Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
1.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 85-92, 2024.
Artículo en Chino | WPRIM | ID: wpr-1007278

RESUMEN

ObjectiveTo investigate the expression of glial cell line-derived neurotrophic factor (GDNF) and androgen receptor (AR) in testicular peritubular cells (TPCs) of cryptorchidism mouse models and explore the theoretical significance of cryptorchidism-induced spermatogenesis dysfunction. MethodsA total of 30 five-week-old male ICR rats were divided randomly by using random number table method into 6 groups. Cryptorchidism was surgically induced in 3 randomly selected groups and the other 3 groups underwent sham surgery as the control groups. On days 4, 7 and 14 after surgery, we harvested the mice testes of the 3 groups and their corresponding control groups, then measured the testicular volumes, analyzed the testicular histopathology and detected the mRNA and protein expression levels of AR and GDNF in TPCs by immunofluorescence, real-time PCR and Western blot. ResultsIn normal control groups, on days 4, 7 and 14 after surgery, the testicular volumes were (125.58±19.22) mm3,(123.45±20.12) mm3, (140.09±13.62) mm3 , respectively. Clear layers of spermatogenic cells were well arranged and abundant sperm cells were found. Peritubular cells were morphologically homogeneous, with slim-spindle appearance and normal cell thickness. The mRNA expression levels of AR were 1.00±0.05, 1.06±0.07 and 1.19±0.13; GDNF mRNA 1.00±0.04, 1.09±0.05, and 1.10±0.07. The protein expression levels of AR were 1.01±0.01, 0.79±0.02 and 1.01±0.04; GDNF protein (18.68±0.43) pg/mL, (14.39±0.36) pg/mL and (16.88±0.37) pg/mL. In cryptorchidism groups, on days 4, 7 and 14 after surgery, the testicular volumes were (115.64±3.91) mm3, (69.51±14.97) mm3 and (44.86±5.56) mm3, respectively. Spermatogenic cells were disorganized, seminiferous tubules were disrupted, peritubular cells shrank, bent and fractured. The mRNA expression levels of AR were 0.76±0.06, 0.53±0.04, and 0.29±0.02; GDNF mRNA 0.72±0.05, 0.42±0.02 and 0.30±0.03. The protein expression levels of AR were 0.54±0.02, 0.98±0.04 and 0.31±0.01; GDNF protein (8.50±0.34) pg/mL, (17.44±0.32) pg/mL and (6.83±0.34) pg/mL. Statistically significant differences (P < 0.05) were found in 7-day and 14-day testicular volumes between control and cryptorchidism groups but not in the 4-day testicular volume (P > 0.05). Testicular volumes, AR and GDNF mRNA and protein expression in control groups had no statistically significant difference (P > 0.05), while those in cryptorchidism groups showed a trend of gradual decline in the amount and the differences between groups were statistically significant (P < 0.05). ConclusionsIn surgery-induced cryptorchidism mice, after the induction, the expression of AR and GDNF in TPCs showed a gradual decrease over time. AR and GDNF play a major role in mediating the TPCs damage in cryptorchidism. This study provides a theoretical basis for mechanism researches of cryptorchidism-induced spermatogenesis dysfunction.

2.
International Eye Science ; (12): 230-235, 2024.
Artículo en Chino | WPRIM | ID: wpr-1005386

RESUMEN

Glaucoma is one of the leading causes of vision loss worldwide. More and more studies have suggested that glaucoma is a complicated retinal neurovascular disease. The homeostasis imbalance of retinal neurovascular unit(RNVU)composed of neurons, glial cells and microvascular cells not only induces changes in microvascular structure and glial cells, but also affects the nerve tissue of the retina, resulting in vision loss, which there is no effective treatment to reverse, currently. Exploring the cellular composition and molecular structure of RNVU and investigating the destruction mechanism of normal cellular environment and intercellular connections in glaucoma are of great significance in exploring the pathogenesis and the treatment of glaucoma. The research progress on structural changes and dysfunction of RNVU in glaucoma are reviewed, hoping to provide new ideas for the treatment of glaucoma.

3.
Chinese journal of integrative medicine ; (12): 251-259, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1010332

RESUMEN

OBJECTIVE@#To explore the mechanism of electroacupuncture (EA) in promoting recovery of the facial function with the involvement of autophagy, glial cell line-derived neurotrophic factor (GDNF), and phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway.@*METHODS@#Seventy-two male Sprague-Dawley rats were randomly allocated into the control, sham-operated, facial nerve injury (FNI), EA, EA+3-methyladenine (3-MA), and EA+GDNF antagonist groups using a random number table, with 12 rats in each group. An FNI rat model was established with facial nerve crushing method. EA intervention was conducted at Dicang (ST 4), Jiache (ST 6), Yifeng (SJ 17), and Hegu (LI 4) acupoints for 2 weeks. The Simone's 10-Point Scale was utilized to monitor the recovery of facial function. The histopathological evaluation of facial nerves was performed using hematoxylin-eosin (HE) staining. The levels of Beclin-1, light chain 3 (LC3), and P62 were detected by immunohistochemistry (IHC), immunofluorescence, and reverse transcription-polymerase chain reaction, respectively. Additionally, IHC was also used to detect the levels of GDNF, Rai, PI3K, and mTOR.@*RESULTS@#The facial functional scores were significantly increased in the EA group than the FNI group (P<0.05 or P<0.01). HE staining showed nerve axons and myelin sheaths, which were destroyed immediately after the injury, were recovered with EA treatment. The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats (P<0.01); however, EA treatment reversed these abnormal changes (P<0.01). Meanwhile, EA stimulation significantly increased the levels of GDNF, Rai, PI3K, and mTOR (P<0.01). After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist, the repair effect of EA on facial function was attenuated (P<0.05 or P<0.01).@*CONCLUSIONS@#EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI. EA may exert this neuroreparative effect through mediating the release of GDNF, activating the PI3K/mTOR signaling pathway, and further regulating the autophagy of facial nerves.


Asunto(s)
Ratas , Masculino , Animales , Ratas Sprague-Dawley , Electroacupuntura , Fosfatidilinositol 3-Quinasa/metabolismo , Traumatismos del Nervio Facial/terapia , Fosfatidilinositol 3-Quinasas/metabolismo , Beclina-1 , Factor Neurotrófico Derivado de la Línea Celular Glial , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Mamíferos/metabolismo
4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 95-103, 2023.
Artículo en Chino | WPRIM | ID: wpr-996815

RESUMEN

ObjectiveTo investigate the effects of Mingjing granules (MJKL) on the fibrovascular membrane of experimental wet age-related macular degeneration (nAMD) based on macrophages and glial cells and further explain the mechanism of MJKL in the treatment of nAMD. MethodThe experimental nAMD fibrovascular membrane model was established by two-stage laser photocoagulation. BN rats were randomly divided into three groups: model group, anti-vascular endothelial growth factor (VEGF) group, and MJKL + anti-VEGF group. The model group was given distilled water for intragastric administration. Anti-VEGF group was injected with leizumab injection in the vitreous cavity. MJKL + anti-VEGF group was injected with leizumab injection in the vitreous cavity, and MJKL was intragastrically administered. Ten normal BN rats were not modeled and fed as controls. After 40 days of model making, fundus lesion morphology, lesion exudation area, and MD value were observed by fundus photography (FP), fundus angiography (FFA), optical coherence tomography (OCT), and retinal pigment epithelium (RPE)-choroid-sclera film. The changes in retinal structure were observed by histopathology, and the expression and distribution of F4/80, Iba-1, and GFAP were detected by immunofluorescence. The relative expression levels of F4/80, Iba-1, and GFAP mRNA were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultThe fibrovascular membrane model was established 40d after two-stage laser modeling. The lesion exudation area, MD value, lesion height, and lesion area in the anti-VEGF group were significantly lower than those in the model group (P<0.05), and the retinal structural damage degree was significantly improved. Compared with the anti-VEGF group, the MJKL + anti-VEGF group significantly decreased the MD value, lesion height, and lesion area (P<0.05), and lesion area and retinal structural damage degree were significantly improved. The fluorescence intensity of F4/80 and Iba-1 in the model group was significantly higher than that in the normal group (P<0.05), and that in the anti-VEGF group was significantly lower than that in the model group (P<0.05). The fluorescence intensity in the MJKL + anti-VEGF group was significantly lower than that in the anti-VEGF group (P<0.05). The fluorescence intensity of GFAP in the model group was significantly higher than that in the normal group (P<0.05), and that in the anti-VEGF group was significantly lower than that in the model group (P<0.05). The relative expression levels of F4/80, Iba-1, and GFAP mRNA in the model group were significantly increased compared with the normal group (P<0.05), and the anti-VEGF group was significantly decreased compared with the model group (P<0.05). The relative expression levels of F4/80, Iba-1, and GFAP mRNA in the MJKL + anti-VEGF group were significantly decreased compared with those in the anti-VEGF group (P<0.05). ConclusionMJKL combined with anti-VEGF drugs can inhibit the growth of experimental nAMD fibrovascular membrane better than anti-VEGF drugs alone, and the mechanism may be related to inhibiting the participation of macrophages and glial cells in the formation of fibrovascular membrane.

5.
Malaysian Journal of Medicine and Health Sciences ; : 35-41, 2023.
Artículo en Inglés | WPRIM | ID: wpr-996666

RESUMEN

@#Introduction: Astrocytes are responsible for many essential functions of neurons in CNS. It has been recognised that chronic stress affects the morphology of astrocyte. Natural antioxidant such as honey has been used as one of the therapeutic strategies to lessen the damaging effect of chronic stress on our body. Therefore, the aim of the study is to explore the effect of natural antioxidant, Tualang honey (TH) on the morphology of astrocytes following chronic stress exposure. Methods: Thirty-two male rats were randomly divided into the 4 groups: (i) control, (ii) stress, (iii) honey, (iv) stress plus honey groups.TH was administered via oral gavage at dose of 1.0 g/kg body weight pre and post experiment. Chronic stress was exposed to animals in group (ii) and (iv) for consecutive 21 days. Anti GFAP immunohistochemistry method was employed to label astrocytes in the medial prefrontal cortex. The number of GFAP+ astrocytes and several parameters related to astrocyte processes were measured. Results: The present study showed that chronic stress reduced the GFAP immunoreactive astrocyte number and percentage of GFAP immunoreactive material. Chronic stress also caused a reduction in astrocyte process ramification as indicated by a reduction in astrocyte total number of processes, average length of processes and maximum number of intersections. However, antioxidant treatment using TH could not reverse these stress-induced changes to the astrocytes. Conclusion: These results demonstrate that chronic stress decreases the number of GFAP immunoreactive astrocyte and cause shrinking of astrocyte processes in stress-sensitive brain region, but these changes cannot be reversed by antioxidant treatment.

6.
Chinese Journal of Physical Medicine and Rehabilitation ; (12): 97-102, 2023.
Artículo en Chino | WPRIM | ID: wpr-995180

RESUMEN

Objective:To investigate any effect of repeated transcranial magnetic stimulation (rTMS) on the expression of P2X7 receptor (P2X7R) and glial fibrillary acid protein (GFAP) in the prefrontal cortex and hippocampus of mice modeling depression.Methods:Thirty C57BL/6 mice were divided into a control group ( n=10) and a depression group ( n=20). The mice of the control group were raised in group (five mice per cage), while those of the depression group were kept alone for six weeks to induce depression. Among them, 16 were successfully modeled and randomly divided into a model group ( n=8) and an rTMS group ( n=8). The rTMS group received five sessions per week of 10Hz rTMS for 4 weeks. Any changes in depression-like behavior were observed and the expression of P2X7R and GFAP in the prefrontal cortex and hippocampus was measured. Results:Compared to the control group, a significant decrease was observed in the sucrose consumption rate in the sucrose preference test, in the distance moved in the open field test and in the expression of GFAP protein. But there was a significant increase in the immobile time in the tail suspension test and in the expression of P2X7R protein in the prefrontal cortex and hippocampus in the model group. At the conclusion of the experiment the differences in the sucrose consumption rate, the distance moved, GFAP protein expression, immobile time and P2X7R protein expression between the rTMS and the model group were all statistically significant.Conclusion:rTMS can reduce depression-like behavior, at least in mice. That may be related to inhibiting P2X7R expression and promoting GFAP expression in the prefrontal cortex and hippocampus.

7.
Chinese Journal of Neurology ; (12): 82-87, 2023.
Artículo en Chino | WPRIM | ID: wpr-994803

RESUMEN

Autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy is a rare immune-mediated inflammatory disease of central nervous system reported in recent years, and its specific biological marker is anti-GFAP autoantibody. In this paper, the etiology, pathogenesis, clinical manifestations, auxiliary examination and treatment of the disease are comprehensively expounded, so as to improve the understanding of clinicians, especially neurologists.

8.
International Journal of Pediatrics ; (6): 17-22, 2023.
Artículo en Chino | WPRIM | ID: wpr-989029

RESUMEN

With the continuous progress of monitoring and treatment skills, the mortality of neonates has gradually decreased, and the long-term neurodevelopmental outcome has become the primary concern of society and families.During the perinatal period, the developing brain is vulnerable to hypoxia, hemorrhage, infection and inflammation, which may cause varying degrees of brain cell damage.Studies have found that proteins released by damaged brain cells can be detected in the body fluid of neonates, which are related to the occurrence and prognosis of neonatal brain injury.This article mainly reviews the recently reported brain injury biomarkers such as S100B, neuron specific enolase(NSE)and glial fibrillary acidic protein(GFAP)in different biological samples and its clinical predictive value for the occurrence of brain injury and neurodevelopmental prognosis.

9.
China Journal of Chinese Materia Medica ; (24): 5830-5837, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008781

RESUMEN

This study investigated the effect of Xiaoxuming Decoction(XXMD) on the activation of astrocytes after cerebral ischemia/reperfusion(I/R) injury. The model of cerebral IR injury was established using the middle cerebral artery occlusion method. Fluorocitrate(FC), an inhibitor of astrocyte activation, was applied to inhibit astrocyte activation. Rats were randomly divided into a sham group, a model group, a XXMD group, a XXMD+FC group, and a XXMD+Vehicle group. Neurobehavioral changes at 24 hours after cerebral IR injury, cerebral infarction, histopathological changes observed through HE staining, submicroscopic structure of astrocytes observed through transmission electron microscopy, fluorescence intensity of glial fibrillary acidic protein(GFAP) and thrombospondin 1(TSP1) measured through immunofluorescence, and expression of GFAP and TSP1 in brain tissue measured through Western blot were evaluated in rats from each group. The experimental results showed that neurobehavioral scores and cerebral infarct area significantly increased in the model group. The XXMD group, the XXMD+FC group, and the XXMD+Vehicle group all alleviated neurobehavioral changes in rats. The pathological changes in the brain were evident in the model group, while the XXMD group, the XXMD+FC group, and the XXMD+Vehicle group exhibited milder cerebral IR injury in rats. The submicroscopic structure of astrocytes in the model group showed significant swelling, whereas the XXMD group, the XXMD+FC group, and XXMD+Vehicle group protected the submicroscopic structure of astrocytes. The fluorescence intensity and protein expression of GFAP and TSP1 increased in the model group compared with those in the sham group. However, the XXMD group, the XXMD+FC group, and XXMD+Vehicle group all down-regulated the expression of GFAP and TSP1. The combination of XXMD and FC showed a more pronounced effect. These results indicate that XXMD can improve cerebral IR injury, possibly by inhibiting astrocyte activation and down-regulating the expression of GFAP and TSP1.


Asunto(s)
Ratas , Animales , Astrocitos , Isquemia Encefálica/metabolismo , Encéfalo , Daño por Reperfusión/metabolismo , Infarto de la Arteria Cerebral Media
10.
Neuroscience Bulletin ; (6): 1131-1145, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982446

RESUMEN

Heterozygous loss-of-function variants of FOXP4 are associated with neurodevelopmental disorders (NDDs) that exhibit delayed speech development, intellectual disability, and congenital abnormalities. The etiology of NDDs is unclear. Here we found that FOXP4 and N-cadherin are expressed in the nuclei and apical end-feet of radial glial cells (RGCs), respectively, in the mouse neocortex during early gestation. Knockdown or dominant-negative inhibition of Foxp4 abolishes the apical condensation of N-cadherin in RGCs and the integrity of neuroepithelium in the ventricular zone (VZ). Inhibition of Foxp4 leads to impeded radial migration of cortical neurons and ectopic neurogenesis from the proliferating VZ. The ectopic differentiation and deficient migration disappear when N-cadherin is over-expressed in RGCs. The data indicate that Foxp4 is essential for N-cadherin-based adherens junctions, the loss of which leads to periventricular heterotopias. We hypothesize that FOXP4 variant-associated NDDs may be caused by disruption of the adherens junctions and malformation of the cerebral cortex.


Asunto(s)
Ratones , Animales , Células Ependimogliales/fisiología , Cadherinas , Neuronas/metabolismo , Corteza Cerebral/metabolismo , Diferenciación Celular , Movimiento Celular
11.
Chinese journal of integrative medicine ; (12): 459-469, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982299

RESUMEN

OBJECTIVE@#To investigate autophagy-related mechanisms of electroacupuncture (EA) action in improving gastrointestinal motility in mice with functional constipation (FC).@*METHODS@#According to a random number table, the Kunming mice were divided into the normal control, FC and EA groups in Experiment I. The autophagy inhibitor 3-methyladenine (3-MA) was used to observe whether it antagonized the effects of EA in Experiment II. An FC model was established by diphenoxylate gavage. Then the mice were treated with EA stimulation at Tianshu (ST 25) and Shangjuxu (ST 37) acupoints. The first black stool defecation time, the number, weight, and water content of 8-h feces, and intestinal transit rate were used to assess intestinal transit. Colonic tissues underwent histopathological assessment, and the expressions of autophagy markers microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 were detected by immunohistochemical staining. The expressions of phosphoinositide 3-kinases (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) signaling pathway members were investigated by Western blot and quantitative reverse transcription-polymerase chain reaction, respectively. The relationship between enteric glial cells (EGCs) and autophagy was observed by confocal immunofluorescence microscopy, localization analysis, and electron microscopy.@*RESULTS@#EA treatment shortened the first black stool defecation time, increased the number, weight, and water content of 8-h feces, and improved the intestinal transit rate in FC mice (P<0.01). In terms of a putative autophagy mechanism, EA treatment promoted the expressions of LC3 and Beclin-1 proteins in the colonic tissue of FC mice (P<0.05), with glial fibrillary acidic protein (GFAP) and LC3 significantly colocalized. Furthermore, EA promoted colonic autophagy in FC mice by inhibiting PI3K/AKT/mTOR signaling (P<0.05 or P<0.01). The positive effect of EA on intestinal motility in FC mice was blocked by 3-MA.@*CONCLUSION@#EA treatment can inhibit PI3K/AKT/mTOR signaling in the colonic tissues of FC mice, thereby promoting EGCs autophagy to improve intestinal motility.


Asunto(s)
Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Electroacupuntura , Beclina-1 , Transducción de Señal , Estreñimiento/terapia , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Neuroglía/metabolismo , Mamíferos/metabolismo
12.
Acta Anatomica Sinica ; (6): 23-29, 2023.
Artículo en Chino | WPRIM | ID: wpr-1015252

RESUMEN

Objective To investigate the influence of volatile oil from Acori graminei Rhizoma (VOA) on expressions of glial fibrillary acidic protein (GFAP), c-Jun N-terminal protein kainse (JNK) and tumour necrosis factor-α (TNF-α) in the spinal cord dorsal horn of imflammatory pain rats. Methods Totally 36 male SD rats were randomly divided into control group (control), sham-operated group (sham), complete Freund' s adjuvant group (CFA), 5 g/(kg·d) low dose VOA+CFA group (VOA-L+CFA), 10 g/(kg·d) medium dose VOA + CFA group (VOA-M+CFA) and 20 g/(kg·d) high dose VOA + CFA group (VOA-H+CFA). All animals were sacrificed immediately after continuous gavage administration for 22 days. The expressions of GFAP, JNK and TNF-α in the spinal cord dorsal horn of rats in each group were detected by immunofluorescence and Western blotting methods. Results The present results showed that the positive expressions of GFAP, JNK and TNF-α in the spinal cord dorsal horn of rats increased significantly in the CFA group, when compared to the control and sham groups (P < 0. 01). The expressions of GFAP, JNK and TNF-α in the spinal cord dorsal horn of rats with VOA treatment reduced in the dose-dependent manner, when compared to the CFA group, the positive expressions of GFAP, JNK and TNF-α reduced significantly in the dorsal horn of the spinal cord of the VOA-H+CFA group (P<0. 05, P<0. 01). Conclusion VOA reduces the expressions of GFAP, JNK and TNF-α in the spinal cord dorsal horn of rats of CFA-induced inflammatory pain.

13.
Chinese Pharmacological Bulletin ; (12): 739-744, 2023.
Artículo en Chino | WPRIM | ID: wpr-1013940

RESUMEN

Aim To observe cellular damage and astrocyte activation at different time points of cerebral ischemia and reperfusion. Methods The middle cerebral artery of male SpragueDawley rats was occluded for 90 min followed by different time points of reperfusion. Eighty-five SPF male SD rats were randomly divided into control group (Sham), IR3, 6, 12, 24 and IR48h (MCAO followed by 48 h of reperfusion) group. Cerebral ischemia and reperfusion injury was observed by HE staining, and the structure of astrocytes was estimated with transmission electron microscopy (TEM). GFAP expression was detected by immunofluorescence staining and Western blot. Results Cerebral ischemia following by different time points of reperfusion led to different degrees of cellular damage, which was the most serious at 24 h of reperfusion. TEM showed destruction of astrocytes structure, swollen organelles and broken mitochondrial ridge. After cerebral ischemia-reperfusion, the expression levels of GFAP were significant up-regulated in the ischemic penumbra cortex and the highest was at 48 h of reperfusion, indicating astrocytes were activated. In addition, the results showed the gradual decrease in GFAP expression in the infarct core. Conclusions After cerebral ischemia-reperfusion, cellular damage is aggravated, and astrocytes are gradually activated in the ischemic penumbra. With the extension of reperfusion time, the boundaries of infarct area and ischemic area are gradually clear, and scarring may occur.

14.
Chinese Pharmacological Bulletin ; (12): 325-331, 2023.
Artículo en Chino | WPRIM | ID: wpr-1013860

RESUMEN

:Aim To study the effects of continuous dai¬ly administration of ramelteon starting at the subacute period of cryogenic traumatic brain injury (cTBI) on neurological function and brain tissue repair in mice. Methods Thirty male C57BL/6 mice were randomly divided into sham group, vehicle group and ramelteon treatment groups. The right sensory-motor cortex was damaged by pressing a copper probe precooled by liq¬uid nitrogen onto the skull. Ramelteon ( 10 nig 'kg-1 • d"1) was administered by gavage every day starting at different time points after cTBI (1 h, 1 d,3 d) until sacrifice on day 14. Beam walking test and open field test were used to evaluate the motor function. Toluidine blue staining was used to measure the infarct volume. Immunofluorescence was used to detect the expression of GAP-43 and synaptophysin in peri-infarct area. Mi¬croglia activation was detected using Iba-1. The area and thickness of glial scars were analyzed by detecting GFAP positive areas. Results All three treatment ( 1 h - 14 d, 1 - 14 d, and 3 - 14 d) significantly im¬proved cTBI induced motor dysfunction, reduced the infarct volume, elevated the expression of GAP -43 and synaptophysin, and decreased the area and thick¬ness of glial scar and microglia activation. In addition, all ramelteon treatment groups had similar effects on the above indexes. Conclusions Delayed ramelteon treatment can improve neurological dysfunction after cTBI,and the therapeutic time window can be delayed for up to three days after cTBI. Inhibiting glial scar formation and microglia activation, and promoting ax- onal regeneration and synaptogenesis may contribute to the beneficial effects of ramelteon.

15.
Protein & Cell ; (12): 603-617, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1010766

RESUMEN

Light adaptation enables the vertebrate visual system to operate over a wide range of ambient illumination. Regulation of phototransduction in photoreceptors is considered a major mechanism underlying light adaptation. However, various types of neurons and glial cells exist in the retina, and whether and how all retinal cells interact to adapt to light/dark conditions at the cellular and molecular levels requires systematic investigation. Therefore, we utilized single-cell RNA sequencing to dissect retinal cell-type-specific transcriptomes during light/dark adaptation in mice. The results demonstrated that, in addition to photoreceptors, other retinal cell types also showed dynamic molecular changes and specifically enriched signaling pathways under light/dark adaptation. Importantly, Müller glial cells (MGs) were identified as hub cells for intercellular interactions, displaying complex cell‒cell communication with other retinal cells. Furthermore, light increased the transcription of the deiodinase Dio2 in MGs, which converted thyroxine (T4) to active triiodothyronine (T3). Subsequently, light increased T3 levels and regulated mitochondrial respiration in retinal cells in response to light conditions. As cones specifically express the thyroid hormone receptor Thrb, they responded to the increase in T3 by adjusting light responsiveness. Loss of the expression of Dio2 specifically in MGs decreased the light responsive ability of cones. These results suggest that retinal cells display global transcriptional changes under light/dark adaptation and that MGs coordinate intercellular communication during light/dark adaptation via thyroid hormone signaling.


Asunto(s)
Animales , Ratones , Adaptación a la Oscuridad , Luz , Retina , Células Fotorreceptoras Retinianas Conos/metabolismo , Adaptación Ocular , Neuroglía/fisiología , Comunicación Celular , Hormonas Tiroideas
16.
China Journal of Chinese Materia Medica ; (24): 3848-3854, 2023.
Artículo en Chino | WPRIM | ID: wpr-981517

RESUMEN

This study aims to investigate the neuroprotective effect of tetramethylpyrazine on mice after spinal cord injury and its mechanism. Seventy-five female C57BL/6 mice were randomly divided into 5 groups, namely, a sham operation group, a model group, a tetramethylpyrazine low-dose group(25 mg·kg~(-1)), a tetramethylpyrazine medium-dose group(50 mg·kg~(-1)), and a tetramethylpyrazine high-dose group(100 mg·kg~(-1)), with 15 mice in each group. Modified Rivlin method was used to establish the mouse model of acute spinal cord injury. After 14 d of tetramethylpyrazine intervention, the motor function of hind limbs of mice was evaluated by basso mouse scale(BMS) and inclined plate test. The levels of inflammatory cytokines tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-1β(IL-1β) in the spinal cord homogenate were determined by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe the histology of the spinal cord, and Nissl's staining was used to observe the changes in the number of neurons. Western blot and immunofluorescence method were used to detect the expression of glial fibrillary acidic protein(GFAP) and C3 protein. Tetramethylpyrazine significantly improved the motor function of the hind limbs of mice after spinal cord injury, and the BMS score and inclined plate test score of the tetramethylpyrazine high-dose group were significantly higher than those of the model group(P<0.01). The levels of TNF-α, IL-6, and IL-1β in spinal cord homogenate of the tetramethylpyrazine high-dose group were significantly decreased(P<0.01). After tetramethylpyrazine treatment, the spinal cord morphology recovered, the number of Nissl bodies increased obviously with regular shape, and the loss of neurons decreased. As compared with the model group, the expression of GFAP and C3 protein was significantly decreased(P<0.05,P<0.01) in tetramethylpyrazine high-dose group. In conclusion, tetramethylpyrazine can promote the improvement of motor function and play a neuroprotective role in mice after spinal cord injury, and its mechanism may be related to inhibiting inflammatory response and improving the hyperplasia of glial scar.


Asunto(s)
Ratas , Ratones , Femenino , Animales , Ratas Sprague-Dawley , Fármacos Neuroprotectores/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6 , Ratones Endogámicos C57BL , Traumatismos de la Médula Espinal/genética , Médula Espinal/metabolismo
17.
International Eye Science ; (12): 1323-1327, 2023.
Artículo en Chino | WPRIM | ID: wpr-978627

RESUMEN

Diabetic retinopathy(DR)is the main cause of substantial visual impairment of occupational active individuals in the world, which has become one of the most common eye diseases that lead to irreversible visual impairment of the working population. Precise identification and accurate intervention of early DR lesions are of great significance to block or delay the development of this disease. Recent studies have shown that DR nerve injury occurs before retinal microangiopathy, it has a series of characteristic clinical manifestations, such as dark adaptation delay, contrast sensitivity and decreased tone discrimination. These characteristic clinical manifestations are key events in the early stage of DR, which are closely related to apoptosis, glial cell proliferation, oxidative stress, inflammation, excitotoxicity of glutamate and imbalance of neurotrophic factors. In this paper, the research progress of DR nerve damage and its related factors are reviewed in order to provide new ideas for the prevention and treatment of DR.

18.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 170-177, 2023.
Artículo en Chino | WPRIM | ID: wpr-978463

RESUMEN

ObjectiveTo explore the effect of Anmeidan on the sleep quality and serum levels of brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), and irisin in the patients with chronic insomnia. MethodA multicenter, randomized, double-blind, placebo-controlled clinical study was carried out, including 480 patients with chronic insomnia (deficiency syndrome) in Wuhan (Hubei), Guangzhou (Guangdong), and Lanzhou (Gansu). They were randomized into an observation group and a control group at a ratio of 1∶1. The observation group was orally administered with Anmeidan granules at a dose of 11 g, 3 times per day, and the control group with Anmeidan simulant at a dose of 11 g, 3 times per day, Both groups of patients received sleep education after enrollment. After 4 weeks of medication, the Athens insomnia scale (AIS) scores, Spiegel scale scores, and serum levels of BDNF, GFAP, and irisin were compared between the two groups as well as between before and after treatment. ResultA total of 480 adult patients with chronic insomnia were enrolled in this study, with 64 patients falled off. Finally, the 415 patients were included in the analysis, including 213 patients in the observation group and 202 patients in the control group. There was no difference in age or sex between the two groups of patients. Compared with before treatment, the treatment in both groups decreased the AIS and Spiegel scores (P<0.01). After treatment, the observation group had lower AIS and Spiegel scores than the control group (P<0.01). The treatment in the observation group slightly lowered the level of BDNF, elevated the level of irisin (P<0.05), and lowered the level of GFAP (P<0.05) in the serum. After treatment, the observation group showed higher level of irisin (P<0.05) and lower levels of BDNF and GFAP in the serum than the control group. ConclusionAnmeidan may improve the sleep quality of patients with chronic insomnia by elevating the irisin level and lowering the GFAP level in the serum.

19.
Journal of Pharmaceutical Practice ; (6): 227-233, 2023.
Artículo en Chino | WPRIM | ID: wpr-972317

RESUMEN

Objective To observe the effect of specific knockdown of hepatic stellate cells (HSC) ribosomal protein S5 (RPS5) on liver fibrosis in rats. Methods The glial fibrillary acidic protein (GFAP) promoter-driven RPS5 shRNA adenovirus was established, and AdGFa2-shRPS5 and its control AdGFa2 shNC were used to transfect primary rat HSCs and hepatocytes, respectively. RPS5 was determined by Western-blot and Real Time PCR, α-SMA and type I collagen expression; the rat liver fibrosis model was established by dimethyl nitrosamine (DMN) and bile duct ligation (BDL), and intrahepatic HSC was specifically knocked down by tail vein injection of adenovirus of RPS5 levels. The pathological changes of liver tissue sections were analyzed by HE staining; the content of hydroxyproline, sections of Sirius red and Masson staining were used to evaluate collagen deposition; immunohistochemical staining was used to detect the expression of α-SMA and RPS5. Results AdGFa2-shRPS5 specifically knocked down the expression level of RPS5 in HSC and increased the expression of α-SMA and type I collagen in vitro. The in vivo results showed that in two animal models of chronic liver injury, specific knockdown of RPS5 expression in HSCs promoted HSC activation, increased the deposition of extracellular matrix, and promoted liver fibrosis. Conclusion RPS5 is essential for HSC activation and liver fibrosis, which could be a potential target for the treatment of liver fibrosis.

20.
Neuroscience Bulletin ; (6): 466-478, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971586

RESUMEN

Multiple sclerosis (MS) is regarded as a chronic inflammatory disease that leads to demyelination and eventually to neurodegeneration. Activation of innate immune cells and other inflammatory cells in the brain and spinal cord of people with MS has been well described. However, with the innovation of technology in glial cell research, we have a deep understanding of the mechanisms of glial cells connecting inflammation and neurodegeneration in MS. In this review, we focus on the role of glial cells, including microglia, astrocytes, and oligodendrocytes, in the pathogenesis of MS. We mainly focus on the connection between glial cells and immune cells in the process of axonal damage and demyelinating neuron loss.


Asunto(s)
Humanos , Esclerosis Múltiple , Neuroglía , Inflamación/patología , Encéfalo/patología , Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA