Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Añadir filtros








Intervalo de año
1.
Experimental & Molecular Medicine ; : e254-2016.
Artículo en Inglés | WPRIM | ID: wpr-78634

RESUMEN

Mitochondria are crucial for maintaining the properties of embryonic stem cells (ESCs) and for regulating their subsequent differentiation into diverse cell lineages, including cardiomyocytes. However, mitochondrial regulators that manage the rate of differentiation or cell fate have been rarely identified. This study aimed to determine the potential mitochondrial factor that controls the differentiation of ESCs into cardiac myocytes. We induced cardiomyocyte differentiation from mouse ESCs (mESCs) and performed microarray assays to assess messenger RNA (mRNA) expression changes at differentiation day 8 (D8) compared with undifferentiated mESCs (D0). Among the differentially expressed genes, Pdp1 expression was significantly decreased (27-fold) on D8 compared to D0, which was accompanied by suppressed mitochondrial indices, including ATP levels, membrane potential, ROS and mitochondrial Ca²⁺. Notably, Pdp1 overexpression significantly enhanced the mitochondrial indices and pyruvate dehydrogenase activity and reduced the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate compared to a mock control. In confirmation of this, a knockdown of the Pdp1 gene promoted the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate. In conclusion, our results suggest that mitochondrial PDP1 is a potential regulator that controls cardiac differentiation at an early differentiation stage in ESCs.


Asunto(s)
Animales , Ratones , Adenosina Trifosfato , Linaje de la Célula , Células Madre Embrionarias , Potenciales de la Membrana , Mitocondrias , Células Madre Embrionarias de Ratones , Miocitos Cardíacos , Oxidorreductasas , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa , Ácido Pirúvico , ARN Mensajero
2.
The Korean Journal of Physiology and Pharmacology ; : 537-546, 2013.
Artículo en Inglés | WPRIM | ID: wpr-727604

RESUMEN

Deiters' cells are the supporting cells in organ of Corti and are suggested to play an important role in biochemical and mechanical modulation of outer hair cells. We successfully isolated functionally different K+ currents from Deiters' cells of guinea pig using whole cell patch clamp technique. With high K+ pipette solution, depolarizing step pulses activated strongly outward rectifying currents which were dose-dependently blocked by clofilium, a class III anti-arrhythmic K+ channel blocker. The remaining outward current was transient in time course whereas the clofilium-sensitive outward current showed slow inactivation and delayed rectification. Addition of 5 mM tetraethylammonium (TEA) further blocked the remaining current leaving a very fast inactivating transient outward current. Therefore, at least three different types of K+ current were identified in Deiters' cells, such as fast activating and fast inactivating current, fast activating slow inactivating current, and very fast inactivating transient outward current. Physiological role of them needs to be established.


Asunto(s)
Animales , Oído Interno , Cobayas , Guinea , Cabello , Audición , Órgano Espiral , Farmacología , Canales de Potasio , Potasio , Compuestos de Amonio Cuaternario , Tetraetilamonio
3.
Experimental & Molecular Medicine ; : e50-2013.
Artículo en Inglés | WPRIM | ID: wpr-223718

RESUMEN

Bortezomib is a proteasome inhibitor used for the treatment of relapsed/refractory multiple myeloma (MM). However, intrinsic and acquired resistance to bortezomib has already been observed in MM patients. In a previous report, we demonstrated that changes in the expression of mitochondrial genes lead to changes in mitochondrial activity and bortezomib susceptibility or resistance, and their combined effects contribute to the differential sensitivity or resistance of MM cells to bortezomib. Here we report that the combination treatment of bortezomib and 2-methoxyestradiol (2ME), a natural estrogen metabolite, induces mitochondria-mediated apoptotic cell death of bortezomib-resistant MM KMS20 cells via mitochondrial reactive oxygen species (ROS) overproduction. Bortezomib plus 2ME treatment induces a higher level of cell death compared with treatment with bortezomib alone and increases mitochondrial ROS and Ca2+ levels in KMS20 cells. Pretreatment with the antioxidant N-acetyl-L-cysteine scavenges mitochondrial ROS and decreases cell death after treatment with bortezomib plus 2ME in KMS20 cells. Moreover, we observed that treatment with bortezomib plus 2ME maintains the activation of c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase kinase kinase 4/7 (MKK4/7). Collectively, combination treatment with bortezomib and 2ME induces cell death via JNK-MKK4/7 activation by overproduction of mitochondrial ROS. Therefore, combination therapy with specific mitochondrial-targeting drugs may prove useful to the development of novel strategies for the treatment of bortezomib-resistant MM patients.


Asunto(s)
Humanos , Acetilcisteína/farmacología , Apoptosis/efectos de los fármacos , Ácidos Borónicos/farmacología , Calcio/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Estradiol/análogos & derivados , Mitocondrias/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Pirazinas/farmacología , Especies Reactivas de Oxígeno/metabolismo
4.
The Korean Journal of Physiology and Pharmacology ; : 217-239, 2011.
Artículo en Inglés | WPRIM | ID: wpr-727879

RESUMEN

We carried out a series of experiment demonstrating the role of mitochondria in the cytosolic and mitochondrial Ca2+ transients and compared the results with those from computer simulation. In rat ventricular myocytes, increasing the rate of stimulation (1~3 Hz) made both the diastolic and systolic [Ca2+] bigger in mitochondria as well as in cytosol. As L-type Ca2+ channel has key influence on the amplitude of Ca2+-induced Ca2+ release, the relation between stimulus frequency and the amplitude of Ca2+ transients was examined under the low density (1/10 of control) of L-type Ca2+ channel in model simulation, where the relation was reversed. In experiment, block of Ca2+ uniporter on mitochondrial inner membrane significantly reduced the amplitude of mitochondrial Ca2+ transients, while it failed to affect the cytosolic Ca2+ transients. In computer simulation, the amplitude of cytosolic Ca2+ transients was not affected by removal of Ca2+ uniporter. The application of carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) known as a protonophore on mitochondrial membrane to rat ventricular myocytes gradually increased the diastolic [Ca2+] in cytosol and eventually abolished the Ca2+ transients, which was similarly reproduced in computer simulation. The model study suggests that the relative contribution of L-type Ca2+ channel to total transsarcolemmal Ca2+ flux could determine whether the cytosolic Ca2+ transients become bigger or smaller with higher stimulus frequency. The present study also suggests that cytosolic Ca2+ affects mitochondrial Ca2+ in a beat-to-beat manner, however, removal of Ca2+ influx mechanism into mitochondria does not affect the amplitude of cytosolic Ca2+ transients.


Asunto(s)
Animales , Ratas , Simulación por Computador , Citosol , Hidrazonas , Transporte Iónico , Membranas , Mitocondrias , Membranas Mitocondriales , Células Musculares , Nitrilos
5.
The Korean Journal of Physiology and Pharmacology ; : 267-274, 2008.
Artículo en Inglés | WPRIM | ID: wpr-728377

RESUMEN

Since first discovered in chick skeletal muscles, stretch-activated channels (SACs) have been proposed as a probable mechano-transducer of the mechanical stimulus at the cellular level. Channel properties have been studied in both the single-channel and the whole-cell level. There is growing evidence to indicate that major stretch-induced changes in electrical activity are mediated by activation of these channels. We aimed to investigate the mechanism of stretch-induced automaticity by exploiting a recent mathematical model of rat atrial myocytes which had been established to reproduce cellular activities such as the action potential, Ca2+ transients, and contractile force. The incorporation of SACs into the mathematical model, based on experimental results, successfully reproduced the repetitive firing of spontaneous action potentials by stretch. The induced automaticity was composed of two phases. The early phase was driven by increased background conductance of voltage-gated Na+ channel, whereas the later phase was driven by the reverse-mode operation of Na+/Ca2+ exchange current secondary to the accumulation of Na+ and Ca2+ through SACs. These results of simulation successfully demonstrate how the SACs can induce automaticity in a single atrial myocyte which may act as a focus to initiate and maintain atrial fibrillation in concert with other arrhythmogenic changes in the heart.


Asunto(s)
Animales , Ratas , Potenciales de Acción , Fibrilación Atrial , Incendios , Corazón , Modelos Teóricos , Células Musculares , Músculo Esquelético
6.
The Korean Journal of Physiology and Pharmacology ; : 57-64, 2007.
Artículo en Inglés | WPRIM | ID: wpr-728487

RESUMEN

Ischemic preconditioning (IPC) is known to protect the heart against ischemia/reperfusion (IR)-induced injuries, and regional differences in the mitochondrial antioxidant state during IR or IPC may promote the death or survival of viable and infarcted cardiac tissues under oxidative stress. To date, however, the interplay between the mitochondrial antioxidant enzyme system and the level of reactive oxygen species (ROS) in the body has not yet been resolved. In the present study, we examined the effects of IR- and IPC-induced oxidative stresses on mitochondrial function in viable and infarcted cardiac tissues. Our results showed that the mitochondria from viable areas in the IR-induced group were swollen and fused, whereas those in the infarcted area were heavily damaged. IPC protected the mitochondria, thus reducing cardiac injury. We also found that the activity of the mitochondrial antioxidant enzyme system, which includes manganese superoxide dismutase (Mn-SOD), was enhanced in the viable areas compared to the infarcted areas in proportion with decreasing levels of ROS and mitochondrial DNA (mtDNA) damage. These changes were also present between the IPC and IR groups. Regional differences in Mn-SOD expression were shown to be related to a reduction in mtDNA damage as well as to the release of mitochondrial cytochrome c (Cyt c). To the best of our knowledge, this might be the first study to explore the regional mitochondrial changes during IPC. The present findings are expected to help elucidate the molecular mechanism involved in IPC and helpful in the development of new clinical strategies against ischemic heart disease.


Asunto(s)
Animales , Ratas , Citocromos c , Daño del ADN , ADN Mitocondrial , Corazón , Precondicionamiento Isquémico , Mitocondrias , Isquemia Miocárdica , Estrés Oxidativo , Especies Reactivas de Oxígeno , Superóxido Dismutasa , Superóxidos
7.
The Korean Journal of Physiology and Pharmacology ; : 187-193, 2005.
Artículo en Inglés | WPRIM | ID: wpr-727650

RESUMEN

Several signal transduction pathways have been implicated in ischemic preconditioning induced by the activation of ATP-sensitive K+ (KATP) channels. We examined whether protein kinase C (PKC) modulated the activity of KATP channels by recording KATP channel currents in rabbit ventricular myocytes using patch-clamp technique and found that phorbol 12, 13-didecanoate (PDD) enhanced pinacidil-induced KATP channel activity in the cell-attached configuration; and this effect was prevented by bisindolylmaleimide (BIM). KATP channel activity was not increased by 4alpha-PDD. In excised inside-out patches, PKC stimulated KATP channels in the presence of 1 mM ATP, and this effect was abolished in the presence of BIM. Heat-inactivated PKC had no effect on channel activity. PKC-induced activation of KATP channels was reversed by PP2A, and this effect was not detected in the presence of okadaic acid. These results suggest that PKC activates KATP channels in rabbit ventricular myocytes.


Asunto(s)
Adenosina Trifosfato , Precondicionamiento Isquémico , Canales KATP , Células Musculares , Ácido Ocadaico , Técnicas de Placa-Clamp , Proteína Quinasa C , Proteínas Quinasas , Transducción de Señal
8.
The Korean Journal of Physiology and Pharmacology ; : 291-298, 2005.
Artículo en Inglés | WPRIM | ID: wpr-728717

RESUMEN

To characterize cytosolic Ca2+ fluctuations under metabolic inhibition, rat ventricular myocytes were exposed to 200microM 2, 4-dinitrophenol (DNP), and mitochondrial Ca2+, mitochondrial membrane potential (delta psi m), and cytosolic Ca2+ were measured, using Rhod-2 AM, TMRE, and Fluo-4 AM fluorescent dyes, respectively, by Laser Scanning Confocal Microscopy (LSCM). Furthermore, the role of sarcolemmal Na+/Ca2+ exchange (NCX) in cytosolic Ca2+ efflux was studied in KB-R7943 and Na+-free normal Tyrode's solution (143 mM LiCl ). When DNP was applied to cells loaded with Fluo-4 AM, Fluo-4 AM fluorescence intensity initially increased by 70+/-10% within 70+/-10 s, and later by 400+/-200% at 850+/-46 s. Fluorescence intensity of both Rhod-2 AM and TMRE were initially decreased by DNP, coincident with the initial increase of Fluo-4 AM fluorescence intensity. When sarcoplasmic reticulum (SR) Ca2+ was depleted by 1microM thapsigargin plus 10microM ryanodine, the initial increase of Fluo-4 AM fluorescence intensity was unaffected, however, the subsequent progressive increase was abolished. KB-R7943 delayed both the first and the second phases of cytosolic Ca2+ overload, while Na+-free solution accelerated the second. The above results suggest that: 1) the initial rise in cytosolic Ca2+ under DNP results from mitochondrial depolarization; 2) the secondary increase is caused by progressive Ca2+ release from SR; 3) NCX plays an important role in transient cytosolic Ca2+ shifts under metabolic inhibition with DNP.


Asunto(s)
Animales , Ratas , Cafeína , Citosol , Fluorescencia , Colorantes Fluorescentes , Potencial de la Membrana Mitocondrial , Microscopía Confocal , Mitocondrias , Células Musculares , Rianodina , Retículo Sarcoplasmático , Tapsigargina
9.
The Korean Journal of Physiology and Pharmacology ; : 299-304, 2005.
Artículo en Inglés | WPRIM | ID: wpr-728716

RESUMEN

Cardiac hypertrophy contributes an increased risk to major cerebrovascular events. However, the molecular mechanisms underlying cerebrovascular dysfunction during cardiac hypertrophy have not yet been characterized. In the present study, we examined the molecular mechanism of isoproterenol (ISO) -evoked activation of Ras/Raf/MAPK pathways as well as PKA activity in cerebral artery of rabbits, and we also studied whether the activations of these signaling pathways were altered in cerebral artery, during ISO-induced cardiac hypertrophy compared to heart itself. The results show that the mRNA level of c-fos (not c-jun and c-myc) in heart and these genes in cerebral artery were considerably increased during cardiac hypertrophy. These results that the PKA activity and activations of Ras/Raf/ERK cascade as well as c-fos expression in rabbit heart during cardiac hypertrophy were consistent with previous reports. Interestingly, however, we also showed a novel finding that the decreased PKA activity might have differential effects on Ras and Raf expression in cerebral artery during cardiac hypertrophy. In conclusion, there are differences in molecular mechanisms between heart and cerebral artery during cardiac hypertrophy when stimulated with beta2 adrenoreceptor (AR), suggesting a possible mechanism underlying cerebrovascular dysfunction during cardiac hypertrophy.


Asunto(s)
Conejos , Cardiomegalia , Arterias Cerebrales , Corazón , Isoproterenol , ARN Mensajero
10.
The Korean Journal of Physiology and Pharmacology ; : 33-41, 2004.
Artículo en Inglés | WPRIM | ID: wpr-728505

RESUMEN

We developed a cardiac cell model to explain the phenomenon of mechano-electric feedback (MEF), based on the experimental data with rat atrial myocytes. It incorporated the activity of ion channels, pumps, exchangers, and changes of intracellular ion concentration. Changes in membrane excitability and Ca2+ transients could then be calculated. In the model, the major ion channels responsible for the stretch-induced changes in electrical activity were the stretch-activated channels (SACs). The relationship between the extent of stretch and activation of SACs was formulated based on the experimental findings. Then, the effects of mechanical stretch on the electrical activity were reproduced. The shape of the action potential (AP) was significantly changed by stretch in the model simulation. The duration was decreased at initial fast phase of repolarization (AP duration at 20% repolarization level from 3.7 to 2.5 ms) and increased at late slow phase of repolarization (AP duration at 90% repolarization level from 62 to 178 ms). The resting potential was depolarized from -75 to -61 mV. This mathematical model of SACs may quantitatively predict changes in cardiomyocytes by mechanical stretch.


Asunto(s)
Animales , Ratas , Potenciales de Acción , Canales Iónicos , Potenciales de la Membrana , Membranas , Modelos Teóricos , Células Musculares , Miocitos Cardíacos
11.
The Korean Journal of Physiology and Pharmacology ; : 341-348, 2003.
Artículo en Inglés | WPRIM | ID: wpr-727395

RESUMEN

Mechanical stimuli to the cardiac myocytes initiate many biochemical and physiological events. Stretch-activated cation channels have been suggested to mediate these events. In this study, cell-attached and inside-out excised-patch clamp methods were used to identify stretch-activated cation channels in adult rat atrial myocytes. Channel openings were increased in cell-attached configuration when negative pressure was applied to the pipette, and also in inside-out excised patches by negative pressure. The channel was not permeable to Cl-, Na+ and Cs+, but selectively permeable to K+, and the degree of activation was dependent on the magnitude of negative pressure (full activation at ~ -50 mmHg). In symmetrical 140 mM KCl, the slope conductance was 51.2+/-3 pS between the potentials of -80 and 0 mV and 55+/-6 pS between 0 and +80 mV (n=5). Glibenclamide (100 microM) or ATP (2 mM) failed to block the channel openings, indicating that it is not ATP-sensitive K+ channel. Arachidonic acid (30 microM), which has been shown to activate a K+ channel cooperatively with membrane stretch, did not affect the channel activity. GdCl3 (100 microM) also did not alter the activity. These results demonstrate that the mechanical stretch in rat atrial myocytes activates a novel K+ -selective cation channel, which is not associated with other K+ channels such as ATP-sensitive and arachidonic acid-activated K+ channel.


Asunto(s)
Adulto , Animales , Humanos , Ratas , Adenosina Trifosfato , Ácido Araquidónico , Gliburida , Membranas , Células Musculares , Miocitos Cardíacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA