Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Chinese Journal of Biotechnology ; (12): 627-632, 2004.
Artículo en Chino | WPRIM | ID: wpr-270073

RESUMEN

Aptamers are oligonucleotides derived from an in vitro evolution process called SELEX (Systematic Evolution of Ligands by Exponential Enrichment). Aptamers specially binding to targets could recognize and inhibit the function of targets. Using this method, many powerful antagonists of cytokines have been found. In order for these antagonists to work in animal models of disease and in humans, it is necessary to modify the aptamers. First of all, 2'-F, 2'-NH2 and 2'-CH3O modifications of nucleoside triphosphates could prolong half-lives in blood. Aptamers can be kept in the circulation from hours to days by conjugating them to higher molecular weight vehicles. After modified, conjugated aptamers are injected into animals, they inhibit physiological functions known to be associated with their target cytokines. Exhibiting binding characteristics comparable to or even better than monoclonal antibodies, these ligands can be used as detection probes, highly efficient inhibitors of protein function or specific competitors in high-throughput screening (HTS) assays. Recently several aptamers of cytokines have been characterized. Some of them have been used as diagnostic agent for the detection of target cytokines. The first aptamer that has proceeded to phase II clinical studies is NX-1838, an injectable angiogenesis inhibitor that can be potentially used to treat macular degeneration-induced blindness. Aptamers will be versatile tools that can greatly enhance the efficiency of modern diagnose and therapy development.


Asunto(s)
Humanos , Citocinas , Ensayos Analíticos de Alto Rendimiento , Oligonucleótidos , Usos Terapéuticos , Técnica SELEX de Producción de Aptámeros , Factor A de Crecimiento Endotelial Vascular
2.
Chinese Journal of Biotechnology ; (12): 679-682, 2004.
Artículo en Chino | WPRIM | ID: wpr-249955

RESUMEN

The development of the systematic evolution of ligands by exponential enrichment (SELEX) process has made it possible to isolate oligonucleotide sequences with the capacity of recognizing virtually any class of target molecules with high affinity and specificity. These oligonucleotide sequences, referred to as "aptamers", are useful as a class of molecules that rival antibodies in diagnostic applications. Aptamers are different from antibodies, yet they mimic properties of antibodies in a variety of diagnostic formats. To meet the shortcomings of antibodies, aptamers have the following advantages. Aptamer does not depend on animals, cells, or even in vivo conditions and produced by chemical synthesis with extreme accuracy and reproducibility. Once denatured, functional aptamers could be regenerated easily within minutes. They are stable to long-term storage and can be transported at ambient temperature. We describe here an enzyme -linked oligonucleotide assay that use a SELEX-derived RNA aptamer to detect hTNFalpha. In order to protect from nuclease attack, the RNA aptamer was modified by replacement of 2'-NH2 for 2'-OH at all ribo-purines. In a sandwich micro-plate assay, hTNFalpha monoclonal antibody was coated on the surface of the plate, biotin-labeled RNA aptamer was used as a detect molecle. HTNFalpha was diluted by pooled human serum as standard, and streptavidin-horseradish peroxidase-substrate system was added for detection. Accuracy, precision, sensitivity, specificity of ELONA method were analyzed. The levels of hTNF-alpha in normal human serum samples were assayed by the ELONA and the ELISA processes. The resultes demonstrate that a sandwich assay using a SELEX-derived RNA aptamer has parameters for accuracy, precision, sensitivity, specificity well within the limits expected of a typical enzyme-linked assay. There is no significant difference between the results of ELONA and ELISA. The minimum detection level was 100 pg/mL. This method will be useful for detection of almost all the cytokines and other protein molecules.


Asunto(s)
Humanos , Ensayo de Inmunoadsorción Enzimática , Técnica SELEX de Producción de Aptámeros , Métodos , Sensibilidad y Especificidad , Factor de Necrosis Tumoral alfa , Alergia e Inmunología
3.
Chinese Journal of Biotechnology ; (12): 192-196, 2004.
Artículo en Chino | WPRIM | ID: wpr-259125

RESUMEN

Tumor rapid growth depends on neovascularization. Vascular endothelial growth factor, the main mediator during the occurrence and formation of vascularization, has specific receptors whose expression rate shows difference of orders of magnitude between tumor and the normal tissue, so it can be used to transport toxin molecules to the proliferative tumor endothelial and kill cancer cells. In our experiment, we constructed fusion protein DT-VEGF by linking diphtheria toxin's forward 389 amino acids's gene and VEGF165 via a linker. DT-VEGF is expressed in E. coli and purified. Our experiment proves in can kill vascular endothelial cells specifically, and the inhibition of neovascularization of chicken chorionic membrane is also confirmed.


Asunto(s)
Humanos , Inhibidores de la Angiogénesis , Toxina Diftérica , Genética , Escherichia coli , Genética , Metabolismo , Vectores Genéticos , Inmunotoxinas , Genética , Proteínas Recombinantes de Fusión , Genética , Factores de Crecimiento Endotelial Vascular , Genética
4.
Chinese Journal of Biotechnology ; (12): 730-733, 2003.
Artículo en Chino | WPRIM | ID: wpr-249999

RESUMEN

Human tumor necrosis factor alpha (hTNF-alpha) is one of the most important inflammatory cytokines that acts as a mediator in inflammatory and immune response and plays a key role in host defense against infection. The over expression of hTNF-alpha is associated with serious consequences, such as shock, hypotension, thrombus, septicemia and even death. It has been implicated in many autoimmune and inflammatory diseases, such as rheumatoid arthritis, Crohn's disease, chronic heart failure and septic shock. Inhibiting the bio-activity of hTNF-alpha is one of the strategy for the treatment of these diseases. Compared with traditional recombinant protein drugs, small molecule drugs have many advantages, such as high affinity, low immunogenecity and low cost. Systematic evolution of ligands by exponential enrichment (SELEX) is a powerful method for the selection of oligonucleotides that bind with high affinity and specificity to target proteins. Such oligonucleotides are called aptamers, and are potential therapeutics for blocking the activity of pathologically relevant proteins. To obtain oligonucleotide aptamers specifically binding to TNF, a 40nt random DNA combinatorial library flanked by 31nt fixed sequences was chemically synthesized. The random library was amplified with PCR and subjected to selection by SELEX protocol against hTNFalpha. After incubation of the library with hTNFalpha, the mixture was blotted onto Immobilon-NC transfer membrane. The no-specific binding was washed away and the hTNFa binding aptamers were eluted and detached from the target protein. The eluted oligo nucleotides were amplified with PCR and served as the DNA library for the next round selection. After 12 rounds of such selection, the selected aptamers were cloned to pGEM-T vector. Positive clones were identified by restriction enzyme digestion and DNA sequencing. Oligo DNA were synthesized according to the sequence data and tested for their activities. Binding activity of the aptamers to hTNFalpha were detected by ELISA and dot blot with biotin-streptavidin-horseradish peroxidase system. Mouse L929 cells were used to test the anti-hTNFa activity of the DNA aptamers. The aptamers were incubated with hTNFalpha and added to the L929 cells. The results were read under microscope and with MTT staining. It was shown that these DNA aptamers bound to hTNFalpha with high affinity, and can inhibit the cytotoxicity of hTNFalpha on cell culture. The affinity of these aptamers are different and may related to their structure. These ssDNA aptamers are potential for the treatment and diagnosis of hTNFalpha related diseases.


Asunto(s)
Animales , Humanos , Ratones , Aptámeros de Nucleótidos , Química , Genética , Farmacología , Biotina , Química , Línea Celular , Supervivencia Celular , Ensayo de Inmunoadsorción Enzimática , Biblioteca de Genes , Unión Proteica , Técnica SELEX de Producción de Aptámeros , Métodos , Factor de Necrosis Tumoral alfa , Metabolismo , Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA