Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Acta Pharmaceutica Sinica ; (12): 1614-20, 2014.
Artículo en Chino | WPRIM | ID: wpr-457202

RESUMEN

According to the designed specific primers of gene fragment based on the Salvia miltiorrhiza transcriptome data, with the method of reverse transcription polymerase chain reaction (RT-PCR), this study cloned full-length cDNA sequence of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase gene from Salvia miltiorrhiza bge.f.alba, this sequence is named as SmHDS and its GenBank registration number is KJ746807. SmHDS, 2 529 bp long, contains an ORF of 2 229 bp, encodes 742 amino acids, including 5' UTR 170 bp and 3' UTR 130 bp. Using bioinformatics software, having made a homology analysis of the obtained sequence, we can have a conclusion that SmHDS have a close genetic relationship with HDS of Salvia miltiorrhiza. Analysis result of prokaryotic expression revealed that in Escherichia coli, SmHDS expressed target proteins which in size are comparable with the protein predicted. Meanwhile, the 4 factors which can influence the protein expression were optimized, the 4 factors are inducing temperature, inducing time, IPTG concentrations and density of inducing host bacterium (A600). The optimal expression conditions of SmHDS were 30 degrees C until the A600 is 0.6, and add IPTG to a final concentration of 0.2 mmol x L(-1), and the induction time of 20 h. It provides theoretical basis for the further study of the function of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase in the biosynthesis of tanshinone compounds.

2.
China Journal of Chinese Materia Medica ; (24): 1416-1420, 2011.
Artículo en Chino | WPRIM | ID: wpr-356107

RESUMEN

<p><b>OBJECTIVE</b>To clone and sequence the open reading frame and genomic sequence of squalene synthase (SQS) from Glycyrrhiza uralensis.</p><p><b>METHOD</b>The primers were designed according to cDNA sequence of SQS from G. glabra reported by Hiroaki HAYASHI, SQS cDNA was cloned with total RNA extracted from roots of G. uralensis. Specific fragments were amplified by RT-PCR and then were cloned and sequenced. SQS DNA was cloned with total DNA extracted from roots of G. uralensis. Specific fragments were amplified by PCR and then were cloned and sequenced.</p><p><b>RESULT</b>GuSQS1 (GenBank accession number: GQ266154) was 1 242 bp in length encoding proteins with 412 amino acid. NCBI Blast x search results showed GuSQS1 had the highest amino acid similarity to the corresponding proteins from G. uralensis. The identities of GuSQS1 with the two proteins were 98. 55% and 88. 62%. SQS (GenBank accession number: GQ180932) gene with 4 484 bp containing 13 exons and 12 introns was then amplified by PCR with genomic DNA extracted from roots of G. uralensis.</p><p><b>CONCLUSION</b>These findings of cloning and sequencing the open reading frame and genomic sequence of squalene synthase (SQS) from G. uralensis brought some new clues for the further exploration of SmSQS function in sterol and terpenes biosynthesis.</p>


Asunto(s)
Secuencia de Aminoácidos , Clonación Molecular , Métodos , ADN Complementario , Química , Farnesil Difosfato Farnesil Transferasa , Química , Glycyrrhiza uralensis , Química , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Raíces de Plantas , Química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Métodos , Análisis de Secuencia de ADN , Métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA