Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Añadir filtros








Intervalo de año
1.
Journal of Cancer Prevention ; : 54-58, 2019.
Artículo en Inglés | WPRIM | ID: wpr-764294

RESUMEN

BACKGROUND: Helicobacter pylori increases production of reactive oxygen species (ROS), which activates inflammatory and carcinogenesis-related signaling pathways in gastric epithelial cells. Therefore, reducing ROS, by upregulating antioxidant enzyme, such as superoxide dismutase (SOD), may be a novel strategy to prevent H. pylori-associated gastric diseases. Astaxanthin is an antioxidant carotenoid that prevents oxidative stress-induced cell injury. The present study was aimed to determine whether H. pylori decreases SOD activity by changing the levels of SOD1/SOD2 and whether astaxanthin prevents changes in SOD levels and activity in H. pylori-infected gastric epithelial AGS cells. METHODS: AGS cells were pre-treated with astaxanthin for 3 hours prior to H. pylori infection and cultured for 1 hour in the presence of H. pylori. SOD levels and activity were assessed by Western blot analysis and a commercial assay kit, respectively. Mitochondrial ROS was determined using MitoSOX fluorescence. RESULTS: H. pylori decreased SOD activity and the SOD2 level, but increased mitochondrial ROS in AGS cells. The SOD1 level was not changed by H. pylori infection. Astaxanthin prevented H. pylori-induced decreases in the SOD2 level and SOD activity and reduced mitochondrial ROS in AGS cells. CONCLUSIONS: Consumption of astaxanthin-rich food may prevent the development of H. pylori-associated gastric disorders by suppressing mitochondrial oxidative stress.


Asunto(s)
Western Blotting , Células Epiteliales , Fluorescencia , Helicobacter pylori , Helicobacter , Estrés Oxidativo , Especies Reactivas de Oxígeno , Gastropatías , Superóxido Dismutasa , Superóxidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA