Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.461
Filter
1.
Int. j. morphol ; 42(1): 40-45, feb. 2024. ilus, tab
Article in English | LILACS | ID: biblio-1528826

ABSTRACT

SUMMARY: Angiogenesis, a process by which new blood vessels are generated from pre-existing ones, is significantly compromised in tumor development, given that due to the nutritional need of tumor cells, pro-angiogenic signals will be generated to promote this process and thus receive the oxygen and nutrients necessary for its development, in addition to being a key escape route for tumor spread. Although there is currently an increase in the number of studies of various anti-angiogenic therapies that help reduce tumor progression, it is necessary to conduct a review of existing studies of therapeutic alternatives to demonstrate their importance.


La angiogénesis, proceso por el cual se generan nuevos vasos sanguíneos a partir de otros preexistentes, se encuentra comprometida de forma importante en el desarrollo tumoral, dado que por necesidad nutritiva de las células tumorales se generarán señales pro angiogénicas para promover este proceso y así recibir el oxígeno y los nutrientes necesarios para su desarrollo, además de ser una ruta de escape clave para la diseminación tumoral. Si bien, actualmente existe un aumento en la cantidad de estudios de diversas terapias anti angiogénicas que ayudan a reducir el avance tumoral, es necesario realizar una revisión de los estudios existentes de alternativas terapéuticas para demostrar su importancia.


Subject(s)
Humans , Angiogenesis Inhibitors/therapeutic use , Celecoxib/therapeutic use , Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Cyclooxygenase 2 Inhibitors , Neoplasms/pathology , Antineoplastic Agents/therapeutic use
2.
Protein & Cell ; (12): 36-51, 2024.
Article in English | WPRIM | ID: wpr-1010778

ABSTRACT

Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.


Subject(s)
Humans , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Transcription Factors/metabolism , Gene Expression Regulation , Hypoxia/metabolism , Cell Hypoxia/physiology
3.
Acta Medica Philippina ; : 1-6, 2024.
Article in English | WPRIM | ID: wpr-1006603

ABSTRACT

Background and Objectives@#Intraperitoneal injection (i.p.) of D-galactose (D-gal) accelerates aging and develops aging models. A low dose of long-term use and a high dose of short-term use of D-gal can induce natural aging in mice, like brain, cardiac, liver, renal, and skin aging, and erectile dysfunction. Our research aims to determine whether a high dose of short-term use of D-gal. i.p. in rats can induce natural aging and affect the following parameters: body weight (BW), Superoxide Dismutase (SOD), Vascular endothelial growth factor (VEGF), C-reactive protein (CRP), and myostatin.@*Methods@#A daily D-gal i.p. dose of 300 mg/ml/kg for seven days was carried out to induce aging parameters in the rats. After seven days, the body and gastrocnemius circumference of the rats were weighed, and biochemical analysis for SOD, VEGF, CRP, and myostatin in the blood plasma was done.@*Results@#The data obtained were analyzed using nonparametric statistics Friedman test and Mann-Whitney test. After the seven day-intervention, both the control (NaCl 0.9% i.p.) and the high dose of short-term use of D-gal i.p. groups showed no significant difference in the body weight and gastrocnemius circumference. However, D-gal administration could increase the blood plasma level of SOD, VEGF, CRP, and myostatin.@*Conclusion@#We conclude that a high dose of short-term intraperitoneal D-galactose can be administrated to induce aging in rat models. The SOD, VEGF, CRP and myostatin can be used as aging parameters.


Subject(s)
Aging , Galactose , Myostatin , Vascular Endothelial Growth Factor A
4.
Chinese journal of integrative medicine ; (12): 243-250, 2024.
Article in English | WPRIM | ID: wpr-1010328

ABSTRACT

OBJECTIVE@#To investigate the effects of Danmu Extract Syrup (DMS) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and explore the mechanism.@*METHODS@#Seventy-two male Balb/C mice were randomly divided into 6 groups according to a random number table (n=12), including control (normal saline), LPS (5 mg/kg), LPS+DMS 2.5 mL/kg, LPS+DMS 5 mL/kg, LPS+DMS 10 mL/kg, and LPS+Dexamethasone (DXM, 5 mg/kg) groups. After pretreatment with DMS and DXM, the ALI mice model was induced by LPS, and the bronchoalveolar lavage fluid (BALF) were collected to determine protein concentration, cell counts and inflammatory cytokines. The lung tissues of mice were stained with hematoxylin-eosin, and the wet/dry weight ratio (W/D) of lung tissue was calculated. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1 β in BALF of mice were detected by enzyme linked immunosorbent assay. The expression levels of Claudin-5, vascular endothelial (VE)-cadherin, vascular endothelial growth factor (VEGF), phospho-protein kinase B (p-Akt) and Akt were detected by Western blot analysis.@*RESULTS@#DMS pre-treatment significantly ameliorated lung histopathological changes. Compared with the LPS group, the W/D ratio and protein contents in BALF were obviously reduced after DMS pretreatment (P<0.05 or P<0.01). The number of cells in BALF and myeloperoxidase (MPO) activity decreased significantly after DMS pretreatment (P<0.05 or P<0.01). DMS pre-treatment decreased the levels of TNF-α, IL-6 and IL-1 β (P<0.01). Meanwhile, DMS activated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway and reversed the expressions of Claudin-5, VE-cadherin and VEGF (P<0.01).@*CONCLUSIONS@#DMS attenuated LPS-induced ALI in mice through repairing endothelial barrier. It might be a potential therapeutic drug for LPS-induced lung injury.


Subject(s)
Mice , Male , Animals , Proto-Oncogene Proteins c-akt/metabolism , Lipopolysaccharides , Phosphatidylinositol 3-Kinases/metabolism , Interleukin-1beta/metabolism , Vascular Endothelial Growth Factor A/metabolism , Tumor Necrosis Factor-alpha/metabolism , Claudin-5/metabolism , Acute Lung Injury/chemically induced , Lung/pathology , Interleukin-6/metabolism , Drugs, Chinese Herbal
5.
Int. j. morphol ; 41(1): 45-50, feb. 2023.
Article in English | LILACS | ID: biblio-1430521

ABSTRACT

SUMMARY: Neuropeptide calcitonin gene-related peptide (CGRP) is a neurotransmitter related to vasculogenesis during organ development. The vascular endothelial growth factor A (VEGF-A) is also required for vascular patterning during lung morphogenesis. CGRP is primarily found in organs and initially appears in pulmonary neuroendocrine cells during the early embryonic stage of lung development. However, the relationship between CGRP and VEGF-A during lung formation remains unclear. This study investigates CGRP and VEGF-A mRNA expressions in the embryonic, pseudoglandular, canalicular, saccular, and alveolar stages of lung development from embryonic day 12.5 (E12.5) to postnatal day 5 (P5) through quantitative real-time polymerase chain reaction (qRT-PCR) and in situ hybridization. Further, we analyzed the expression of CGRP via immunohistochemistry. The VEGF-A mRNA was mainly scattered across the whole lung body from E12.5. CGRP was found to be expressed in a few epithelial cells of the canalicular and the respiratory bronchiole of the lung from E12.5 to P5. An antisense probe for CGRP mRNA was strongly detected in the lung from E14.5 to E17.5. Endogenous CGRP may regulate the development of the embryonic alveoli from E14.5 to E17.5 in a temporal manner.


El péptido relacionado con el gen de la calcitonina (CGRP) es un neurotransmisor vinculado con la vasculogénesis durante el desarrollo de órganos. El factor de crecimiento endotelial vascular A (VEGF-A) también se requiere para el patrón vascular durante la morfogénesis pulmonar. El CGRP se encuentra principalmente en los órganos y aparece inicialmente en las células neuroendocrinas pulmonares durante la etapa embrionaria temprana del desarrollo pulmonar. Sin embargo, la relación entre CGRP y VEGF-A durante la formación de los pulmones sigue sin estar clara. Este estudio investiga las expresiones de ARNm de CGRP y VEGF-A en las etapas embrionaria, pseudoglandular, canalicular, sacular y alveolar del desarrollo pulmonar desde el día embrionario 12,5 (E12,5) hasta el día postnatal 5 (P5) a través de la reacción en cadena de la polimerasa cuantitativa en tiempo real. (qRT-PCR) e hibridación in situ. Además, analizamos la expresión de CGRP mediante inmunohistoquímica. El ARNm de VEGF-A se dispersó principalmente por todo parénquima pulmonar desde E12,5. Se encontró que CGRP se expresaba en unas pocas células epiteliales de los bronquiolos canaliculares y respiratorios del pulmón desde E12,5 a P5. Se detectó fuertemente una sonda antisentido para ARNm de CGRP en el pulmón de E14,5 a E17,5. El CGRP endógeno puede regular el desarrollo de los alvéolos embrionarios de E14,5 a E17,5 de manera temporal.


Subject(s)
Animals , Mice , Calcitonin Gene-Related Peptide/metabolism , Vascular Endothelial Growth Factor A/metabolism , Lung/growth & development , Lung/embryology , Immunohistochemistry , In Situ Hybridization , Neurotransmitter Agents , Neovascularization, Physiologic
6.
Journal of Zhejiang University. Medical sciences ; (6): 766-776, 2023.
Article in English | WPRIM | ID: wpr-1009947

ABSTRACT

OBJECTIVES@#To explore the effect of hydrogel loaded with exosomes from Wharton's Jelly-derived mesenchymal stem cell (WJMSC) on wound healing.@*METHODS@#Exosomes were extracted from WJMSC, and the morphology and size of WJMSC-derived exosomes (WEX) were analyzed by transmission electron microscopy and nanoparticle size analyzer, respectively. The surface markers CD9, CD81, and Calnexin of WEX were detected by Western blotting. Exosome-loaded alginate hydrogel (WEX-gel) was prepared; its morphology was studied by scanning electron microscope, and its rheological behavior was examined by a rheometer. The in vitro drug release performance of WEX-gel was investigated by BCA method. RAW264.7 cells were treated with alginate hydrogel, WEX and WEX-gel, respectively; and the expression of CD86 and CD206 in macrophages was detected by flow cytometry. A full-thickness skin wound model was established in mice; the model mice were randomly divided into blank control group, WEX control group and WEX-gel group, and PBS, WEX and WEX-gel were applied to the wound area of mice, respectively. On day 3, the skin tissue of mice was excised, and the antibacterial effect of WEX hydrogel was evaluated by plate counting. On day 15, the mice were euthanized and the percentage of residual wounds was calculated. The histological changes of the skin wound were observed after hematoxylin and eosin (HE) and Masson stainings. The expression of CD86, CD206, CD31 and vascular endothelial growth factor (VEGF) in the skin wound tissue was detected by immunohistochemistry.@*RESULTS@#Exosomes were successfully extracted from WJMSC. WEX-gel presented a regular three-dimensional network structure, good rheology and controlled drug release performance. WEX-gel promoted the polarization of RAW264.7 cells from the M1 phenotype to M2 phenotype in vitro. The residual wound percentage in blank control group, WEX control group and WEX-gel group were (27.5±3.4)%, (15.3±1.2)% and (7.6±1.1)%, respectively (P<0.05). The antibacterial property of WEX-gel is better than that of WEX (P<0.05). The dermis thickness, the number of new hair follicles, and the rate of collagen deposition in the WEX-gel group were significantly higher than those in the other two groups (all P<0.05). The expression of CD206, CD31 and VEGF in skin wound tissue was higher and the expression of CD86 was lower in WEX-gel group than those in other two groups (all P<0.05).@*CONCLUSIONS@#WEX-gel can significantly promote wound healing in mice by regulating the polarization of macrophages.


Subject(s)
Mice , Animals , Vascular Endothelial Growth Factor A , Wharton Jelly , Exosomes , Hydrogels , Wound Healing/physiology , Mesenchymal Stem Cells , Anti-Bacterial Agents , Alginates
7.
Chinese Journal of Contemporary Pediatrics ; (12): 1131-1136, 2023.
Article in Chinese | WPRIM | ID: wpr-1009859

ABSTRACT

OBJECTIVES@#To investigate the expression of interleukin-37 (IL-37), vascular endothelial growth factor A (VEGFA), and transforming growth factor-β1 (TGF-β1) in children with primary immune thrombocytopenia (ITP) and their correlation with T cells.@*METHODS@#A retrospective analysis was conducted on 45 children with ITP (ITP group) who were admitted to Handan Central Hospital from January 2020 to April 2022, and 30 healthy children who underwent physical examination during the same period were included as the healthy control group. The mRNA expression levels of IL-37, VEGFA, and TGF-β1 and the levels of regulatory T cells (Treg) and helper T cells 17 (Th17) were measured before and after treatment, and the correlation between the mRNA expression levels of IL-37, VEGFA, and TGF-β1 and the levels of Treg, Th17, and Treg/Th17 ratio were analyzed.@*RESULTS@#Compared with the healthy control group, the ITP group had a significantly higher mRNA expression level of IL-37 and a significantly higher level of Th17 before and after treatment, as well as significantly lower mRNA expression levels of VEGFA and TGF-β1 and significantly lower levels of Treg and Treg/Th17 ratio (P<0.05). After treatment, the ITP group had significant reductions in the mRNA expression level of IL-37 and the level of Th17 and significant increases in the mRNA expression levels of VEGFA and TGF-β1 and the levels of Treg and Treg/Th17 ratio (P<0.05). Correlation analysis showed that in the ITP group, the mRNA expression levels of IL-37 and TGF-β1 were negatively correlated with the levels of Treg and Treg/Th17 ratio (P<0.05) and were positively correlated with the level of Th17 (P<0.05) before and after treatment; the mRNA expression level of VEGFA was positively correlated with the levels of Treg and Treg/Th17 ratio (P<0.05) and was negatively correlated with the Th17 level (P<0.05) before and after treatment.@*CONCLUSIONS@#Abnormal expression levels of IL-37, VEGFA, and TGF-β1 may be observed in children with ITP, which is significantly associated with the imbalance of Treg/Th17 ratio. It is speculated that the cytokines such as IL-37, VEGFA, and TGF-β1 may be involved in the development and progression of ITP or may become important potential targets for the treatment of children with ITP. Citation:Chinese Journal of Contemporary Pediatrics, 2023, 25(11): 1131-1136.


Subject(s)
Child , Humans , Interleukins , Purpura, Thrombocytopenic, Idiopathic , Retrospective Studies , RNA, Messenger/metabolism , T-Lymphocytes, Regulatory , Th17 Cells/metabolism , Transforming Growth Factor beta1/genetics , Vascular Endothelial Growth Factor A/genetics
8.
Chinese Journal of Cellular and Molecular Immunology ; (12): 1108-1113, 2023.
Article in Chinese | WPRIM | ID: wpr-1009462

ABSTRACT

Objective To identify immune-related dysregulation mechanisms and potential diagnostic predictive biomarkers in osteoporosis. Methods Gene expression data for both osteoporosis and control populations were retrieved from the GSE35958 and GSE56815 datasets. Immune-related differentially expressed genes (DEGs) were obtained by screening DEGs and were compared with the immunology database and analysis portal (ImmPort) database. Enrichment analysis of these immune-related DEGs was conducted using the Clusterprofiler software package. A protein-protein interaction network was built with the STRING database, which is a search tool for finding interacting genes/proteins, and the top 10 genes with the highest network connectivity were identified as candidate genes. Subsequently, the diagnostic predictive effect of candidate genes was evaluated using receiver operating characteristic (ROC) curves, logistic regression, and column plots. Finally, PCR and Western blot analysis were applied to detect the differential expression of these genes in bone marrow tissue of patients with osteoporosis. Results A total of 138 immune-related DEGs were obtained through intersection analysis. The results of the enrichment analysis indicated that these genes were involved in biological functions such as immune inflammation and signaling pathways including T cell receptors, mitogen activated protein kinase (MAPK), rat sarcoma virus oncogene homologs (Ras), osteoclast differentiation, and B cell receptors. In addition, among the candidate genes, upregulated vascular endothelial growth factor A (VEGFA) and epidermal growth factor receptor (EGFR) and downregulated AKT1, SRC, and JUN in osteoporosis showed the highest connectivity. Among them, VEGFA, EGFR, JUN, and AKT1 demonstrated the best diagnostic predictive value. Conclusion The screening of immune-related DEGs will enhance the understanding of osteoporosis and facilitate the development of immunotherapy targets.


Subject(s)
Humans , Vascular Endothelial Growth Factor A/genetics , Biomarkers , Osteoporosis/genetics , Computational Biology/methods , ErbB Receptors/genetics , Gene Expression Profiling/methods
9.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 1523-1532, 2023.
Article in Chinese | WPRIM | ID: wpr-1009093

ABSTRACT

OBJECTIVE@#To investigate whether the Runx2 gene can induce the differentiation of human amniotic mesenchymal stem cells (hAMSCs) to ligament fibroblasts in vitro and promote the tendon-bone healing in rabbits.@*METHODS@#hAMSCs were isolated from the placentas voluntarily donated from healthy parturients and passaged, and then identified by flow cytometric identification. Adenoviral vectors carrying Runx2 gene (Ad-Runx2) and empty vector adenovirus (Ad-NC) were constructed and viral titer assay; then, the 3rd generation hAMSCs were transfected with Ad-Runx2 (Ad-Runx2 group) or Ad-NC (Ad-NC group). The real-time fluorescence quantitative PCR and Western blot were used to detect Runx2 gene and protein expression to verify the effectiveness of Ad-Runx2 transfection of hAMSCs; and at 3 and 7 days after transfection, real-time fluorescence quantitative PCR was further used to detect the expressions of ligament fibroblast-related genes [vascular endothelial growth factor (VEGF), collagen type Ⅰ, Fibronectin, and Tenascin-C]. The hAMSCs were used as a blank control group. The hAMSCs, hAMSCs transfected with Ad-NC, and hAMSCs were mixed with Matrigel according to the ratio of 1 : 1 and 1 : 2 to construct the cell-scaffold compound. Cell proliferation was detected by cell counting kit 8 (CCK-8) assay, and the corresponding cell-scaffold compound with better proliferation were taken for subsequent animal experiments. Twelve New Zealand white rabbits were randomly divided into 4 groups of sham operation group (Sham group), anterior cruciate ligament reconstruction group (ACLR group), anterior cruciate ligament reconstruction+hAMSCs transfected with Ad-NC-scaffold compound group (Ad-NC group), and anterior cruciate ligament reconstruction+hAMSCs transfected with Ad-Runx2-scaffold compound group (Ad-Runx2 group), with 3 rabbits in each group. After preparing the ACL reconstruction model, the Ad-NC group and the Ad-Runx2 group injected the optimal hAMSCs-Matrigel compunds into the bone channel correspondingly. The samples were taken for gross, histological (HE staining and sirius red staining), and immunofluorescence staining observation at 1 month after operation to evaluate the inflammatory cell infiltration as well as collagen and Tenascin-C content in the ligament tissues.@*RESULTS@#Flow cytometric identification of the isolated cells conformed to the phenotypic characteristics of MSCs. The Runx2 gene was successfully transfected into hAMSCs. Compared with the Ad-NC group, the relative expressions of VEGF and collagen type Ⅰ genes in the Ad-Runx2 group significantly increased at 3 and 7 days after transfection ( P<0.05), Fibronectin significantly increased at 3 days ( P<0.05), and Tenascin-C significantly increased at 3 days and decreased at 7 days ( P<0.05). CCK-8 detection showed that there was no significant difference ( P>0.05) in the cell proliferation between groups and between different time points after mixed culture of two ratios. So the cell-scaffold compound constructed in the ratio of 1∶1 was selected for subsequent experiments. Animal experiments showed that at 1 month after operation, the continuity of the grafted tendon was complete in all groups; HE staining showed that the tissue repair in the Ad-Runx2 group was better and there were fewer inflammatory cells when compared with the ACLR group and the Ad-NC group; sirius red staining and immunofluorescence staining showed that the Ad-Runx2 group had more collagen typeⅠ and Ⅲ fibers, tending to form a normal ACL structure. However, the fluorescence intensity of Tenascin-C protein was weakening when compared to the ACLR and Ad-NC groups.@*CONCLUSION@#Runx2 gene transfection of hAMSCs induces directed differentiation to ligament fibroblasts and promotes tendon-bone healing in reconstructed anterior cruciate ligament in rabbits.


Subject(s)
Pregnancy , Female , Humans , Rabbits , Animals , Vascular Endothelial Growth Factor A/metabolism , Fibronectins/metabolism , Collagen Type I/genetics , Tenascin/metabolism , Collagen/metabolism , Anterior Cruciate Ligament/surgery , Mesenchymal Stem Cells , Tendons/metabolism , Fibroblasts/metabolism
10.
Chinese Journal of Reparative and Reconstructive Surgery ; (12): 1514-1522, 2023.
Article in Chinese | WPRIM | ID: wpr-1009092

ABSTRACT

OBJECTIVE@#To investigate the feasibility of a dual-crosslinked injectable hydrogel derived from acellular musclar matrix (AMM) for promoting myoblasts proliferation and myogenic differentiation.@*METHODS@#Firstly, hyaluronic acid was oxidized with NaIO 4 and methylated to prepare methacrylamidated oxidized hyaluronic acid (MOHA). Then, AMM obtained by washing enzymatically treated muscle tissue was aminolyzed to prepare aminated AMM (AAMM). MOHA hydrogel and AAMM were crosslinked using Schiff based reaction and UV radiation to prepare a dual-crosslinked MOHA/AAMM injectable hydrogel. Fourier transform infrared spectroscopy (FTIR) was used to characterize MOHA, AAMM, and MOHA/AAMM hydrogels. The injectability of MOHA/AAMM hydrogel were evaluated by manual injection, and the gelation performance was assessed by UV crosslinking. The rheological properties and Young's modulus of the hydrogel were examined through mechanical tests. The degradation rate of the hydrogel was assessed by immersing it in PBS. The active components of the hydrogel were verified using immunofluorescence staining and ELISA assay kits. The promotion of cell proliferation by the hydrogel was tested using live/dead staining and cell counting kit 8 (CCK-8) assays after co-culturing with C2C12 myoblasts for 9 days. The effect of the hydrogel on myogenic differentiation was evaluated by immunofluorescence staining and real time quantitative polymerase chain reaction (RT-qPCR).@*RESULTS@#FTIR spectra confirmed the successful preparation of MOHA/AAMM hydrogel. The hydrogel exhibited good injectability and gelation ability. Compared to MOHA hydrogel, MOHA/AAMM hydrogel exhibited higher viscosity and Young's modulus, a reduced degradation rate, and contained a higher amount of collagen (including collagen type Ⅰ and collagen type Ⅲ) as well as bioactive factors (including epidermal growth factor, fibroblast growth factor 2, vascular endothelial growth factor, and insulin-like growth factor 1). The live/dead cell staining and CCK-8 assay indicated that with prolonged incubation time, there was a significant increase in viable cells and a decrease in dead cells in the C2C12 myoblasts within the MOHA/AAMM hydrogel. Compared with MOHA hydrogel, the difference was significant at each time point ( P<0.05). Immunofluorescence staining and RT-qPCR analysis demonstrated that the deposition of IGF-1 and expression levels of myogenic-related genes (including Myogenin, Troponin T, and myosin heavy chain) in the MOHA/AAMM group were significantly higher than those in the MOHA group ( P<0.05).@*CONCLUSION@#The MOHA/AAMM hydrogel prepared based on AMM can promote myoblasts proliferation and myogenic differentiation, providing a novel dual-crosslinked injectable hydrogel for muscle tissue engineering.


Subject(s)
Hydrogels , Hyaluronic Acid/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Tissue Engineering/methods , Cell Differentiation , Myoblasts/metabolism , Cell Proliferation
11.
China Journal of Chinese Materia Medica ; (24): 6572-6581, 2023.
Article in Chinese | WPRIM | ID: wpr-1008856

ABSTRACT

Ovarian cancer is one of the three major cancers in gynecology. Ovarian cancer has insidious symptoms in its early stages and mostly has progressed to advanced stages when detected. Surgical treatment combined with chemotherapy is currently the main treatment, but the 5-year survival rate is still less than 45%. Angiogenesis is a key step in the growth and metastasis of ovarian cancer. The inhibition of ovarian cancer angiogenesis has become a new hotspot in anti-tumor targeted therapy, which has many advantages such as less drug resistance, high specificity, few side effects, and broad anti-tumor spectrum. Modern research has confirmed that traditional Chinese medicine(TCM) can inhibit tumor angiogenesis by inhibiting the expression of pro-angiogenic factors, up-regulating the expression of anti-angiogenic factors, inhibiting the proliferation of vascular endothelial cells, reducing the density of tumor microvessels, and regulating related signaling pathways, with unique advantages in the treatment of ovarian cancer. This paper presented a review of the role of TCM in inhibiting ovarian cancer angiogenesis in order to provide references for the optimization of clinical ovarian cancer treatment strategies.


Subject(s)
Humans , Female , Medicine, Chinese Traditional , Vascular Endothelial Growth Factor A/metabolism , Endothelial Cells/metabolism , Angiogenesis , Angiogenesis Inhibitors/therapeutic use , Ovarian Neoplasms/genetics , Neovascularization, Pathologic/genetics
12.
China Journal of Chinese Materia Medica ; (24): 6414-6422, 2023.
Article in Chinese | WPRIM | ID: wpr-1008841

ABSTRACT

This study investigated the therapeutic effect of Shegan Mahuang Decoction(SGMHD) on cold-induced asthma in rats and explored its underlying mechanism. Seventy-two healthy male SD rats of specific pathogen free(SPF) grade were randomly divided into a blank group, a model group, a positive control group(dexamethasone, 0.4 mg·kg~(-1)), and low-, medium-, and high-dose SGMHD groups(3.2, 6.4, and 12.8 g·kg~(-1)). The blank group received saline, while the other groups were sensitized by intraperitoneal injection of ovalbumin(OVA) solution. Subsequently, the rats were placed in a cold chamber adjustable to 0-2 ℃, and OVA solution was ultrasonically nebulized to induce cold-induced asthma in rats. After three weeks of treatment, the general behaviors of rats were observed. Hematoxylin-eosin(HE) staining was used to evaluate pathological changes in lung tissues, periodic acid-Schiff(PAS) staining assessed mucin changes, and Masson staining was performed to examine collagen deposition. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of the inflammatory factors interleukin-4(IL-4) and vascular endothelial growth factor(VEGF) in serum and bronchoalveolar lavage fluid(BALF). Real-time quantitative polymerase chain reaction(RT-PCR) was employed to assess the mRNA expression levels of transient receptor potential vanilloid subfamily member 1(TRPV1), nuclear respiratory factor 1(NRF-1), and mitochondrial transcription factor A(mtTFA) in lung tissues. Western blot was used to measure the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues. Compared with the blank group, the model group exhibited signs of rapid respiration, increased frequency of defecation with looser stools, and disheveled and dull fur. Pathological results showed significant infiltration of inflammatory cells in lung tissues, narrowing of bronchial lumens, increased mucin secretion, and enhanced collagen deposition in the model group. Additionally, the levels of IL-4 and VEGF in serum and BALF were significantly elevated, and the mRNA and protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were significantly increased. Compared with the model group, SGMHD improved the behaviors of rats, alleviated pathological changes in lung tissues, mucin production, and collagen deposition, significantly decreased the levels of IL-4 and VEGF in serum and BALF, and reduced the mRNA expression levels of TRPV1, NRF-1, and mtTFA in lung tissues, with the medium-dose SGMHD group showing the most significant effect. Moreover, the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were also reduced, with the medium-dose SGMHD group exhibiting the most significant effect. In conclusion, this study demonstrates that SGMHD can alleviate airway inflammation and inhibit airway remodeling in cold-induced asthma rats. These effects may be associated with the modulation of the TRPV1/NRF-1/mtTFA signaling pathway.


Subject(s)
Rats , Male , Animals , Mice , Interleukin-4/metabolism , Vascular Endothelial Growth Factor A/metabolism , Rats, Sprague-Dawley , Asthma/genetics , Lung , Bronchoalveolar Lavage Fluid , RNA, Messenger/metabolism , Collagen/metabolism , Mucins/therapeutic use , Ovalbumin , Disease Models, Animal , Mice, Inbred BALB C , TRPV Cation Channels/metabolism , Drugs, Chinese Herbal
13.
China Journal of Chinese Materia Medica ; (24): 6128-6141, 2023.
Article in Chinese | WPRIM | ID: wpr-1008812

ABSTRACT

The approach combining disease, syndrome, and symptom was employed to investigate the characteristic changes of blood stasis syndrome in a rat model of steroid-induced osteonecrosis of the femoral head(SONFH) during disease onset and progression. Seventy-two male SD rats were randomized into a healthy control group and a model group. The rat model of SONFH was established by injection of lipopolysaccharide(LPS) in the tail vein at a dose of 20 μg·kg~(-1)·d~(-1) on days 1 and 2 and gluteal intramuscular injection of methylprednisolone sodium succinate(MPS) at a dose of 40 mg·kg~(-1)·d~(-1) on days 3-5, while the healthy control group received an equal volume of saline. The mechanical pain test, tongue color RGB technique, gait detection, open field test, and inclined plane test were employed to assess hip pain, tongue color, limping, joint activity, and lower limb strength, respectively, at different time points within 21 weeks of modeling. At weeks 2, 4, 8, 12, 16, and 21 after modeling, histopathological changes of the femoral head were observed by hematoxylin-eosin(HE) staining and micro-CT scanning; four coagulation items were measured by rotational thromboelastometry; and enzyme-linked immunosorbent assay(ELISA) was employed to determine the levels of six blood lipids, vascular endothelial growth factor(VEGF), endothelin-1(ET-1), nitric oxide(NO), tissue-type plasminogen activator(t-PA), plasminogen activator inhibitor factor-1(PAI-1), bone gla protein(BGP), alkaline phosphatase(ALP), receptor activator of nuclear factor-κB(RANKL), osteoprotegerin(OPG), and tartrate-resistant acid phosphatase 5b(TRAP5b) in the serum, as well as the levels of 6-keto-prostaglandin 1α(6-keto-PGF1α) and thromboxane B2(TXB2) in the plasma. The results demonstrated that the pathological alterations in the SONFH rats were severer over time. The bone trabecular area ratio, adipocyte number, empty lacuna rate, bone mineral density(BMD), bone volume/tissue volume(BV/TV), trabecular thickness(Tb.Th), trabecular number(Tb.N), bone surface area/bone volume(BS/BV), and trabecular separation(Tb.Sp) all significantly increased or decreased over the modeling time after week 4. Compared with the healthy control group, the mechanical pain threshold, gait swing speed, stride, standing time, and walking cycle of SONFH rats changed significantly within 21 weeks after modeling, with the greatest difference observed 12 weeks after modeling. The time spent in the central zone, rearing score, and maximum tilt angle in the open field test of SONFH rats also changed significantly over the modeling time. Compared with the healthy control group, the R, G, and B values of the tongue color of the model rats decreased significantly, with the greatest difference observed 11 weeks after modeling. The levels of total cholesterol(TC), total triglycerides(TG), low-density lipoprotein-cholesterol(LDL-C), and apoprotein B(ApoB) in the SONFH rats changed significantly 4 and 8 weeks after modeling. The levels of VEGF, ET-1, NO, t-PA, PAI-1, 6-keto-PGF1α, TXB2, four coagulation items, and TXB2/6-keto-PGF1α ratio in the serum of SONFH rats changed significantly 4-16 weeks after modeling, with the greatest differences observed 12 weeks after modeling. The levels of BGP, TRAP5b, RANKL, OPG, and RANKL/OPG ratio in the serum of SONFH rats changed significantly 8-21 weeks after modeling. During the entire onset and progression of SONFH in rats, the blood stasis syndrome characteristics such as hyperalgesia, tongue color darkening, gait abnormalities, platelet, vascular, and coagulation dysfunctions were observed, which gradually worsened and then gradually alleviated in the disease course(2-21 weeks), with the most notable differences occurred around 12 weeks after modeling.


Subject(s)
Rats , Male , Animals , Femur Head/pathology , Plasminogen Activator Inhibitor 1/adverse effects , Vascular Endothelial Growth Factor A , Femur Head Necrosis/pathology , Rats, Sprague-Dawley , Steroids , Pain , Cholesterol
14.
China Journal of Chinese Materia Medica ; (24): 6115-6127, 2023.
Article in Chinese | WPRIM | ID: wpr-1008811

ABSTRACT

This study aimed to explore the mechanism of Zhongfeng Xingnao Decoction(ZFXN) in intervening microcirculatory di-sorders in cerebral hemorrhage by network pharmacology and molecular docking techniques. The information on the components of ZFXN was obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) database, and the predicted targets of chemical components were obtained from PubChem and SwissTargetPrediction. The relevant targets of cerebral hemorrhage and microcirculatory disorders were collected from the GeneCards database, and the common targets of the components and diseases were analyzed by the Database for Annotation, Visualization, and Integrated Discovery(DAVID) for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. Visualization of the correlation network was carried out using Cytoscape software to further screen important chemical components for molecular docking prediction with disease targets. The animal experiment validation was performed using modified neurological severity score(mNSS), enzyme-linked immunosorbent assay(ELISA), quantitative real-time polymerase chain reaction(qRT-PCR), immunofluorescence, and Western blot to detect the effects of ZFXN intervention in mice with cerebral hemorrhage. The results showed that there were 31 chemical components and 856 targets in the four drugs contained in ZFXN, 173 targets for microcirculatory disorders in cerebral hemorrhage, and 57 common targets for diseases and components. The enrichment analysis showed that common targets were mainly involved in biological processes, such as cell proliferation and apoptosis, and signaling pathways, such as tumor pathway, viral infection, phosphoinositide-3-kinase/protein kinase B(PI3K/AKT) signaling pathway, and mitogen-activated protein kinase(MAPK) signaling pathway. Molecular docking results revealed that the common components β-sitosterol of Rhei Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Ginseng Radix et Rhizoma Rubra showed good docking with proto-oncogene tyrosine-protein kinase(SRC), signal transducer and activator of transcription 3(STAT3), phosphoinositide-3-kinase catalytic alpha polypeptide gene(PIK3CA), recombinant protein tyrosine phosphatase non receptor type 11(PTPN11), AKT1, epidermal growth factor receptor(EGFR), calcium adhesion-associated protein beta 1(CTNNB1), vascular endothelial growth factor A(VEGFA), and tumor protein p53(TP53). Moreover, sennoside E of Rhei Radix et Rhizoma showed good docking with MAPK1. The results revealed that the ZFXN relieved the neural injury in mice with cerebral hemorrhage, decreased the expression of S100 calcium-binding protein B(S100β), neuron specific enolase(NSE), matrix metalloproteinase 9(MMP9), tumor necrosis factor α(TNF-α), interleukin 1β(IL-1β), SRC, EGFR, CTNNB1, VEGFA, TP53, glial fibrillary acidic protein(GFAP), and leukocyte differentiation antigen 86(CD86), and increased the expression of p-PI3K, p-AKT, and zona occludens 1(ZO-1). The results indicate that ZFXN may inhibit neuronal apoptosis and inflammatory response through PI3K/AKT/p53 pathway to protect the blood-brain barrier, thereby slowing down microcirculatory impairment in cerebral hemorrhage.


Subject(s)
Animals , Mice , Tumor Suppressor Protein p53 , Proto-Oncogene Proteins c-akt , Molecular Docking Simulation , Network Pharmacology , Vascular Endothelial Growth Factor A , Microcirculation , Phosphatidylinositol 3-Kinases/genetics , Tumor Necrosis Factor-alpha , ErbB Receptors , Cerebral Hemorrhage/drug therapy , Neoplasms , Phosphatidylinositols , Drugs, Chinese Herbal/pharmacology
15.
China Journal of Chinese Materia Medica ; (24): 5993-6002, 2023.
Article in Chinese | WPRIM | ID: wpr-1008797

ABSTRACT

Vascular dementia(VD) is a condition of cognitive impairment due to acute and chronic cerebral hypoperfusion. The available therapies for VD mainly focus on mitigating cerebral ischemia, improving cognitive function, and controlling mental behavior. Achievements have been made in the basic and clinical research on the treatment of VD with traditional Chinese medicine(TCM) active components, including Ginkgo leaf extract, puerarin, epimedium, tanshinone, and ginsenoside. Most of these components have anti-inflammatory, anti-apoptotic, anti-oxidant, and neuroprotective effects, and puerarin demonstrates excellent performance in mitigating cholinergic nervous system disorders and improving synaptic plasticity. Puerarin, ginkgetin, and epimedium are all flavonoids, while tanshinone is a diterpenoid. Puerariae Lobatae Radix, pungent in nature, can induce clear Yang to reach the cerebral orifices and has the wind medicine functions of ascending, dispersing, moving, and scurrying. Puerariae Lobatae Radix entering collaterals will dredge blood vessels to promote blood flow, and that entering the sweat pore will open the mind, which is in line with the TCM pathogenesis characteristics of VD. This study reviews the progress in the mechanism of puerarin, the main active component of Puerariae Lobatae Radix, in treating VD. Puerarin can ameliorate cholinergic nervous system disorders, reduce excitotoxicity, anti-inflammation, inhibit apoptosis, alleviate oxidative stress injury, enhance synaptic plasticity, up-regulate neuroprotective factor expression, promote cerebral circulation metabolism, and mitigate Aβ injury. The pathways of action include activating nuclear factor erythroid 2-related factor 2(Nrf2)/antioxidant response element(ARE), vascular endothelial growth factor(VEGF), extracellular regulated protein kinases(ERK), phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt), Janus-activating kinase 2(JAK2)/signal transducer and activator of transcription 3(STAT3), AMP-activated protein kinase(AMPK), as well as inhibiting the tumor necrosis factor α(TNF-α), transient receptor potential melastatin 2(TRPM2)/N-methyl-D-aspartate receptor(NMDAR), p38 mitogen-activated protein kinase(p38 MAPK), Toll-like receptor 4(TLR4)/nuclear factor-kappaB(NF-κB), early growth response 1(Egr-1), and matrix metalloproteinase 9(MMP-9). By reviewing the papers about the treatment of VD by puerarin published by CNKI, Wanfang, VIP, PubMed, and Web of Science in the last 10 years, this study aims to support the treatment and drug development for VD.


Subject(s)
Humans , Dementia, Vascular/drug therapy , Vascular Endothelial Growth Factor A , NF-kappa B/metabolism , Antioxidants , Brain Ischemia , Cholinergic Agents
16.
China Journal of Chinese Materia Medica ; (24): 5871-5880, 2023.
Article in Chinese | WPRIM | ID: wpr-1008785

ABSTRACT

This study investigated the neuroprotective effects and underlying mechanism of Liujing Toutong Tablets(LJTT) on a rat model of permanent middle cerebral artery occlusion(pMCAO). The pMCAO model was established using the suture method. Eighty-four male SPF-grade SD rats were randomly divided into a sham operation group, a model group, a nimodipine group(0.020 g·kg~(-1)), and high-, medium-, and low-dose LJTT groups(2.8, 1.4, and 0.7 g·kg~(-1)). The Longa score, adhesive removal test and laser speckle contrast imaging technique were used to evaluate the degree of neurological functional impairment and changes in local cerebral blood flow. The survival and mortality of rats in each group were recorded daily. After seven days of continuous administration following the model induction, the rats in each group were euthanized, and brain tissue and blood samples were collected for corresponding parameter measurements. Nissl staining was used to examine pathological changes in brain tissue neurons. The levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), IL-1β, vascular endothelial growth factor(VEGF), calcitonin gene-related peptide(CGRP), beta-endorphin(β-EP), and endogenous nitric oxide(NO) in rat serum were measured using specific assay kits. The entropy weight method was used to analyze the weights of various indicators. The protein expression levels of nuclear factor kappa-B(NF-κB), inhibitor kappaB alpha(IκBα), phosphorylated IκBα(p-IκBα), and phosphorylated inhibitor of NF-κB kinase alpha(p-IKKα) in brain tissue were determined using Western blot. Immunohistochemistry was used to detect the protein expression of chemokine-like factor 1(CKLF1) and C-C chemokine receptor 5(CCR5) in rat brain tissue. Compared with the sham operation group, the model group showed significantly higher neurological functional impairment scores, prolonged adhesive removal time, decreased cerebral blood flow, increased neuronal damage, reduced survival rate, significantly increased levels of TNF-α, IL-1β, IL-6, CGRP, and NO in serum, significantly decreased levels of VEGF and β-EP, significantly increased expression levels of NF-κB p65, p-IκBα/IκBα, and p-IKKα in rat brain tissue, and significantly upregulated protein expression of CKLF1 and CCR5. Compared with the model group, the high-dose LJTT group significantly improved the neurological functional score of pMCAO rats after oral administration for 7 days. LJTT at all doses significantly reduced adhesive removal time and restored cerebral blood flow. The high-and medium-dose LJTT groups significantly improved neuronal damage. The LJTT groups at all doses showed reduced levels of TNF-α, IL-1β, IL-6, CGRP, and NO in rat serum, increased VEGF and β-EP levels, and significantly decreased expression levels of NF-κB p65, p-IκBα/IκBα, p-IKKα, and CCR5 protein in rat brain tissue. The entropy weight analysis revealed that CGRP and β-EP were significantly affected during the model induction, and LJTT exhibited a strong effect in reducing the release of inflammatory factors such as TNF-α and IL-1β. LJTT may exert a neuroprotective effect on rats with permanent cerebral ischemia by reducing neuroinflammatory damage, and its mechanism may be related to the inhibition of the NF-κB signaling pathway and the regulation of the CKLF1/CCR5 axis. Additionally, LJTT may exert certain analgesic effects by reducing CGRP and NO levels and increasing β-EP levels.


Subject(s)
Rats , Male , Animals , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/metabolism , Vascular Endothelial Growth Factor A/genetics , I-kappa B Kinase/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Interleukin-6/genetics , Calcitonin Gene-Related Peptide/pharmacology , Rats, Sprague-Dawley , Signal Transduction , Brain Ischemia/drug therapy , Tablets
17.
China Journal of Chinese Materia Medica ; (24): 4446-4458, 2023.
Article in Chinese | WPRIM | ID: wpr-1008699

ABSTRACT

The present study aimed to explore the therapeutic effect and mechanism of non-polysaccharide fraction of Bletillae Rhizoma in the treatment of gastric ulcer by network pharmacology and animal experiments. UPLC-Q-TOF-MS/MS was employed to chara-cterize the chemical components of non-polysaccharide fraction of Bletillae Rhizoma, and the common targets of Bletillae Rhizoma and gastric ulcer were screened out by network pharmacology. The "drug-component-target-disease" network was constructed. Protein-protein interaction(PPI) network was established by STRING. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were performed based on Matescape database to predict the therapeutic effect and mechanism of Bletillae Rhizoma. Finally, the gastric ulcer model was induced in mice by alcohol to verify the therapeutic effect and mechanism of non-polysaccharide fraction of Bletillae Rhizoma on gastric ulcer. Forty-seven chemical components were identified from non-polysaccharide fraction of Bletillae Rhizoma, among which gymnoside Ⅰ, gymnoside Ⅱ, militarine, bletilloside A, and shancigusin I might be the main active components of non-polysaccharide fraction of Bletillae Rhizoma against gastric ulcer. PPI network analysis revealed core targets such as albumin(ALB), serine/threonine kinase 1(AKT1), tumor necrosis factor(TNF), and epidermal growth factor receptor(EGFR). The KEGG enrichment analysis showed that non-polysaccharide fraction of Bletillae Rhizoma mainly exerted the therapeutic effect by regulating the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT) signaling pathway, mitogen-activated protein kinase(MAPK) signaling pathway, and Ras signaling pathway. The results of animal experiments showed that non-polysaccharide fraction of Bletillae Rhizoma could significantly improve alcohol-induced ulceration in mice to increase ulcer inhibition rate, decrease the levels of TNF-α, interleukin(IL)-1β, IL-6, vasoactive intestinal peptide(VIP), and thromboxane B2(TXB2), elevated the le-vels of IL-10, prostaglandin E2(PGE2), epidermal growth factor(EGF), and vascular endothelial growth factor(VEGF), down-re-gulate the protein levels of PI3K and AKT, and up-regulate the protein levels of p-PI3K and p-AKT. This study indicates that Bletillae Rhizoma may play a role in the treatment of gastric ulcer through multiple components, targets, and pathways and verifies partial prediction results of network pharmacology. The findings of this study provide a scientific and experimental basis for clinical application.


Subject(s)
Animals , Mice , Stomach Ulcer/drug therapy , Proto-Oncogene Proteins c-akt , Animal Experimentation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Tandem Mass Spectrometry , Vascular Endothelial Growth Factor A , Tumor Necrosis Factor-alpha , Molecular Docking Simulation , Drugs, Chinese Herbal/pharmacology
18.
China Journal of Chinese Materia Medica ; (24): 4852-4863, 2023.
Article in Chinese | WPRIM | ID: wpr-1008655

ABSTRACT

The material basis and mechanism of Chaenomelis Fructus in the treatment of rheumatoid arthritis(RA) were explored by network pharmacology, and the potential anti-RA targets of Chaenomelis Fructus were verified by molecular docking and animal experiments. The active components and targets of Chaenomelis Fructus were searched against the Traditional Chinese Medicine System Pharmacology Database and Analysis Platform. GeneCards, DisGeNET, and OMIM were used to obtain RA-related targets. The common targets shared by Chaenomelis Fructus and RA were considered as the potential targets of Chaenomelis Fructus in the treatment of RA. Cytoscape 3.9.0 was employed to establish a "traditional Chinese medicine-active component-common target-disease" network. The protein-protein interaction(PPI) network was established by STRING, and the core genes were visualized by RStudio 4.1.0. DAVID was used for Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment to predict and visualize the involved signaling pathways. Molecular docking was carried out with the active components screened out as ligands and RA core genes as the targets. Finally, the prediction results were verified by animal experiments. Four main active components of Chaenomelis Fructus were obtained, which corresponded to 137 targets. Chaenomelis Fructus and RA shared 37 common targets. GO annotation yielded 239 terms(P<0.05), and KEGG pathway enrichment analysis screened out 94 signaling pathways(P<0.05), mainly involving interleukin-17(IL-17), tumor necrosis factor, Toll-like receptor, and nuclear factor-kappa B(NF-κB) signaling pathways. Molecular docking results showed that the main active components of Chaenomelis Fructus bound well with the core targets of RA. The results of animal experiments proved that Chaenomelis Fructus can alleviate joint swelling in the mice with RA. The results of ELISA showed that Chaenomelis Fructus lowered the levels of interleukin-6(IL-6) and interleukin-1β(IL-1β). Western blot showed that Chaenomelis Fructus down-regulated the protein level of vascular endothelial growth factor A(VEGFA). Chaenomelis Fructus exerts anti-inflammatory effect and reduces pannus formation by regulating the core targets such as VEGFA, IL-1β, and IL6 in the treatment of RA. The findings of this study provide new ideas for the future treatment of RA with Chaenomelis Fructus.


Subject(s)
Animals , Mice , Network Pharmacology , Vascular Endothelial Growth Factor A , Molecular Docking Simulation , Arthritis, Rheumatoid/genetics , Tumor Necrosis Factor-alpha , NF-kappa B , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional
19.
Journal of Southern Medical University ; (12): 1093-1101, 2023.
Article in Chinese | WPRIM | ID: wpr-987026

ABSTRACT

OBJECTIVE@#To investigate the effects of Naoluo Xintong Decoction (NLXTD) on pyroptosis and angiogenesis of brain microvascular endothelial cells (BMECs) and explore the possible mechanisms in rats with oxygen-glucose deprivation/ reperfusion (OGD/R).@*METHODS@#Rat BMECs with or without caspase-1 siRNA transfection were cultured in the presence of 10% medicated serum from NLXTD-treated rats (or blank serum) and exposed to OGD/R. CCK-8 assay, Transwell chamber assay, and tube formation assay were used to assess proliferation, migration, and tube-forming abilities of the cells. The activity of lactate dehydrogenase (LDH) in the culture supernatant was determined using a commercial assay kit, and the levels of inflammatory factors IL-1β and IL-18 were detected with ELISA. The cellular expressions of pro-caspase-1, caspase-1, NLRP3, Gasdermin D, and angiogenesis-related proteins VEGF and VEGFR2 were detected using Western blotting.@*RESULTS@#The BMECs showed obvious injuries after OGD/R exposure. Compared with the blank serum, the medicated serum significantly improved the cell viability, migration ability, and lumen-forming ability (P < 0.01) and lowered the levels of IL-1β and IL-18 and the LDH release (P < 0.01) of the cells with OGD/R exposure. Western blotting showed that in the BMECs exposed to OGD/R, the medicated serum strongly upregulated the expression of VEGF and VEGFR2 proteins (P < 0.01) and reduced the protein expressions of pro-caspase-1, caspase-1, NLRP3, and Gasdermin D (P < 0.01), and transfection of the cells with caspase-1 siRNA further promoted the expressions of VEGFR2 protein in the cells (P < 0.01).@*CONCLUSION@#NLXTD can improve the proliferation, migration, and tube- forming ability and promote angiogenesis of BMECs with OGD/R injury probably by inhibiting the caspase-1/Gasdermin D pathway in pyroptosis, alleviating cell injury, and upregulating the expressions of VEGF and VEGFR2.


Subject(s)
Animals , Rats , Endothelial Cells , Caspase 1 , Gasdermins , Interleukin-18 , NLR Family, Pyrin Domain-Containing 3 Protein , Vascular Endothelial Growth Factor A , Reperfusion Injury , Brain , Angiogenic Proteins , Glucose
20.
Chinese Journal of Obstetrics and Gynecology ; (12): 911-921, 2023.
Article in Chinese | WPRIM | ID: wpr-1012298

ABSTRACT

Objective: To perform intrauterine adhesion modeling, and to investigate the repair effect of hypoxic treated bone marrow mesenchymal stem cells (BMSC) and their derived exosomes (BMSC-exo) on endometrial injury. Methods: BMSC and their exosomes BMSC-exo extracted from rats' femur were cultured under conventional oxygen condition (21%O2) or hypoxia condition (1%O2). Intrauterine adhesion modeling was performed on 40 healthy female SD rats by intrauterine injection of bacterial lipopolysaccharide after curettage. On the 28th day of modeling, 40 rat models were randomly divided into five groups, and interventions were performed: (1) NC group: 0.2 ml phosphate buffered solution was injected into each uterine cavity; (2) BMSC group: 0.2 ml BMSC (1×106/ml) with conventional oxygen culture was injected intrauterine; (3) L-BMSC group: 0.2 ml of hypoxic cultured BMSC (1×106/ml) was injected intrauterine; (4) BMSC-exo group: 0.2 ml of BMSC-exo cultured with conventional oxygen at a concentration of 500 μg/ml was injected into the uterine cavity; (5) L-BMSC-exo group: 0.2 ml hypoxic cultured BMSC-exo (500 μg/ml) was injected intrauterine. On the 14th and 28th day of treatment, four rats in each group were sacrificed by cervical dislocation after anesthesia, and endometrial tissues were collected. Then HE and Masson staining were used to observe and calculate the number of glands and fibrosis area in the endometrium. The expressions of angiogenesis related cytokines [vascular endothelial growth factor A (VEGFA) and CD31], and fibrosis-related proteins [collagen-Ⅰ, collagen-Ⅲ, smooth muscle actin α (α-SMA), and transforming growth factor β1 (TGF-β1)] in endometrial tissues were detected by western blot. Results: (1) HE and Masson staining showed that the number of endometrial glands in L-BMSC group, BMSC-exo group and L-BMSC-exo group increased and the fibrosis area decreased compared with NC group on the 14th and 28th day of treatment (all P<0.05). Noteworthily, the changes of L-BMSC-exo group were more significant than those of BMSC-exo group (all P<0.05), and the changes of BMSC-exo group were greater than those of BMSC group (all P<0.05). (2) Western blot analysis showed that, compared with NC group, the expressions of collagen-Ⅲ and TGF-β1 in BMSC group, L-BMSC group, BMSC-exo group and L-BMSC-exo group decreased on the 14th and 28th day of treatment (all P<0.05). As the treatment time went on, the expressions of fibrosis-related proteins were different. Compared with BMSC group, the expressions of collagen-Ⅲ, α-SMA and TGF-β1 in the BMSC-exo group and L-BMSC group decreased on the 28th day (all P<0.05). Moreover, the expressions of collagen-Ⅲ and TGF-β1 in L-BMSC-exo group were lower than those in BMSC-exo group on the 28th day (all P<0.05). And the expressions of collagen-Ⅰ, α-SMA and TGF-β1 in L-BMSC-exo group were lower than those in L-BMSC group on the 28th day (all P<0.05). (3) The results of western blot analysis of VEGFA and CD31 showed that, the expressions of VEGFA and CD31 in BMSC group, L-BMSC group, BMSC-exo group and L-BMSC-exo group increased on the 14th and 28th day of treatment compared with NC group (all P<0.05). Treatment for 28 days, the expressions of VEGFA and CD31 in BMSC-exo group and CD31 in L-BMSC group were higher than those in BMSC group (all P<0.05). Moreover, the expressions of VEGFA and CD31 in L-BMSC-exo group were higher than those in BMSC-exo group and L-BMSC group on the 28th day (all P<0.05). Conclusions: Treatment of BMSC and their exosomes BMSC-exo with hypoxia could promote endometrial gland hyperplasia, inhibit tissue fibrosis, and further repair the damaged endometrium in rats with intrauterine adhesion. Importantly, hypoxic treatment of BMSC-exo is the most effective in intrauterine adhesion rats.


Subject(s)
Rats , Female , Humans , Animals , Rats, Sprague-Dawley , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A , Exosomes/metabolism , Uterine Diseases/therapy , Collagen , Hypoxia/therapy , Fibrosis , Mesenchymal Stem Cells/metabolism , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL