Subject(s)
Vascular Endothelial Growth Factor A , Nanoparticles/classification , In Vitro Techniques/methods , Enzyme-Linked Immunosorbent Assay/methods , Microscopy, Electron, Scanning/methods , Cell Culture Techniques/methods , Human Umbilical Vein Endothelial CellsABSTRACT
Angiotensin-II (AgII) is thought to be crucial for tumor growth and progression. Moreover, hydrogen sulfide (H2S) performs a controversial action in cancer pathology. Zofenopril (ZF) is an angiotensin-converting enzyme (ACE) inhibitor with H2S donating properties. Hence, this study aims at investigating the tumor suppressor activity of ZF and elucidating the involved trajectories in Ehrlich's solid tumor (EST)-bearing mice. EST was induced by the intradermal injection of Ehrlich's ascites carcinoma cells into femoral region. All parameters were assessed after 28 days post-inoculation or one-week thereafter. ZF treatment resulted in significant reduction of tumor weights with marked decrease in IL-6 and VEGF levels in serum, and tumor Ag II and CEA contents. Additionally, the administration of ZF downregulated the tumor gene expression of cyclin-D, ACE-1, and Bcl2 and upregulated the proapoptotic gene, BAX. Moreover, ZF increased CBS gene expression, which is a major contributor to cellular H2S production. In addition, ZF was able to reduce the protein expression of PI3K, pAKT, pGSK-3ß, and NFκB. Our study has provided novel insights into the possible mechanisms by which ZF may produce its tumor defeating properties. These intersecting trajectories involve the interference between PI3K/Akt and CBS signaling pathways
Subject(s)
Animals , Male , Mice , Carcinoma, Ehrlich Tumor/pathology , Neoplasms , Angiotensin II/adverse effects , Carcinoma/pathology , Gene Expression , Vascular Endothelial Growth Factor AABSTRACT
Purpose: To evaluate the ameliorative effect of mesenchymal stem cells (MSCs) on acetic acid colitis model via Nrf2/HO-1 pathway in rats. Methods: In this study, 30 rats were divided into three groups. Acute colitis was induced by rectal administration of 4% solution of acetic acid. MSCs were injected intraperitoneally in the treatment group. Results: Increased levels of tumor necrosis factor-α (TNF-α), pentraxin-3, and malondialdehyde (MDA) in colitis group were revealed biochemically. Increased level of TNF-α and decreased levels of Nrf2 and interleukin-10 (IL-10) were observed in rectum tissues. Increased fibrous tissue proliferation, vascularization and inflammatory cell infiltration were described in the colitis group. Significant improvement was observed in MSCs treated group histopathologically. Increased immunopositivity of TNF-α, vascular endothelial growth factor (VEGF) and CD68 markers was observed in the colitis group cells, and decreased level of this positivity was observed in MSCs treated group. Conclusions: Biochemical, histopathological and immunohistochemical results strongly support the ameliorative effect of MSCs against acetic induced colitis model via Nrf2/HO-1 pathway in rats.
Subject(s)
Animals , Rats , Colitis/veterinary , Acetic Acid/adverse effects , Vascular Endothelial Growth Factor A/physiology , NF-E2-Related Factor 2 , Mesenchymal Stem CellsABSTRACT
Angiogenesis inhibitors targeting the VEGF signaling pathway are developed into drugs for the treatment of vaious diseases, such as cancer, rheumatoid arthritis, and age-related macular degeneration. Recent studies have revealed that oleanolic acid (OA), a natural pentacyclic triterpenoid, inhibited the VEGF/VEGFR2 signaling pathway and angiogenesis in HUVECs, which may represent an attractive VEGF inhibitor. In this paper, rational structural modification towards OA was performed in order to improve its inhibitory effects aganist VEGF and anti-angiogenesis potential. As a result, a series of novel OA derivatives, possessing α,β-unsaturated ketone system in ring A and amide functional group at C-28, were prepared and evaluated for cytotoxicity and their ability to inhibit VEGF-induced abnormal proliferation of HUVECs. The results showed that two promising derivatives, OA-1 and OA-16, exhibited no in vitro cytotoxicity against HUVECs but showed more potent inhibitory activity against VEGF-induced proliferation and angiogenesis in HUVECs, compared with OA. The results of Western blot indicated that OA-1 and OA-16 inhibited VEGF-induced VEGFR2 activation. Furthermore, small interfering RNA experiments were performed to confirm that both compounds inhibited VEGF-induced angiogenesis via VEGFR2. Thus, the present study resulted in the discovery of new promising OA-inspired VEGF inhibitors, which can serve as potential lead compounds for the treatment of angiogenesis-related diseases.
Subject(s)
Cell Movement , Cell Proliferation , Human Umbilical Vein Endothelial Cells , Humans , Oleanolic Acid/pharmacology , Vascular Endothelial Growth Factor A/metabolismABSTRACT
Vascular endothelial growth factor (VEGF) is the main regulator of physiological angiogenesis during embryonic development, bone growth, and reproductive function, and it also participates in a series of pathological changes. Traditional Chinese medicine (TCM), with a history of more than 2000 years, has been widely used in clinical practice, while the exploration of its mechanisms has only begun. This review summarizes the research of recent years on the influence of TCM on VEGF. It is found that many Chinese medicines and recipes have a regulatory effect on VEGF, indicating that Chinese medicine has broad prospects as a complementary and alternative therapy, providing new treatment ideas for clinical applications and the theoretical basis for research on the mechanisms of TCM.
Subject(s)
Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Vascular Endothelial Growth Factor AABSTRACT
Vascular damage is followed by vascular endothelial growth factor (VEGF) expression at high levels, which is an important mechanism for cerebral radiation necrosis (CRN) development. Antiangiogenic agents (Bevacizumab) alleviates brain edema symptoms caused by CRN through inhibiting VEGF and acting on vascular tissue around the brain necrosis area. Many studies have confirmed that Bevacizumab effectively relieves symptoms caused by brain necrosis, improves patients' performance status and brain necrosis imaging. Considering that the efficacy of antiangiogenic therapy is mainly related to the duration of drug action, low-dose antiangiogenic agents can achieve favorable efficacy. Prevention is the best treatment. The occurrence of CRN is associated with tumor-related factors and treatment-related factors. By controlling these factors, CRN can be effectively prevented. .
Subject(s)
Angiogenesis Inhibitors/pharmacology , Bevacizumab/therapeutic use , Brain/metabolism , Consensus , Humans , Lung Neoplasms/drug therapy , Necrosis/etiology , Radiation Injuries/etiology , Vascular Endothelial Growth Factor A/metabolismABSTRACT
Mesenchymal stem cells (MSCs) secrete various cytokines with angiogenic and neuroprotective effects. This study aimed to assess the effects of human umbilical cord Wharton's jelly-derived MSCs (hWJ-MSCs) on diabetes-related intracavernosal pressure (ICP) impairment in rats. hWJ-MSCs were isolated from human umbilical cord Wharton's jelly and transplanted into the corpus cavernosum of streptozotocin (STZ)-induced diabetic rats by unilateral injection. The erectile function was evaluated at 4 weeks, as well as the expression levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), endothelial nitric oxide synthase (eNOS), and insulin-like growth factor 1 (IGF1). STZ-induced diabetic rats showed impaired ICP, which was significantly improved by hWJ-MSC treatment. VEGF, eNOS, IGF1, and bFGF expression levels were higher in hWJ-MSC injection sites than those in control ones in STZ-induced diabetic rats. These results suggest that hWJ-MSC transplantation might improve diabetic erectile dysfunction through increased production of paracrine growth factors, highlighting a novel potential therapeutic option for erectile dysfunction.
Subject(s)
Animals , Cell Differentiation , Diabetes Mellitus, Experimental/therapy , Erectile Dysfunction/therapy , Humans , Male , Mesenchymal Stem Cell Transplantation/methods , Rats , Umbilical Cord , Vascular Endothelial Growth Factor A , Wharton JellyABSTRACT
OBJECTIVE@#To observe the effects of Taohong Siwu Decoction(, THSWD) on the mesenchymal stem cells(MSCs) migration, homing number and cytokine expression in callus during the early process of fracture healing, and to explore the mechanism of THSWD on accelerationg fracture healing by regulating the homing of MSCs in rats.@*METHODS@#A rat model of right femoral shaft open fracture was established. Thirty-two 5-week-old male Sprague-Dawley rats, weighting 110 to 130 g, were divided into control group, low-dose group, medium-dose group and high-dose group by using random number table. Distilled water was given to the control group, and the other groups were given Taohong Siwu Decoction. The rats were gavaged twice a day for 5 consecutive days after surgery. Bone volume/tissue volume(BV/TV) and bone mineral density(BMD) were observed using micro-computed tomography (micro-CT) at 21 days after surgery. At 5 days post-fracture, peripheral blood MSCs from THSWD treated and untreated rats were cultured in vitro. Subsequently, the migration ability of MSCs was observed by cell migration assay. The number of MSCs homing to the callus at the early stage of fracture (5 d) was detected by Immunohistochemistry (IHC). Protein chip was used to detect the expression of cytokines in callus.@*RESULTS@#Micro-CT results showed that BV/TV was higher in the high-dose group than in the medium-dose group (P=0.032), and higher in the medium-dose group than in the low-dose group(P=0.041), with no difference between the control and low-dose group (P=0.651). In addition, there was no difference in BMD between low-dose group and the model group (P=0.671), and lower in the low-dose group than in the medium-dose group(P=0.018), and the medium-dose group was lower than the high-dose group(P=0.008). Cell migration assay showed that THSWD promotes enhanced the migration ability of peripheral blood MSCs. IHC assay revealed that CD45-, CD90+, CD29+ MSCs significantly increased in bone callus after THSWD intervention compared with the control group. Protein chip showed that THSWD promoted the upregulation of CINC-1(×2.91), CINC-3(×1.59), LIX(×1.5), Thymus Chemokine (×2.55), VEGF (×1.22) and the down-regulation of TIMP-1 (×2.98).@*CONCLUSION@#THSWD, a representative formula of "promoting blood circulation and removing blood stasis", can significantly accelerate fracture healing, and its mechanism may be related to enhancing the migration ability of peripheral blood MSCs and up-regulating CINC-1, CINC-3, LIX, Thymus Chemokine, VEGF and down-regulating TIMP-1 in bone callus, which promotes the peripheral blood MSCs homing in the early stage of fracture.
Subject(s)
Animals , Drugs, Chinese Herbal , Fracture Healing , Fractures, Bone/drug therapy , Humans , Male , Mesenchymal Stem Cells , Rats , Rats, Sprague-Dawley , Tissue Inhibitor of Metalloproteinase-1/pharmacology , Vascular Endothelial Growth Factor A , X-Ray MicrotomographyABSTRACT
OBJECTIVE@#To investigate the safety and efficacy of a new proteasome inhibitor Ixazomib followed by autologous hematopoietic stem cell transplantation (AHSCT) in the treatment of POEMS syndrome.@*METHODS@#The clinical manifestations, diagnosis and treatment process and follow-up results of 4 patients with POEMS syndrome who were treated with Ixazomib-based regimen combined with AHSCT in Wuhan No.1 Hospital from February 2018 to July 2020 were analyzed retrospectively. All patients were male, aged from 37-54 years old, with varying degrees of peripheral neuropathy, organ enlargement (liver, spleen or lymph nodes), circulatory overload (peripheral edema and/or pleural effusion), osteosclerosis, endocrine diseases (thyroid, gonads, etc.), skin changes (pigmentation, hemangioma, white nails, etc.), M protein, papilledema and other clinical manifestations and characteristics at the time of initial treatment. Two patients were pathologically diagnosed as hyaline vascular Castleman disease by lymph node biopsy. Three patients underwent lumbar puncture examinations and all showed elevated cerebrospinal fluid protein. All patients received at least 2 cycles of sequential AHSCT after induction chemotherapy based on ixazomib. The follow-up time was 10-28 months, and the median follow-up time was 16 months.@*RESULTS@#All cases survived. The complications were controllable during the treatment. Moreover, the clinical symptoms related to the disease were improved to a certain extent after the treatment. The levels of vascular endothelial growth factor (VEGF) showed a gradual decline.@*CONCLUSION@#Ixazomib combined with AHSCT is safe and effective in the treatment of POEMS syndrome.
Subject(s)
Adult , Boron Compounds , Glycine/analogs & derivatives , Hematopoietic Stem Cell Transplantation , Humans , Male , Middle Aged , POEMS Syndrome/therapy , Retrospective Studies , Transplantation, Autologous , Vascular Endothelial Growth Factor AABSTRACT
Breast cancer is the most common cancer in the world, and 5-year survival rate of metastatic breast cancer is about 20%. The treatment of metastatic breast cancer is mainly chemotherapy, endocrine therapy and targeted therapy. However, after multiline treatment, patients with MBC especially the triple negative breast cancer face the problem of drug resistance. Tumor angiogenesis theory suggests that blocking angiogenesis can inhibit tumor growth and migration. Based on this, angiogenesis treatment strategy is proposed. Antiangiogenic drugs mainly include biological macromolecular drugs targeting vascular endothelial growth factor (VEGF) or vascular endothelial growth factor receptor (VEGFR) and small molecule VEGFR inhibitors. Angiogenesis is known to play a key role in the growth and metastasis of breast cancer. Therefore, anti-angiogenetic therapy has potential in metastatic breast cancer patients. Since the approval of tumor drug indications by NPMA in China is often later than the release of the latest research data, the National Health Commission issued "the guiding principles for the clinical application of new antitumor drugs" in 2020. The principle pointed out that under special circumstances such as the absence of better treatment, medical institutions should manage the usage of drugs that are not clearly defined in the instructions but have evidence-based data. Based on the latest research progress in breast cancer, the consensus writing expert group collated published reports, international academic conferences, conducted analysis, discussion and summary, collected data on the use of small molecule anti-vascular targeting drugs for advanced breast cancer, and formulated "expert consensus on the application of small molecule anti-angiogenic drugs in the treatment of advanced breast cancer" . For clinicians' reference only.
Subject(s)
Angiogenesis Inhibitors/therapeutic use , Breast Neoplasms/pathology , Consensus , Female , Humans , Neovascularization, Pathologic/pathology , Off-Label Use , Vascular Endothelial Growth Factor A/metabolismABSTRACT
OBJECTIVE@#To investigate the effects of wogonoside on high glucose-induced dysfunction of human retinal microvascular endothelial cells (hRMECs) and streptozotocin (STZ)-induced diabetic retinopathy in rats and explore the underlying molecular mechanism.@*METHODS@#HRMECs in routine culture were treated with 25 mmol/L mannitol or exposed to high glucose (30 mmol/L glucose) and treatment with 10, 20, 30, 40 μmol/L wogonoside. CCK-8 assay and Transwell assay were used to examine cell proliferation and migration, and the changes in tube formation and monolayer cell membrane permeability were tested. ROS, NO and GSH-ST kits were used to evaluate oxidative stress levels in the cells. The expressions of IL-1β and IL-6 in the cells were examined with qRT-PCR and ELISA, and the protein expressions of VEGF, HIF-1α and SIRT1 were detected using Western blotting. We also tested the effect of wogonoside on retinal injury and expressions of HIF-1α, ROS, VEGF, TNF-α, IL-1β, IL-6 and SIRT1 proteins in rat models of STZ-induced diabetic retinopathy.@*RESULTS@#High glucose exposure caused abnormal proliferation and migration, promoted angiogenesis, increased membrane permeability (P < 0.05), and induced inflammation and oxidative stress in hRMECs (P < 0.05). Wogonoside treatment concentration-dependently inhibited high glucose-induced changes in hRMECs. High glucose exposure significantly lowered the expression of SIRT1 in hRMECs, which was partially reversed by wogonoside (30 μmol/L) treatment; interference of SIRT1 obviously attenuated the inhibitory effects of wogonoside against high glucose-induced changes in proliferation, migration, angiogenesis, membrane permeability, inflammation and oxidative stress in hRMECs. In rat models of STZ-induced diabetic retinopathy, wogonoside effectively suppressed retinal thickening (P < 0.05), alleviated STZ-induced retinal injury, and increased the expression of SIRT1 in the retinal tissues (P < 0.001).@*CONCLUSION@#Wogonoside alleviates retinal damage caused by diabetic retinopathy by up-regulating SIRT1 expression.
Subject(s)
Animals , Diabetes Mellitus/metabolism , Diabetic Retinopathy/metabolism , Endothelial Cells , Flavanones , Glucose/pharmacology , Glucosides , Inflammation/metabolism , Interleukin-6/metabolism , Neovascularization, Pathologic/metabolism , Rats , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Streptozocin/pharmacology , Vascular Endothelial Growth Factor A/metabolismABSTRACT
Objective: To investigate the effects of exosomes from human adipose-derived mesenchymal stem cells (ADSCs) on inflammatory response of mouse RAW264.7 cells and wound healing of full-thickness skin defects in mice. Methods: The experimental research methods were adopted. The discarded adipose tissue was collected from 3 female patients (aged 10-25 years) who underwent abdominal surgery in the First Affiliated Hospital of Air Force Medical University. ADSCs were extracted from the adipose tissue by collagenase Ⅰ digestion and identified with flow cytometry. Exosomes were extracted from the human ADSCs by differential ultracentrifugation, the morphology of the exosomes was observed by transmission electron microscopy, the particle diameter of the exosomes was detected by nanoparticle tracking analyzer, and the protein expressions of CD9, CD63, tumor susceptibility gene 101 (TSG101), and β-actin were detected by Western blotting. The human ADSCs exosomes (ADSCs-Exos) and RAW264.7 cells were co-cultured for 12 h, and the uptake of RAW264.7 cells for human ADSCs-Exos was observed. The RAW264.7 cells were divided into phosphate buffer solution (PBS) group stimulated with PBS for suitable time, endotoxin/lipopolysaccharide (LPS) stimulation 2 h group, LPS stimulation 4 h group, LPS stimulation 6 h group, LPS stimulation 12 h group, and LPS stimulation 24 h group stimulated with LPS for corresponding time, with 3 wells in each group, and the mRNA expressions of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), IL-6, and IL-10 were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction (RT-PCR) method. The RAW264.7 cells were divided into PBS group, LPS alone group, and LPS+ADSCs-Exos group, with 3 wells in each group, which were dealt correspondingly for the time screened out in the previous experiment, the mRNA expressions of IL-1β, TNF-α, IL-6, IL-10, trasforming growth factor β (TGF-β,) and vascular endothelial growth factor (VEGF) were detected by real time fluorescence quantitative RT-PCR method, and the protein expressions of inducible nitric oxide synthase (iNOS) and arginase 1 (Arg1) were detected by Western blotting. Twenty-four 8-week-old male BALB/c mice were divided into PBS group and ADSCs-Exos group according to the random number table, with 12 mice in each group, and a full-thickness skin defect wound with area of 1 cm×1 cm was inflicted on the back of each mouse. Immediately after injury, the wounds of mice in the two groups were dealt correspondingly. On post injury day (PID) 1, the concentration of IL-1β and TNF-α in serum were detected by enzyme-linked immunosorbent assay, and the mRNA expressions of IL-1β, TNF-α, and IL-6 were detected by real time fluorescence quantitative RT-PCR method. On PID 3, 6, 9, 12, and 15, the wound healing was observed and the wound non-healing rate was calculated. On PID 15, the defect length of skin accessory and collagen volume fraction (CVF) were detected by hematoxylin eosin staining and Masson staining, respectively, the CD31 expression and neovascularization were detected by immunohistochemistry, and the ratio of Ki67 positive cells, the ratio of iNOS and Arg1 double positive cells, and the ratio of iNOS positive cells to Arg1 positive cells and their fluorescence intensities were detected by immunofluorescence method. The number of samples in animal experiments was 6. Data were statistically analyzed with analysis of variance for repeated measurement, one-way analysis of variance, and independent sample t test. Results: At 12 h of culture, the cells exhibited a typical spindle shape, which were verified as ADSCs with flow cytometry. The exosomes with a vesicular structure and particle diameters of 29-178 nm, were positively expressed CD9, CD63, and TSG101 and negatively expressed β-actin. After 12 h of co-culture, the human ADSCs-Exos were endocytosed into the cytoplasm by RAW264.7 cells. The mRNA expressions of IL-1β, TNF-α, IL-6, and IL-10 of RAW264.7 cells in LPS stimulation 2 h group, LPS stimulation 4 h group, LPS stimulation 6 h group, LPS stimulation 12 h group, and LPS stimulation 24 h group were significantly higher than those in PBS group (with t) values of 39.10, 14.55, 28.80, 4.74, 48.80, 22.97, 13.25, 36.34, 23.12, 18.71, 29.19, 41.08, 11.68, 18.06, 8.54, 43.45, 62.31, 22.52, 21.51, and 37.13, respectively, P<0.01). The stimulation 12 h with significant expressions of all the inflammatory factors was selected as the time point in the following experiment. After stimulation of 12 h, the mRNA expressions of IL-1β, TNF-α, IL-6, and IL-10 of RAW264.7 cells in LPS alone group were significantly higher than those in PBS group (with t values of 44.20, 51.26, 14.71, and 8.54, respectively, P<0.01); the mRNA expressions of IL-1β, TNF-α, and IL-6 of RAW264.7 cells in LPS+ADSCs-Exos group were significantly lower than those in LPS alone group (with t values of 22.89, 25.51, and 8.03, respectively, P<0.01), while the mRNA expressions of IL-10, TGF-β, and VEGF were significantly higher than those in LPS alone group (with t values of 9.89, 13.12, and 7.14, respectively, P<0.01). After stimulation of 12 h, the protein expression of iNOS of RAW264.7 cells in LPS alone group was significantly higher than that in PBS group and LPS+ADSCs-Exos group, respectively (with t values of 11.20 and 5.06, respectively, P<0.05 or P<0.01), and the protein expression of Arg1 was significantly lower than that in LPS+ADSCs-Exos group (t=15.01, P<0.01). On PID 1, the serum concentrations of IL-1β and TNF-α and the mRNA expressions of IL-1β, TNF-α, and IL-6 in wound tissue of mice in ADSCs-Exos group were significantly those in lower than PBS group (with t values of 15.44, 12.24, 9.24, 7.12, and 10.62, respectively, P<0.01). On PID 3, 6, 9, 12, and 15 d, the wound non-healing rates of mice in ADSCs-Exos group were (73.2±4.1)%, (53.8±3.8)%, (42.1±5.1)%, (24.1±2.8)%, and 0, which were significantly lower than (82.5±3.8)%, (71.2±4.6)%, (52.9±4.1)%, (41.5±3.6)%, and (14.8±2.5)% in PBS group, respectively (with t values of 4.77, 8.93, 5.54, 7.63, and 7.59, respectively, P<0.01). On PID 15, the defect length of skin accessory in wounds of mice in PBS group was significantly longer than that in ADSCs-Exos group (t=9.50, P<0.01), and the CVF was significantly lower than that in ADSCs-Exos group (t=9.15, P<0.01). On PID 15, the CD31 expression and the number of new blood vessels (t=12.99, P<0.01), in wound tissue of mice in ADSCs-Exos group were significantly more than those in PBS group, and the ratio of Ki67 positive cells was significantly higher than that in PBS group (t=7.52, P<0.01). On PID 15, the ratio of iNOS and Arg1 double positive cells in wound tissue of mice in PBS group was (12.33±1.97)%, which was significantly higher than (1.78±0.29)% in ADSCs-Exos group (t=13.04, P<0.01), the ratio of iNOS positive cells and the fluorescence intensity of iNOS were obviously higher than those of ADSCs-Exos group, and the ratio of Arg1 positive cells and the fluorescence intensity of Arg1 were obviously lower than those of ADSCs-Exos group. Conclusions: The human ADSCs-Exos can alleviate inflammatory response of mouse RAW264.7 cells, decrease macrophage infiltration and secretion of the pro-inflammatory cytokines, increase the secretion of anti-inflammatory cytokines to promote neovascularization and cell proliferation in full-thickness skin defect wounds of mice, hence accelerating wound healing.