Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Experimental & Molecular Medicine ; : e378-2017.
Artículo en Inglés | WPRIM | ID: wpr-127721

RESUMEN

The main task of skeletal muscle is contraction and relaxation for body movement and posture maintenance. During contraction and relaxation, Ca²⁺ in the cytosol has a critical role in activating and deactivating a series of contractile proteins. In skeletal muscle, the cytosolic Ca²⁺ level is mainly determined by Ca²⁺ movements between the cytosol and the sarcoplasmic reticulum. The importance of Ca²⁺ entry from extracellular spaces to the cytosol has gained significant attention over the past decade. Store-operated Ca²⁺ entry with a low amplitude and relatively slow kinetics is a main extracellular Ca²⁺ entryway into skeletal muscle. Herein, recent studies on extracellular Ca²⁺ entry into skeletal muscle are reviewed along with descriptions of the proteins that are related to extracellular Ca²⁺ entry and their influences on skeletal muscle function and disease.


Asunto(s)
Proteínas Contráctiles , Citosol , Espacio Extracelular , Cinética , Músculo Esquelético , Postura , Relajación , Retículo Sarcoplasmático
2.
Experimental & Molecular Medicine ; : 614-627, 2010.
Artículo en Inglés | WPRIM | ID: wpr-162255

RESUMEN

During membrane depolarization associated with skeletal excitation-contraction (EC) coupling, dihydropyridine receptor [DHPR, a L-type Ca2+ channel in the transverse (t)-tubule membrane] undergoes conformational changes that are transmitted to ryanodine receptor 1 [RyR1, an internal Ca2+-release channel in the sarcoplasmic reticulum (SR) membrane] causing Ca2+ release from the SR. Canonical-type transient receptor potential cation channel 3 (TRPC3), an extracellular Ca2+-entry channel in the t-tubule and plasma membrane, is required for full-gain of skeletal EC coupling. To examine additional role(s) for TRPC3 in skeletal muscle other than mediation of EC coupling, in the present study, we created a stable myoblast line with reduced TRPC3 expression and without alpha1SDHPR (MDG/TRPC3 KD myoblast) by knock-down of TRPC3 in alpha1SDHPR-null muscular dysgenic (MDG) myoblasts using retrovirus-delivered small interference RNAs in order to eliminate any DHPR-associated EC coupling-related events. Unlike wild-type or alpha1SDHPR-null MDG myoblasts, MDG/TRPC3 KD myoblasts exhibited dramatic changes in cellular morphology (e.g., unusual expansion of both cell volume and the plasma membrane, and multi-nuclei) and failed to differentiate into myotubes possibly due to increased Ca2+ content in the SR. These results suggest that TRPC3 plays an important role in the maintenance of skeletal muscle myoblasts and myotubes.


Asunto(s)
Animales , Ratones , Calcio/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio Tipo L/genética , Cationes/metabolismo , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Acoplamiento Excitación-Contracción , Técnicas de Silenciamiento del Gen , Potenciales de la Membrana , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/fisiología , Sinaptofisina/metabolismo , Canales Catiónicos TRPC/genética , Canales de Potencial de Receptor Transitorio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA